
Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Distilled Thompson Sampling: Practical and Efficient
Thompson Sampling via Imitation Learning

Hongseok Namkoong∗

Decision, Risk, and Operations Division, Columbia Business School, New York, NY 10027, namkoong@gsb.columbia.edu

Samuel Daulton∗

Core Data Science, Facebook, Menlo Park, CA 94025, sdaulton@fb.com

Eytan Bakshy
Core Data Science, Facebook, Menlo Park, CA 94025, ebakshy@fb.com

Thompson sampling (TS) has emerged as a robust technique for contextual bandit problems. However,

TS requires posterior inference and optimization for action generation, prohibiting its use in many online

platforms where latency and ease of deployment are of concern. We operationalize TS by proposing a novel

imitation-learning-based algorithm that distills a TS policy into an explicit policy representation, allowing fast

decision-making and easy deployment in mobile and server-based environments. Using batched data collected

under the imitation policy, our algorithm iteratively performs offline updates to the TS policy, and learns

a new explicit policy representation to imitate it. Empirically, our imitation policy achieves performance

comparable to batch TS while allowing more than an order of magnitude reduction in decision-time latency.

Buoyed by low latency and simplicity of implementation, our algorithm has been successfully deployed in

multiple video upload systems for Meta. Using a randomized controlled trial, we show our algorithm resulted

in significant improvements in video quality and watch time.
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1. Introduction

In the past decade, Thompson sampling (Thompson 1933) has emerged as a powerful algorithm for

contextual bandit problems. The underlying principle is simple: an action is chosen with probability

1



Author: Distilled Thompson Sampling via Imitation Learning
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

proportional to it being optimal under the current posterior distribution. Driven by the algorithm’s

strong empirical performance (Scott 2010, Chapelle and Li 2011, May and Leslie 2011), many authors

have recently established rigorous performance guarantees (Kaufmann et al. 2012, Agrawal and

Goyal 2013a,b, Gopalan et al. 2014, Honda and Takemura 2014, Russo and Van Roy 2014, Abeille

et al. 2017). Thompson sampling is increasingly being applied to a broad range of applications

including revenue management (Ferreira et al. 2018), internet advertising (Graepel et al. 2010,

Agarwal et al. 2014, Schwartz et al. 2017), and recommendation systems (Kawale et al. 2015).

Despite its conceptual simplicity and strong performance, Thompson sampling can be difficult to

deploy in practice. Thompson sampling consists of two steps: posterior sampling and optimization.

Posterior sampling requires evaluating a potentially large number of actions from a well-calibrated

probabilistic model. Accurately calibrating uncertainty is important for optimally trading off

exploration and exploitation, and is critical to practical performance (Riquelme et al. 2018).

Large-scale probabilistic machine learning models based on deep networks show much promise

as they can adaptively learn good feature representations for uncertainty calibration (Wang and

Yeung 2020). However, sampling from these probabilistic models can be demanding in terms of

computation and memory. While approximate inference methods with better runtime characteristics

exist, they often produce poorly calibrated uncertainty estimates that lead to poorer empirical

performance (Riquelme et al. 2018). The second step, optimization, solves for a reward-optimizing

action under the posterior sample. This can also be prohibitively expensive when the action space is

large or continuous. For example, an advertising platform that matches advertisers to users at each

time period has to solve combinatorial optimization problems real-time in order to run Thompson

sampling (Mas-Colell et al. 1995).

For typical online platforms, low latency—real-time computational performance—is critical for

user satisfaction and retention. The online nature of the computation required for Thompson

sampling thus poses a substantive challenge to deploying it in large-scale internet services. These

challenges are especially pronounced in resource-constrained mobile applications, a ubiquitous
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modality for modern internet applications: as of 2018, an estimated 52.2% of worldwide web traffic

was generated by mobile devices (Statistica 2020). Mobile applications require decisions to be

made in a fast and memory-efficient manner, and on-device decision-making is important to good

user experience in domains such as adaptive video streaming (Mao et al. 2019) and social media

ranking (Petrescu and Tas 2016). However, the majority of internet-connected mobile devices have

limited memory, and utilize low-end processors that are orders of magnitude slower than server-grade

devices (Bhardwaj et al. 2019, Wu et al. 2019). As affordable, compute-limited mobile devices

are increasingly adopted in developing economies (Ricciardi 2019), the ability to deploy cutting-

edge decision algorithms on diverse computing infrastructure is important for democratization of

technology and long term business growth.

Software development cost is another core practical consideration when implementing contextual

bandit algorithms in large-scale online platforms. Long-term software development cost is commonly

referred to as tech debt, which is incurred when a suboptimal, myopic development plan is followed

in lieu of one that requires (sometimes much) higher initial effort, but less future work. Avoiding tech

debt is critical to a reliable and scalable service (Sculley et al. 2015, Ramasubbu and Kemerer 2016,

Banker et al. 2021), but contextual bandit systems are challenging due to their high complexity:

they require temporal feedback loops consisting of different pipelines on exploration, data logging,

policy updates, and deployment (Agarwal et al. 2016). The online nature of the complex numerical

routines required by Thompson sampling significantly exacerbate these practical difficulties. Real-

time posterior sampling and action optimization leads the overall system to be cumbersome and

hard to debug, posing challenges to reliable software development.

Example 1 (Video Transcoding). As our main real-world application, we study video uploads

for large online platforms. Video is an increasingly popular medium on social networks, but

uploading video is still a technically challenging problem, where limited bandwidth and compute

capacity—particularly problematic on mobile devices—leads to unsuccessful uploads. When a user

requests a video be uploaded to a social media service, the service must choose the desired video
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Figure 1 An illustration of distilled TS on the example video uploads application, described in Example 1. Online

action generation is performed asynchronously on resource-constrained mobile edge devices whereas

batched policy updates are performed offline on powerful backend servers.

quality (bitrate) for transcoding the video before uploading. Video needs to be optimally transcoded

considering quality, and success of file upload. It is preferable to upload videos at a high quality

because it can lead to a better viewer experience (if the viewer has a sufficiently good network

connection). However, higher quality videos have larger file sizes, making it more likely to fail to

upload: larger files take longer time to upload, increasing the likelihood that the network connection

to fail, or the user to grow frustrated and cancel the upload.

We are interested in an online platform who wish to make contextual decisions about how to

optimally transcode a video at upload time. Making such decisions quickly is critical for user

satisfaction; low latency is particularly important for popular short-form videos uploaded on Tik-Tok,

Snapchat, and Instagram, where videos are captured and uploaded frequently and in real-time.

Although transcoding decisions needs to be made quickly in order to be responsive and keep the

user engaged, most upload requests come from resource-constrained mobile devices.

The problem motivation goes beyond our main application. There are numerous examples of

decision-making problems on online platforms where latency and system complexity are of central

concern.
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Example 2 (Advertising on third party systems). Every time a user arrives to a third party

webpage (e.g. New York Times), the advertising platform (e.g. Google Ads) decides which ad to

show in order to maximize conversion. Latency is important to good user experience (Agarwal et al.

2016), and curbing system complexity increases service reliability (Sculley et al. 2015).

Example 3 (Ranking). When a user logs in, an internet service chooses a list of items to display

to the user in order to maximize revenue or engagement. Concrete examples include ranking news

articles (Microsoft Network, MSN), products (online marketplaces like Amazon and Airbnb), and

content (Facebook and LinkedIn feed). In all of these cases, latency is central to user satisfaction,

but mobile edge devices and front-end servers are resource constrained (Agarwal et al. 2016). For

instance, there has been work from Meta Facebook on performing secondary ranking on device

to avoid server communication latency and to only display content that has been downloaded

completely (Petrescu and Tas 2016).

Example 4 (Personalized Pricing). As a customer enters a virtual platform, the system gener-

ates a personalized price based on market conditions and user-specific contexts. Electronic commerce

firms and airlines use price controls to manage revenue (Talluri and Van Ryzin 2004, Den Boer

2015), and two-sided online marketplaces (e.g. Uber, Lyft, Airbnb) dynamically set prices on both

sides of the market to reduce supply-demand imbalance. In both cases, latency is important for a

satisfactory user experience.

Methodology Motivated by aforementioned challenges in implementing and deploying Thompson

sampling on online platforms, we develop and analyze a method that maintains an explicit policy

representation designed to imitate Thompson sampling. In order to avoid computationally demanding

routines online, our algorithm simulates and imitates a Thompson sampling policy offline. An

explicit policy representation can efficiently generate actions real-time even in large action spaces,

without requiring real-time posterior inference or numerical optimization. An illustration of how

this methodology can be applied to video transcoding (Example 1) is provided in Figure 1. This

allows leveraging state-of-the-art Bayesian models—such as Gaussian processes parameterized by
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deep neural networks—and optimization solvers offline, while maintaining low latency on resource-

constrained computing modalities such as low-end mobile devices.1 During operation, actions can be

generated efficiently from the distilled policy by sampling from a parameterized distribution, allowing

fast and asynchronous interaction with users. For example, recent engineering progress allows

generating actions using an industrial-scale neural network model in 0.3880 milliseconds (Coleman

et al. 2017).

By performing posterior updates and mimicking the behavior of Thompson sampling offline, we

are able to move complex numerical routines from resource-constrained mobile devices to backend

servers, and reduce long-term software development costs (tech debt). Such offline procedures

using batched observations can be easily implemented using modern industry machine learning

pipelines (Gauci et al. 2018, Fujimoto et al. 2019). This allows leveraging the recent remarkable

progress in machine learning software infrastructure, such as engineering best practices and tools

for reliable testing & deployment2.

Practical impact Empirically, we evaluate our imitation algorithm on several benchmark problems

and a real-world dataset for selecting optimal video transcoding configurations (Section 4). In all of

our experiments, our imitation algorithm performs as well as batch on-policy Thompson sampling

in terms of cumulative regret, while reducing decision-time latency by an order of magnitude.

Buoyed by low latency and simplicity of implementation showcased in our empirical benchmarking

efforts, our imitation learning policies have been used in video upload systems across Meta products,

which are leading social networking services. Our contextual policy tunes the bitrates for video

uploads based on contextual features such as download bandwidth, device model, operating system,

1 More generally, optimization can be a challenge for non-Bayesian methods. Although outside of the scope of this

paper, generalizing our imitation framework to other policies will likely yield fruit in separating optimization from

online action-generation.

2 As an example, a dedicated top peer-reviewed conference for ML systems https://mlsys.org/ was recently established,

and is undergoing rapid growth at the forefront of academia and industry. This community focuses on improving the

efficiency of ML systems from an operational perspective.

https://mlsys.org/
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connection class (2G, 3G, 4G), country, and video features which include source resolution, bitrate,

and file size.

To assess the impact of our algorithm, we ran internal randomized controlled trials (RCT) on

each of the aforementioned products. We find our algorithm achieves significant improvements

in video quality, which we measure using the fraction of videos with quality preserved at 1080p

(high resolution). Our RCTs show up to 5x improvements over existing video upload policies on all

surfaces.

The RCTs show significant increases in topline metrics that are of importance at the company

level. Due to better video quality, we observed increased video watch times on multiple products:

1.1% on Facebook iOS Feed videos, 0.77% on Facebook Android Feed videos, 0.27% on Facebook

Android Stories, 0.45% on Instagram Stories. In addition, our contextual policies boosted interaction

metrics on several products: increases in meaningful social interactions of 0.15% and 0.14% on

Facebook Android Stories and Facebook Android Feed, respectively, and an increase in interactions

of 0.26% on Instagram Stories. All findings were significant at the 95% level.

Buoyed by these results, our contextual policy has been deployed across multiple product verticals

including Facebook Feed, Stories, Reels and Instagram Stories and Reels. Our algorithm has been

independently applied to both iOS and Android apps for all aforementioned products, and is reliably

handling millions of uploads each day.

Theoretical contributions To understand the strong practical advantages we showcase, we take

initial steps toward a principled understanding of our imitation algorithm. Since our (batch) updates

to the Thompson sampling policy are based on observations generated by the imitation policy, our

algorithm emulates an off-policy version of Thompson sampling which may diverge from its on-policy

counterpart. Due to its off-policy nature, an uninformed and pessimistic view of our procedure

states that any initially small deviation between the imitation policy and Thompson sampling

may cascade across time. Our main theoretical results (Section 6-5) preclude such possibility and

ensure small deviations between the imitation policy and Thompson sampling do not magnify over
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time. Specifically, we show that our imitation policy enjoys Bayes regret similar to that of batch

on-policy Thompson sampling, up to the sum of single-step imitation errors. We substantiate our

performance guarantees in general modeling scenarios involving contextual Gaussian processes,

where a cleverly initialized version of our algorithm (albeit impractical) achieves advantageous

Bayes regret (Section 5.2).

Solving the imitation problem, or equivalently, finding the policy parameterization closest to

Thompson sampling, only requires unsupervised contexts—those without corresponding actions or

rewards. On large-scale online platforms, unsupervised contexts are typically cheap and abundant,

e.g., the entire user database provides a wealth of such contexts. In Section 6, we prove that each

single-period imitation error term can be controlled—with a sufficiently rich imitation model—at

the rate Op(1/
√
N), where N is the number of supervised and unsupervised contexts. Combining

this with our aforementioned regret bound in Section 5, our imitation algorithm achieves Bayes

regret comparable to batch on-policy Thompson sampling up to O(T
√

logT/
√
N)-error, where T

is the number of batched policy updates.

Despite the seemingly linear gap in Bayes regret, N is typically orders of magnitude larger than

T in internet applications where we can utilize the database of users / entities. Typically, N is in

the order of hundreds of millions; as of 2020, Facebook had 2.7 billion monthly active users; in our

motivating video transcoding application, the service receives millions of video upload requests

every day, providing an effectively unlimited number of unsupervised contexts. In contrast, the

number of model updates (horizon T ) is relatively small, in hundreds, due to complexities of policy

deployment and nonstationary user behavior. In such practical problem instances, our imitation

policy thus enjoys Bayes regret bounds comparable to that of batch on-policy Thompson sampling.

2. Related work

There is a substantial body of work on Thompson sampling and its variants that use computationally

efficient subroutines. We give a necessarily abridged overview of how our algorithm situates with

respect to the extensive literature on bandits, approximate inference, and imitation learning.
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A number of authors have showed that Thompson sampling achieves optimal regret for multi-

armed bandits (Agrawal and Goyal 2012, 2013a, Kaufmann et al. 2012, Honda and Takemura

2014). We refer the reader to the recent tutorial by Russo et al. (2018) and references therein for a

comprehensive overview. Agrawal and Goyal (2013b), Abeille et al. (2017) showed regret bounds

for linear stochastic contextual bandits for a Thompson sampling algorithm with an uninformative

Gaussian prior, and Gopalan et al. (2014) studied finite parameter spaces. Russo and Van Roy (2014)

established Bayesian regret bounds for Thompson sampling with varying action sets (which includes,

in particular, contextual bandits); Russo and Van Roy (2016) provides an information-theoretic

analysis that makes explicit the dependence on the prior (see also Bubeck and Eldan (2016)). We

build on the insights of Russo and Van Roy (2014), and show that our imitation algorithm retains

the advantageous properties of batch Thompson sampling, achieving (gap-independent) Bayes regret

comparable to the best batch UCB algorithm.

Practical performance of Thompson sampling depends on having access to well-calibrated prob-

abilistic predictions. Obtaining a balance between predictive accuracy, computational time, and

memory requirements can be challenging in the context of large datasets with overparameterized

models. Exact posterior sampling from even the simplest Gaussian linear models has a time com-

plexity of O(n2), where n is the number of model parameters3. A common strategy used by some

variational inference methods is to use a mean-field approach where parameters are assumed to

be independent (Blundell et al. 2015). This assumption can decrease sampling costs from O(n2)

to O(n), where n is the number of parameters. However, Riquelme et al. (2018) found that batch

Thompson sampling using such approaches often leads to poor empirical performance.

When exact posterior inference is not possible, approximate inference methods can be used for

posterior sampling. We refer the reader to Chapter 5 of Russo et al. (2018)’s recent tutorial for a

discussion of approximation methods in relation to Thompson sampling. Bootstrapping (Eckles

and Kaptein 2014, Osband et al. 2016, Lu and Van Roy 2017) is a simple heuristic procedure that

3 This assumes the root decomposition of the covariance matrix has been cached, which incurs a cost of O(n3).
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maintains multiple models to approximate samples from the posterior distribution, although main-

taining multiple models is often computationally expensive. MCMC-based methods for approximate

inference, and Hamilton Monte Carlo (HMC) (Neal 2011) in particular, are largely regarded as the

“gold standard” for approximate Bayesian inference. HMC, and other MCMC-like approaches (e.g.,

Chen et al. (2014), Welling and Teh (2011)) generate an arbitrary number of posterior samples

for all parameters. While such algorithms permit rapid evaluation of posterior samples (since the

parameters are already sampled), they require substantial memory to store multiple samples of the

parameters. Recent methods have also considered decomposing the covariance or precision matrix

into a diagonal and low-rank component (Zhang et al. 2018, Maddox et al. 2019). While this reduces

computational complexity and memory costs relative to using the full covariance, sampling still

incurs a time complexity of O((n+ 1)ρ) where ρ is the rank of the covariance (or precision matrix)

and ρ copies of the weights must be stored.

By pre-computing and distilling Thompson sampling, our imitation learning framework allows

the use of the most appropriate inferential procedure for the task at hand, rather than what is

feasible to run in an online setting. In particular, the separation of online decision-making and

offline computation allows the use of state-of-the-art Bayesian methods, such as those utilizing deep

neural networks (Wang and Yeung 2020). While we restrict discussion to Thompson sampling in this

work, the basic idea of offline imitation learning can be used to learn a explicit policy representation

of any complicated policy and allow operationalization at scale.

Imitation learning methods have received much attention recently, owing to their ability to

learn complicated policies from expert demonstrations (Abbeel and Ng 2004, Ross and Bagnell

2010, Ho and Ermon 2016). Our approach of minimizing the discrepancy between a parameterized

policy and Thompson sampling can be viewed as an implementation of behavioral cloning (Ross

and Bagnell 2010, Syed and Schapire 2010, Ross et al. 2011). Our imitation learning procedure

resembles the “Bayesian dark knowledge” approach from Korattikara et al. (2015), which uses a

neural network to approximate Bayesian posterior distributions. While most works in the imitation
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learning literature study reinforcement learning problems, we focus on the more limited contextual

bandit setting, which allows us to show strong theoretical guarantees. We anticipate the growing

list of works on imitation learning to be important in generalizing our imitation framework to the

reinforcement learning (RL) setting. To account for time dependencies in state evolutions, both

inverse RL approaches that directly model the reward (Abbeel and Ng 2004, Syed and Schapire

2008), and the recent advances in generative adversarial imitation learning techniques (Ho and

Ermon 2016, Li et al. 2017) show promise in generalizing our imitation algorithm (behavioral

cloning) to RL problems.

3. Distilled Thompson sampling

Reflecting typical operational scenarios on online platforms, we consider a batch (Bayesian) con-

textual bandit problem. The agent / decision-maker generates actions real-time as user requests

come in asynchronously, and performs batched, infrequent updates to the policy. In what follows,

we formally introduce an imitation algorithm that makes it trivial to parallelize action generation

over multiple computing nodes, even on each user’s mobile device.

Let Θ be the parameter space, and let θ∼ P be a prior distribution on Θ. At each time t, the agent

observes a context, takes an action, and receives a reward: we denote the context St
iid∼ PS, action

At ∈A, and reward Rt ∈R. We consider a well-specified reward model class {fθ :A×S →R | θ ∈Θ}

fθ(a, s) =E[Rt | θ,At = a,St = s] for all a∈A, s∈ S.

Let Ht = (S1,A1,R1, . . . , St−1,At−1,Rt−1) be the history of observations until time t. Assume that

regardless of Ht′ for t′ ≤ t, the mean reward at time t is determined only by the context-action pair

E[Rt | θ,Ht′ , St = s,At = s] = fθ(a, s),

or equivalently, Rt = fθ(At, St) + εt where εt is a mean zero i.i.d. noise.
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At time t, we denote by γ(t) the period before which the most recent policy update occurred.

For example, for a fixed batch size B

γ(t) =



1 if t= 1, . . .B,

B+ 1 if t=B+ 1, . . . ,2B,

2B+ 1 if t= 2B+ 1, . . . ,3B,

...

. (1)

More generally, we allow time-varying batch sizes that are a priori unknown to the decision

maker. We use πγ(t) to denote the policy used at time t that generates action At based on the

history Hγ(t) available at the previous model update γ(t): conditional on the history Hγ(t), we have

At | St ∼ πγ(t)(· | St), where we abuse notation to suppress the dependence of πγ(t) on the history

Hγ(t). In the sequential (non-batch) setting, we simply have γ(t) = t.

The agent’s objective is to maximize the cumulative sum of rewards by updating the policy

πγ(t) based on batches of context-action-reward observations. The regret of the agent compares the

agent’s cumulative reward to the reward under the optimal action: for any fixed parameter value

θ ∈Θ, the (frequentist) regret for the set of policies {πγ(t)}t∈N is

Regret
(
T,{πγ(t)}t∈N, θ

)
:=

T∑
t=1

E
[
max
a∈A

fθ(a,St)− fθ(At, St) | θ
]
.

For simplicity, we assume arg maxa∈A fθ(a, s) is nonempty almost surely. We assume the agent’s

prior, P , is well-specified4, a key (standard) assumption that drives our subsequent analysis. Under

4 When the prior is misspecified so that the Thompson sampling policy uses Q instead of P , we have the equivalence

as noted by Russo and Van Roy (2014)

Eθ∼P [Regret
(
T,{πγ(t)}t∈N, θ

)
]≤
∥∥∥∥dPdQ

∥∥∥∥
L∞(X )

Eθ∼Q[Regret
(
T,{πγ(t)}t∈N, θ

)
],

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q. While misspecified priors can incur substantially

higher regret (Liu and Li 2016) in the worst-case, empirical evidence suggests Thompson sampling is a strong algorithm

in practice (Scott 2010, Granmo 2010, Chapelle and Li 2011, May and Leslie 2011, Ferreira et al. 2018, Graepel et al.

2010, Agarwal et al. 2014, Kawale et al. 2015, Schwartz et al. 2017, Agarwal et al. 2016).
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the prior P over θ ∈Θ, the Bayes regret is simply the frequentist regret averaged over θ∼ P

BayesRegret
(
T,{πγ(t)}t∈N

)
:=Eθ∼P [Regret

(
T,{πγ(t)}t∈N, θ

)
] =

T∑
t=1

Eθ∼P
[
max
a∈A

fθ(a,St)− fθ(At, St)
]
.

Based on the history Hγ(t), batch Thompson sampling plays an action according to the posterior

probability of the action being optimal. The posterior probabilities are computed based on the prior

P and previously observed context-action-reward tuples. At time t, this is often implemented by

sampling from the posterior θt ∼ P (θ ∈ · |Hγ(t), St) and solving Āt ∈ arg max
a∈A

fθt(a,St).

By definition, Thompson sampling enjoys the optimality property Āt |Hγ(t), St
d
=A?t |Hγ(t), St where

A?t ∈ arg maxa∈A fθ(a,St) and θ is the true parameter drawn from the prior P . Throughout, we

assume Āt |Hγ(t), St is independent of all else.

To address challenges in implementing Thompson sampling real-time, we develop an imitation

learning algorithm that separates online action generation from computationally intensive steps

like posterior sampling and optimization. Our algorithm maintains an explicit policy representation

that emulates the batch (off-policy) Thompson sampling policy by simulating its actions offline.

At decision time, the algorithm generates an action simply by sampling from the current policy

representation, which is straightforward to implement and computationally efficient to run real-time.

We summarize an idealized form of our method in Algorithm 1, where conditional on the history

Hγ(t) generated by the imitation policy

π̄γ(t)(a | s) is the batch off-policy Thompson sampling policy at time t. (2)

This policy is different from the true, batch on-policy Thompson sampling since the imitation

policy generates actions based on which rewards are observed. Nevertheless, we will show that our

algorithm enjoys Bayes regret comparable to batch on-policy Thompson sampling.

At each time t, our algorithm observes a context St, and plays an action drawn from its explicit

policy representation. Formally, we parameterize our policy πm(a | s) with a model class m∈M. For

example, M can be a neural network that takes as input a context and outputs a distribution over
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actions. We generate actions by sampling from the current policy At ∼ πmγ(t)(· | St), which can be

easily implemented to run with low latency on resource-constrained computing infrastructure such as

mobile devices. The agent uses a batch of context-action-reward tuples to update its posterior on the

parameter θ ∈Θ offline. Although this step requires posterior inference that may be too burdensome

to run real-time, our method allows running it offline on a different computing node, so that it does

not affect latency. Using the updated posterior θt ∼ P(· |Hγ(t)), the agent then simulates actions

drawn by the Thompson sampling policy by computing the maximizer Āt(s)∈ arg maxa∈A fθt(a, s),

for a range of values s∈ S. Using these simulated context-action pairs, we learn an explicit policy

representation that imitates the observed actions of the Thompson sampling policy.

Algorithm 1 Imitating Batch Thompson Sampling

1: Input: prior P on parameter space Θ, reward model class {fθ(·, ·)}, imitation policy model class

{πm :m∈M}, notion of distance D for probabilities

2: Initialize m← arg minm∈MES∼PS [D (π̄0, π
m | S)]

3: for t= 1 to T do

4: Observe St, sample At ∼ πmγ(t)(· | St), receive Rt

5: if t+ 1 = γ(t+ 1) then

6: Update model m← arg minm∈MES∼PS [D
(
π̄γ(t+1), π

m | S
)
] offline

7: end if

8: end for

Dropping the time subscript to simplify notation, the imitation learning problem

minimize
m∈M

ES∼PS [D (π̄, πm | S)] . (3)

learns a model m∈M minimizing a measure of discrepancy D (·, · | S) between the two distributions

on A, conditional on the context S. As the imitation objective (3) cannot be computed analytically,

we provide efficient approximation algorithms. To instantiate Algorithm 1, we fix Kullback-Leibler

(KL) divergence as the notion of discrepancy between probabilities and present finite-sample
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approximations based on observed contexts and simulated actions from the off-policy Thompson

sampling policy π̄t. For probabilities q1 and q2 on A such that q1, q2� ν for some σ-finite measure

ν on A, the KL divergence between q1 and q2 is Dkl (q
1||q2) :=

∫
A log dq1/dν

dq2/dν
(a)dν(a), where we use

dq1

dν
and dq2

dν
to denote Radon-Nikodym derivatives of q1 and q2 with respect to ν. For two policies

π1 and π2, we define

Dkl

(
π1, π2 | S

)
:=Dkl

(
π1(· | S)||π2(· | S)

)
,

where we use π1, π2 to also denote their conditional densities over A.

The imitation problem (3) with D (·, · | S) =Dkl (·, · | S) is equivalent to maximizing log likelihood

maximize
m∈M

ES∼PS ,Ā∼π̄(·|S)[logπm(Ā | S)]. (4)

In the following, we write E[·] = ES∼PS ,Ā∼π̄(·|S)[·] for simplicity. In the maximum likelihood estimation

(MLE) problem (4), the data comprises of context-action pairs. First, contexts are generated

under the marginal distribution S ∼ PS independent of everything else. Conditional on the context,

actions are simulated from the batch off-policy Thompson sampling policy Ā∼ π̄(· | S). The MLE

problem (4) finds a model m∈M maximizing the likelihood of observing actions generated by π̄γ(t).

The imitation objective m 7→E[logπm(Ā | S)] involves an expectation over the unknown marginal

distribution of contexts PS and actions generated by the Thompson sampling policy π̄(· | S).

Although the expectation over S ∼ PS involves a potentially high-dimensional integral over an

unknown distribution, sampling from this distribution is usually very cheap since the observations

S ∼ PS can be “unsupervised” in the sense that no corresponding action/reward are necessary. For

example, it is common for online platforms to maintain a database of features S for all of its users.

Using these contexts, we can solve the MLE problem (4) efficiently via stochastic gradient descent

methods (Kushner and Yin 2003, Duchi 2018). In Section 6, we show that it is easy to solve the

imitation problem (3) to high accuracy by using cheap unsupervised contexts. In Section 5, we

show that our imitation algorithm enjoys Bayes regret comparable to that of the batch on-policy

Thompson sampling algorithm, up to the sum of single step imitation errors.
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For continuous action spaces with a notion of geometry, it is sometimes natural to allow imitation

policies to have slightly different support than the Thompson sampling policy. In this scenario,

we can instantiate the abstract form of Algorithm 1 with Wasserstein distances as our notion of

discrepancy D (·, · | s). The subsequent theoretical development for KL divergences has its analogue

for Wasserstein distances, which we outline in Appendix EC.1

4. Empirical evaluation

We study the performance of our imitation learning algorithm in terms of cumulative regret /

reward and decision-time latency in a number of datasets. Our imitation learning algorithm achieves

a significant reduction in latency on all problems and enjoys regret comparable to that of batch

on-policy Thompson sampling, avoiding compounding of imitation error over time. Our experiments

include a real-world video upload transcoding application for an internet service receiving millions

of video upload requests per day.

Datasets We compare our imitation algorithm alongside an array of benchmark methods on four

problem scenarios. For our first experiment, we study the wheel bandit problem, a synthetic

problem constructed to require significant exploration (Riquelme et al. 2018). In this two-dimensional

problem, there are 5 actions and rarely seen contexts yield high rewards under one context-

dependent action. We sample 10,000 contexts for each trial. Specifically, two-dimensional contexts

are sampled in the unit sphere with uniform probability. The first action always has a mean reward

of E[r(s, a1)] = 1.2 independent of the context, and the mean rewards of the other actions depend

on the context. If ||s||2 ≤ δ, then the remaining four actions are non-optimal with a mean reward of

1. If ||s||2 > δ, then one of the remaining actions is optimal—and determined by the sign of the two

dimensions of s —with a mean reward of 50. The remaining three actions all have a mean reward

of 1. All rewards are observed with zero-mean additive Gaussian noise with standard deviation

σ = 0.01. We set δ = 0.95, which means the probability of sampling a context on the perimeter

(||s||2 ≥ δ) where one action yields a large reward is 1− (0.95)2 = 0.0975≈ 10%.

For our second problem, we design a contextual bandit problem from a supervised classification

task. The Mushroom UCI Dataset (mis 1987) contains 8,124 examples with 22 categorical
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features about the mushroom and labels indicating if the mushroom is poisonous or not. At each

time step, the forager decides whether to eat the mushroom or not and receives a small positive

reward for eating a safe mushroom, and a large negative reward for eating an unsafe mushroom.

With equal probability, eating a poisonous mushroom lead to illness (r=−35) or it may not harm

the consumer (r= 5), while a nonpoisonous mushroom always yields a positive reward (r= 5). The

reward for abstaining is always 0. We sample 50,000 contexts for each trial.

Next, we turn our attention to a more realistic healthcare scenario, pharamacological dosage

optimization, where we wish to learn a good dosing policy for Warfarin. Warfarin is one of the

most common anticoagulants (blood thinner), often prescribed to patients with atrial fibrillation to

prevent strokes (Xiao 2019). The optimal dosage varies considerably across genetic, demographic,

and clinical differences (Bastani and Bayati 2015). The Warfarin dataset (Xiao 2019) contains the

optimal dosage of Warfarin for 4,788 patients, which were found via trial and error by physicians.

Using a 17-dimensional context vector on patient-specific demographics, medical history, and

genetic markers, we construct a contextual bandit benchmark where the action space is a uniformly

discretized dosage levels, and rewards are given by absolute deviation from the optimal dosage. We

present results for 20 discretized dosage levels, but as we shown in Section EC.5, we observe even

bigger latency gains for 50 discretized dosage levels. We present results where we reshuffle contexts

for each trial, but again find similar results when 50,000 contexts are re-sampled each trial.

Finally, we focus on a real-world video upload transcoding application, where we study a

video upload system for a leading social network platform receiving millions of upload requests

on mobile devices (see Example 1). The goal is to preserve high quality as much as possible

while ensuring upload reliability constraints are met. We have access to a 38-dimensional context

representing information about the video file (e.g. the raw bitrate, resolution, and file size) and

the network connection (e.g. connection type, download bandwidth, country). There are 7 actions

corresponding to a unique (resolution, bitrate) pairs. The actions are ranked ordered in terms of

quality: action i yields a video with higher quality than action j if and only if i≥ j. If successful,
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the reward for a successful upload is a positive and monotonically increasing function of the action.

The reward for a failed upload is 0.

We evaluate the performance of different contextual bandit algorithms using the unbiased, offline,

policy evaluation technique proposed by Li et al. (2011). The method evaluates a contextual bandit

algorithm by performing rejection sampling on a stream of logged observation tuples of the form

(St,At,Rt) collected under a uniform random policy. Specifically, the observed tuple is rejected if

the logged action does not match the action selected by the algorithm being evaluated. Our dataset

contains 8 million observations logged under a uniform random policy. We evaluate each algorithm

using the stream of logged data until each algorithm has “observed” 50,000 valid examples.

Our offline evaluation is not meant to suggest offline learning is a valid substitute for online

learning algorithms. The cost of randomization and the high level of nonstationarity in the system

makes online learning algorithms necessary. We use offline evaluations as an empirically rigorous

scientific benchmark that supports and validates our methodological development. Our offline

dataset is generated by a particular vertical product, and provided the empirical evidence needed

to invest significant resources in implementing the algorithm across multiple products. As the final

evaluation, we ran a randomized controlled study as described in the introduction, and observed

significant improvements in video quality and topline business metrics (watch time).

Algorithms and evaluation For all experiments, we consider models previously found to perform

the best in a broad range of benchmark problems, as reported by Riquelme et al. (2018) in their

extensive empirical experiments. Linear-TS uses an exact Bayesian linear regression to model the

reward distribution for each action a independently. This policy evaluates the exact posterior under

the assumption that the data for action a were generated from the linear function: ra = sTθa + ε

where ε∼N (0, σ2
a). For each action, we independently model the joint distribution, P (θ, σ2) =

P (θ|σ2)P (σ2) as a normal-inverse-gamma distribution which allows for tractable posterior inference

(see Appendix EC.5 for closed form expressions). NeuralLinear-TS models rewards using a neural

network with two 100-unit hidden layers and ReLU activations, but discards the last linear layer
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(a) Cumulative regret on Mushroom dataset (b) Cumulative regret on Warfarin dataset

(c) Cumulative regret on Wheel bandit

(d) Running average of rewards for video transcod-

ing

Figure 2 We report mean cumulative regret (or running average of rewards for video transcoding), alongside two

standard errors over 50 trials (100 trials for the Wheel bandit, due to rarity of large rewards).

and uses the last hidden layer φ(s) as the feature representation for a Linear-TS policy. The neural

network takes the context as input, and predicts the reward for each action. The parameters of

the neural network are shared for all actions and are learned independently of the Bayesian linear

models. Bootstrap-NN-TS trains multiple neural networks on bootstrapped observations and

randomly samples a single network to use for each decision. For all of the aforementioned TS

policies, TS-IL denotes their imitated counterpart. We use a fully-connected neural network to

parameterize the policy πm in the imitation learning problem (3). The policy representation has

two hidden layers with 100 units each, hyperbolic tangent activations on the hidden layers, and a

soft-max activation on the output layer to predict a the conditional distribution P (a|s) for all a∈A.

We compare (batch) Thompson sampling and its imitation counterparts against two additional
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Table 1 Decision-making latency in milliseconds. All latency measurements were made on a Intel Xeon E5-2680

v4 @ 2.40GHz CPU with 32-bit floating point precision. For each latency measurement, action generation is repeated

100K times and the mean latency and its 2-standard errors are reported.

Mushroom Wheel Video Transcode Warfarin

UniformRandom 0.040 (±0.000) 0.039 (±0.000) 0.040 (±0.000) 0.040 (±0.000)

Neural-Greedy 0.242 (±0.001) 0.228 (±0.001) 0.231 (±0.001) 0.232 (±0.000)

Linear-TS 0.715 (±0.001) 1.142 (±0.001) 1.575 (±0.002) 3.963 (±0.002)

NeuralLinear-TS 0.826 (±0.001) 1.492 (±0.001) 1.931 (±0.002) 4.814 (±0.004)

Bootstrap-NN-TS 0.235 (±0.001) 0.235 (±0.001) 0.236 (±0.001) 0.226 (±0.001)

Linear-TS-IL 0.184 (±0.001) 0.178 (±0.000) 0.169 (±0.000) 0.175 (±0.000)

NeuralLinear-TS-IL 0.186 (±0.000) 0.179 (±0.001) 0.169 (±0.000) 0.175 (±0.000)

Bootstrap-NN-TS-IL 0.190 (±0.001) 0.178 (±0.000) 0.175 (±0.000) 0.179 (±0.001)

benchmarks: a random policy (UniformRandom) and a greedy policy that uses a feed-froward

neural network to model rewards (Neural-Greedy).

Policies are updated every 1000 examples (except for the Warfarin problem, where we use

update policies every 100 examples due to the small size of the dataset) and are initialized using

a uniform random policy before the first batch update. Formally, the mapping γ(t) is specified

in the definition (1), with batch size B = 1000 or 100. We detail our hyperparameter choices in

Section EC.5: following extensive evaluations by Riquelme et al. (2018), we use their proposed

settings for Thompson sampling.

In Figure 2, we show that each TS-IL method achieves performance comparable to its correspond-

ing vanilla TS algorithm on all benchmark problems. We evaluate the cumulative performance at

time steps along the entire learning curve, and observe that each TS-IL policy consistently matches

its corresponding TS policy over time.

(Approximate) Bayesian inference often requires a substantial amount of compute and memory.

We evaluate decision-time latency and time complexity for the specific models being considered, but

note that the latency and complexity may be even greater under inference schemes not considered
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here. We define decision time latency as the time required for a policy to select an action when it

is queried. While Bootstrap-NN-TS achieves low prediction latency, it requires storing many

replicates of the neural network and can significantly increase the memory footprint. On low-end

mobile devices, such memory requirements can be prohibitive, limiting the applicability of methods

based on bootstrapping; our imitation methods offer a practical and effective alternative.

Table 1 shows that the imitation policies (TS-IL) have significantly lower decision time latency

compared to TS algorithms, often by over an order of magnitude on problems with larger action

spaces (Warfarin and video upload transcoding). This is because generating an action under the

vanilla TS policies requires drawing a sample from the joint posterior P (θa, σ
2
a) for each of the

actions a, which is quadratic with respect to the context dimension for Linear-TS or the size of

the last hidden layer for NeuralLinear-TS. On the other hand, TS-IL simply requires a forward

propagation through the policy network and a sample from multinomial sample, both of which

are exceedingly cheap. In Section EC.6, we provide a detailed discussion of runtime and memory

complexity, including those for alternative model choices.

5. Imitation controls regret

To understand the large practical gains we see in our numerical experiments and randomized

controlled study, we now provide some basic theoretical analyses. When the imitation policy

generates actions (Algorithm 1), the observations used to update the posterior are different from

what the batch Thompson sampling policy would have generated. In this sense, our imitation

algorithm does not emulate the batch on-policy Thompson sampling policy, but rather simply

mimics its off-policy variant where posterior updates are based on the history generated by the

imitation policy. In this section, we show how off-policy imitation is sufficient to achieve Bayes

regret bounds available for batch on-policy Thompson sampling (Russo and Van Roy 2014), up to

the sum of single-step imitation errors. In particular, our results guard against potential exponential

compounding of errors that stem from imitating the off-policy variant of batch Thompson sampling.

We show that minimizing the KL divergence (3) controls the Bayes regret of the imitation

algorithm, justifying the the imitation learning loss (3) as a valid objective. First, we relate the
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performance of our imitation policy with that of the batch off-policy Thompson sampler (2) and

show batch off-policy Thompson sampling admits a Bayes regret decomposition similar to that

for on-policy Thompson sampling (Section 5.1). Building on this observation, we use similar proof

techniques for proving Bayes regret bounds on batch on-policy Thompson sampling to provide

guarantees for our imitation policy. We substantiate our results in scenarios where batch Thompson

sampling is known to provide strong regret bounds (Section 5.2).

5.1. Regret decomposition

Since our imitation learning problem (3) approximates batch off-policy Thompson sampling, a

pessimistic view is that any small deviation between the imitation and Thompson sampling policy

can exacerbate over time. A suboptimal sequence of actions taken by the imitation policy may

deteriorate the performance of the batch off-policy Thompson sampling policy (2) updated based on

this data, compared to its on-policy counterpart updated based on data collected by itself. Since the

imitation policy again mimics this batch off-policy Thompson sampler, this may lead to a negative

feedback loop in the worst-case. Our analysis precludes such negative cascades when outcomes are

averaged over the prior P : the Bayes regret of the imitation policy is comparable to that of the best

batch UCB algorithm, up to only the sum of expected discrepancy between the batch off-policy

Thompson sampling policy and the imitation learner at each period. In particular, imitation error at

each period does not affect the Bayes regret linearly in T as our worst-case intuition suggests, but

rather only as a one-time approximation cost. The single-period imitation error can be controlled

using cheap unsupervised contexts as we demonstrated in Section 6.

The Bayes regret suffered under the batch off-policy Thompson sampler is a counterfactual

quantity as only the imitation policy interacts with the environment. Nevertheless, the fictitious

quantity serves an important role in our analysis. Our starting point is that an batch off-policy

Thompson sampler enjoys a Bayes regret decomposition similar to sequential, on-policy Thompson

sampling. Since the off-policy nature of the policy does not affect the Bayes regret decomposition, we
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are able to bound the Bayes regret of the batch off-policy Thompson sampler using proof techniques

developed for sequential, on-policy Thompson sampling (Russo and Van Roy 2014).

Before giving a formal result, we first summarize our approach, which builds on the insights

of Russo and Van Roy (2014). We connect the performance of our imitation policy to that of batch

off-policy Thompson sampling and in turn relate the latter method’s Bayes regret to that of the

best batch UCB algorithm. Since a similar approach also provides Bayes regret bounds for batch

on-policy Thompson sampling, our imitation policy enjoys comparable Bayes regret, up to the sum

of single-period imitation errors. Let Ut(·;Hγ(t), St) :A→R be a sequence of batch upper confidence

bounds, constructed using only data collected until the most recent batch Hγ(t). Let ABUCB
t be the

action taken by the batch UCB policy (BUCB)

ABUCB
t ∈ arg max

a∈A
Ut(a;Hγ(t), St).

Recalling the optimal action A?t ∈ arg maxa∈A fθ(a,St), a typical argument for bounding the regret

of a BUCB algorithm proceeds by noting that since Ut(A
BUCB
t ;Hγ(t), St)≥Ut(A?t ;Hγ(t), St),

fθ(A
?
t , St)− fθ(ABUCB

t , St)≤ fθ(A?t , St)−Ut(A?t ;Hγ(t), St) +Ut(A
BUCB
t ;Hγ(t), St)− fθ(ABUCB

t , St).

Taking expectations and summing over t= 1, . . . , T , BayesRegret (T,{πBUCB
t }t∈N) is bounded by

T∑
t=1

E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t, St)] +

T∑
t=1

E[Ut(A
BUCB
t ;Hγ(t), St)− fθ(ABUCB

t , St)].

If the upper confidence bound property holds uniformly over the actions so that Ut(a;Hγ(t), St)≥

fθ(a,St) for all a∈A with high probability, the first term in the above regret decomposition can be

seen to be nonpositive. To bound the second term, a canonical proof notes each upper confidence

bound is not too far away from the population mean fθ(A
BUCB
t , St). Russo and Van Roy (2014)’s

key insight was that (sequential on-policy) Thompson sampling admits an analagous Bayes regret

decomposition as above, but with respect to any UCB sequence. This allows leveraging arguments

that bound the (frequentist) regret of a UCB algorithm to bound the Bayes regret of Thompson
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sampling. Since the Bayes regret decomposition for Thompson sampling holds for any UCB sequence,

the performance of Thompson sampling enjoys Bayes regret guarantees of the best UCB algorithm.

By connecting the performance of our imitation policy to that of batch off-policy Thompson

sampling, we show that a similar Bayes regret decomposition can be leveraged despite its off-

policy nature. Recall that we denote Āt ∼ π̄γ(t)(· | St), the action generated by the batch off-policy

Thompson sampler. See Section EC.2 for the proof of the following result.

Lemma 1. Let {πγ(t)}t∈N and Ut(·;Hγ(t), St) be any sequence of batch policies and UCBs (adapted

to the history Hγ(t)). If E[supa∈A fθ(a,S)2] =:L2 <∞,

BayesRegret
(
T,{πγ(t)}t∈N

)
≤

T∑
t=1

E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St)] +

T∑
t=1

E[Ut(Āt;Hγ(t), St)− fθ(Āt, St)]︸ ︷︷ ︸
(a): regret decomposition for any batch UCB algorithm

+L

T∑
t=1

√
1

2
E
[
Dkl

(
π̄γ(t), πγ(t) | St

)]
︸ ︷︷ ︸

(b): imitation error

. (5)

The Bayes regret decomposition (5) shows that performance analysis of any batch UCB algorithm

can characterize the regret of our imitation policy. In this sense, the imitation policy achieves regret

comparable to the optimal batch UCB algorithm, up to the sum of single-period imitation errors.

As we detail shortly in a general modeling scenario based on contextual Gaussian processes, term

(a) can be bounded using canonical batch UCB proofs. Term (b) can be controlled by our imitation

learning algorithm (Algorithm 1) and its empirical approximation as seen in Section 6. Although

this term scales as O(T/
√
N), we argue that the seemingly linear dependence on T is not of material

concern. In large-scale internet applications, the number of unsupervised contexts N is very large

as they can simply be read off of a database of user information (N ≈ 10− 100M). The number of

policy updates T is often orders of magnitude smaller (hundreds) in a typical product lifecycle due

to operational challenges in deploying a policy. Thus, the term (b) can be made relatively small

using big datasets and powerful overparameterized imitation models using the results in Section 6.

The fact that we are studying Bayes regret, as opposed to the frequentist regret, plays an

important role in the above decomposition. We conjecture that in the worst-case, imitation error
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at any period (and consequently suboptimal exploration) can each linearly compound over time,

leading to a prohibitive quadratic dependence on T . It remains open whether specific problem

structures can provably preclude such negative feedback loops uniformly over θ.

5.2. Regret bounds for contextual Gaussian processes

We now show concrete performance guarantees for our imitation algorithm by using instance-

independent (gap-independent) Bayes regret bounds for batch off-policy Thompson sampling.

Despite its counterfactual nature, the decomposition (5) enables us to control it using identical

proof techniques for controlling the Bayes regret of batch on-policy Thompson sampling. This

program allows us control over the term (a) in the decomposition (5).

We consider a general setting where the mean reward function (a, s) 7→ fθ(a, s) can be modeled

as a sample path of a Gaussian process, with potentially continuous action and context spaces.

Formally, we assume that (a, s) 7→ fθ(a, s) is sampled from a Gaussian process on A×S with mean

function µ(a, s) and covariance function (kernel)

Σ((a, s), (a′, s′)) :=E[(fθ(a, s)−µ(a, s))(fθ(a
′, s′)−µ(a′, s′))].

We assume that the decision maker observes rewards

Rt = fθ(At, St) + εt,

where the noise εt
iid∼ N(0, σ2) are independent of everything else. Given these rewards, we are

interested in optimizing the function a 7→ fθ(a,St) for each observed context St at time t.

Modeling mean rewards as a Gaussian process is advantageous since we can utilize analytic

formulae to update the posterior at each step. Since fθ(a, s) follows a Gaussian process, its posterior

is also a Gaussian process with mean and variance is given by

µt(a, s) :=E[fθ(a, s) |Ht] = Σt(a, s)
>(Kt +σ2I)−1 ~Rt,

σ2
t (a, s) := Var(fθ(a, s) |Ht) = Σ((a, s), (a, s))−Σt(a, s)

>(Kt +σ2I)−1Σt(a, s)
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where Σt(a, s) := [Σ((Aj, Sj), (a, s))]1≤j≤t−1, Kt := [k((Ai, Si), (Aj, Sj))]1≤i,j≤t−1 and ~Rt =

[Rj]1≤j≤t−1. For large-scale applications, we can parameterize our kernels by a neural network and

leverage the recently developed interpolations techniques to perform offline posterior updates (Wilson

and Nickisch 2015, Wilson et al. 2015, 2016).

We leverage regret bound techniques for batch UCB algorithms (Desautels et al. 2014) to bound

the term (a) in the Bayes regret decomposition (5). This term is controlled by the maximal amount

of information on the optimal action that can be gained after T time steps. Recall the definition of

(conditional) mutual information between two random vectors

I(Z,Y ) :=Dkl (PZ,Y ||PZ ×PY ) and I(Z,Y |W ) :=Dkl

(
PZ,Y |W ||PZ|W ×PY |W

)
We define the maximal possible information gain after T time steps as

γT := sup
X⊆A×S:|X |=T

I(~RX , fX )

where ~RX = {fθ(x)+εx}x∈X and fX = {fθ(x)}x∈X . For popular Gaussian and Matern kernels, Srinivas

et al. (2012) has shown that the maximal information gain can be bounded explicitly; we summarize

these bounds shortly.

Due to the batched nature of Algorithm 1, we further need to control the maximal information

gain in a single batch, assuming that the (time-varying) batch size is uniformly bounded by some

constant B.

Assumption A. Let γ(t+ 1)− γ(t)≤B for 1≤ t≤ T and let ηB be a constant satisfying

max
X⊆A×S:|X |≤B

I
(
~RX , fX | ~Rγ(t)

)
≤ 1

2
log(ηB) for all 1≤ t≤ T (6)

where ~RX = {fθ(x) + εx}x∈X , ~Rγ(t) = {R1, . . . ,Rγ(t)−1}, and fX = {fθ(x)}x∈X .

For a compact action space A ⊂ Rd, term (a) in the decomposition (5) is bounded by

O
(√

dηBγtT (logT )d
)

. Our proof relies on the batch upper confidence bound

Ut(a;Hγ(t), s) := µγ(t)(a, s) +
√
βtσγ(t)(a, s) where βt = 2 log((T 4rd)dT 2) (7)
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We use Lf to denote the (random) Lipschitz constant of the map a 7→ fθ(a, s)

Lf := sup
s∈S

sup
a,a′∈A

|fθ(a, s)− fθ(a′, s)|
‖a− a′‖1

.

Standard arguments from Gaussian process theory show E[L2
f ]<∞ holds whenever µ(·) and Σ(·, ·)

are 4 times continuously differentiable (Ghosal et al. 2006, Theorem 5).

Theorem 1. For A⊆ [0, r]d for some r > 0, let Assumption A hold. Assume that

c1 := sup
a∈A,s∈S

|µ(a, s)|<∞, c2 := sup
a,a′∈A,s,s′∈S

Σ((a, s), (a′, s′))<∞,

and let L2 := E
[
supa∈A,s∈S fθ(a, s)

2
]

as before. If E[L2
f ]<∞, there is a universal constant C > 1

such that

BayesRegret (T,π)≤CE[Lf ] +Cc2 +Cd log(rd)

(
c1

√
E[Lf ] + c3

√
E[L2

f ]

)
+

(
TηBγT

d logT + d log rd

log(1 +σ−2)

)1/2

+ (L+
√
c2βT )

T∑
t=1

√
1

2
E
[
Dkl

(
π̄γ(t), πγ(t) | St

)]
.

See Section EC.3.1 for the proof.

Bounds on γT To obtain concrete bounds on the maximal information gain γT , we focus on the

popular and flexible linear, Gaussian and Matern kernels

Σl(x,x
′) := x>x′,Σg(x,x

′) := exp

(
−‖x−x

′‖2

2l2

)
,

Σm(x,x′) :=
21−ν

Γ(ν)
rνBν(r) where r=

√
2ν

l
‖x−x′‖ ,

where we used B(·) and Γ(·) to denote the Besel and Gamma functions respectively. To ease

notation, we let κ denote the dimension of the underlying space, and define

M(Σl, T ) := κ logT, M(Σg, T ) := (logT )κ+1, M(Σm, T ) := T
κ2+κ

κ2+κ+2ν logT.

We have the following bound on γT for linear, Gaussian, and Matern kernels; the bound is a direct

consequence of Krause and Ong (2011, Theorem 2) and Srinivas et al. (2012, Theorem 5).

Lemma 2. Let A ⊆ Rd and S ⊆ Rd′ be convex and compact. Let the kernel Σ be given by

Σ((a, s), (a′, s′)) := ΣA(a,a′) + ΣS(s, s′). Then, γT =O (M(ΣA, T ) +M(ΣS, T ) + logT ).
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Bounds on ηB To control the Bayes regret of batch off-policy Thompson sampling, it remains

to control the per batch information gain ηB. Our development so far allows us to use techniques

developed for on-policy Thompson sampling to bound this quantity. A naive bound for the per batch

information gain ηB is ηB ≤ exp(2γB), which can be prohibitively large in large batch scenarios.

Towards tighter theoretical control, we use a clever initialization scheme due to Desautels et al.

(2014). While we conjecture that batch Thompson sampling will perform well even without such a

careful initialization scheme, we are unable to theoretically confirm the conjecture and leave it as

future work.

We initialize our algorithm by targeting Tinit users/contexts who suffer the highest uncertainty in

their reward. Considering the initialization index set t∈ {−Tinit + 1, . . . ,0}, the posterior variance

does not depend on previous rewards

σ2
t (a, s) := Var(fθ(a, s) |Ht) = Σ((a, s), (a, s))−Σt(a, s)

>(Kt +σ2I)−1Σt(a, s),

where Σ(a, s) := [Σ((Aj, Sj), (a, s))]−Tinit+1≤j≤t−1 and Kt := [k((At, St), (Aj, Sj))]−Tinit+1≤j≤t−1. Thus,

before engaging with the environment we can sequentially calculate

(Ainit
t , Sinit

t )∈ arg max
a∈A,s∈S

σ2
t (a, s) for t=−Tinit + 1, . . . ,0

We initially target users/contexts Sinit
t in the database with actions Ainit

t for t=−Tinit + 1, . . . ,0.

Using the history Ht = {Si,Ai,Ri}t−1
i=−Tinit+1, we redefine Thompson sampling and Algorithm 1 with

initialization data. The following result shows that this initialization procedure controls the per

batch information gain ηB. For simplicity, we consider combinations of linear or Gaussian kernels

and define d̄ := max(d, d′). Recalling the batch upper confidence bound (7), the following result is a

direct consequence of Desautels et al. (2014, Lemma 4, Theorem 5); an analogous bound holds for

Matern kernels, but we omit it for brevity.

Proposition 1. Let the conditions of Theorem 1 hold and let ΣA,ΣS ∈ {Σl,Σg}. Consider the

initialization procedure described in the previous paragraph with Tinit periods. There is a constant

C > 0 such that if we set Tinit =C d̄+1B(logB)d̄+1, then

BayesRegret
(
T,{πγ(t)}t∈N

)
=

T∑
t=1

Eθ∼P
[
max
a∈A

fθ(a,St)− fθ(At, St)
]
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≤O
(

exp(d̄d̄)
√
d̄T (logT )d̄+1

)
+ (L+

√
c2βT )

T∑
t=1

√
1

2
E
[
Dkl

(
π̄γ(t), πγ(t) | St

)]
.

The first term bounds the Bayes regret of batch on-policy Thompson sampling; in comparison, sequen-

tial on-policy Thompson sampling (Krause and Ong 2011) achieves Bayes regret O
(√

d̄T (logT )d̄+1

)
.

6. Generalization guarantees for imitation learning

In this section, we show that solving an empirical approximation of the imitation problem (4) can

control the imitation objective. From results in the previous section, this in turn shows that the

regret can be controlled when we have many contexts. Given i.i.d. observations of (potentially

unsupervised contexts) Si
iid∼ PS, we solve the empirical approximation to the imitation problem (4)

m̂∈ arg max
m∈M

1

N

N∑
i=1

1

Na

Na∑
j=1

logπm(Āij | Si), (8)

where we simulate actions from the batch off-policy Thompson sampling (2)

Āij ∼ π̄γ(t)(· | Si) j = 1, . . . ,Na

for each context Si. Since actions can be simulated offline in a parallel manner, we can efficiently

generate a large number of actions Na.

In what follows, we assume that our imitation model class is well-specified, so that there exists

m? ∈M satisfying π̄= πm
?
, where we omitted the subscript and denote π̄= π̄γ(t) to ease notation.

This is often a reasonable assumption as we consider expressive model classes such as nonparametric

models involving reproducing kernel Hilbert spaces. With a well-specified imitation model, we prove

with probability at least 1− δ,

ES∼PsDkl

(
π̄, πm̂ | S

)
.

1

N

(
CompN + log

1

δ

)
+

CompN,Na√
NNa

, (9)

for some complexity measures CompN and CompN,Na associated with the imitation model class M.

Here, the notation . denotes inequality up to a universal constant. In typical internet applications,

the number of unsupervised contexts N is exceedingly large, and the imitation error (9) can be

made vanishingly small.
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The key challenges to showing the preceding result are twofold: 1) the empirical procedure (8)

employs non-i.i.d. samples (Si, Āij), so standard concentration results do not apply, and 2) the

bound (9) scales with the “fast rate” 1/N , rather than the canonical parametric rate 1/
√
N . To

overcome the first challenge, our proof carefully derives concentration inequalities for the two-step

sampling process where nature generates Si
iid∼ PS, and for each Si we simulate Aij

iid∼ π̄(· | Si) via

posterior sampling. To prove the fast rate of convergence 1/N , we use an elaborate localization-based

proof approach (Bartlett et al. 2005) which exploits the fact that the complexity of the function

class (s, a) 7→ logπm(a | s) may be substantially smaller on a neighborhood of the optimum m?,

compared to over the entire model space m∈M,

To formalize our arguments, recall the standard notion of Rademacher complexity: for a fixed

ξ1, . . . , ξn and i.i.d. random signs εi ∈ {−1,1} (Rademacher variables) that are independent of the

ξi’s, the empirical Rademacher complexity of the class of functions G ⊆ {g : Ξ→R} is

Rn(G) :=Eε

[
sup
g∈G

1

n

n∑
i=1

εig(ξi)

]
.

A function ψ :R+→R+ is sub-root (Bartlett et al. 2005) if it is nonnegative, nondecreasing, and

r 7→ψ(r)/
√
r is nonincreasing for all r > 0. This analytic notion guarantees that any non-constant

sub-root function ψ is continuous, and has a unique positive fixed point r? =ψ(r?), where r≥ψ(r)

for all r≥ r?. Let ψn : R+→R+ be a sub-root upper bound on the localized Rademacher complexity

ψn(r)≥E[Rn({g ∈ G :E[g2]≤ r})]. (10)

(The localized Rademacher complexity itself is sub-root.) Fixed points of ψn characterize uniform

concentration guarantees; see Bartlett et al. (2005) and Koltchinskii (2006) for a detailed analysis

of localized Rademacher complexities.

The Rademacher complexity of the following set of functions controls the generalization perfor-

mance of the empirical imitation model (8)

G1 :=

{
s 7→EĀ∼π̄(·|s)

[
log

π̄(Ā | s)
πm(Ā | s)

]
:m∈M

}
G2(s) := {a 7→ logπm(a | s) :m∈M}

G3 := {(a, s) 7→ logπm(a | s) :m∈M} .
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We let r?N be the unique fixed point of the sub-root function ψn satisfying the bound (10) for G = G1

r?N =ψn(r?N) where ψn(r)≥E[Rn({g ∈ G1 :E[g2]≤ r})]

For any fixed context s∈ S, using i.i.d. random signs εj, we write

RNG2(s) :=Eε

[
sup
m∈M

1

Na

Na∑
j=1

εj logπm(Āj | s)

]
.

For G3, using i.i.d. random signs εij we still write

RNNaG3 :=Eε

[
sup
m∈M

1

N

N∑
i=1

1

Na

Na∑
j=1

εij logπm(Āij | Si)

]
.

Our main result in this section shows that the imitation error of the empirical solution (8) is

Op
(
N−1 +N−1/2N−1/2

a

)
. See Section EC.4.1 for the proof.

Theorem 2. Let there exist a m? ∈M such that π̄ = πm
?
. Assume | logπm(a | s)| ≤M for all

a∈A, s∈ S,m∈M. There is a numerical constant C > 0 s.t. with probability at least 1− 2e−z

E
[
Dkl

(
π̄, πm̂ | S

)]
≤C

(
1

M
r?N +

Mt

N
+

√
z

N
sup
s∈S

E
Āj

iid∼ π̄(·|s)
[RNa(G2(s))] +E[RNNa(G3)]

)
.

For finite-dimensional model classes with bounded VC-dimension, standard arguments bound the

Rademacher complexity terms in the above theorem (van der Vaart and Wellner 1996, Ch 2.6).

Denoting by VC(·) the VC-dimension, we have

sup
s∈S

E
Āj

iid∼ π̄(·|s)
[RNa(G2(s))]≤M

√
sups∈S VC(G2(s))

Na

and E[RNNa(G3)]≤M

√
VC(G3)

NNa

.

Moreover, Corollary 3.7 of Bartlett et al. (2005) implies that r?N �
MVC(G1) log(N/VC(G1))

N
. Plugging

these bounds in Theorem 2, we obtain the previously claimed convergence rate (9).

Due to the generality of our localized Rademacher complexity approach, we can provide imitation

guarantees for substantially larger and more expressive nonparametric model classes. We consider

a reproducing kernel Hilbert space (RKHS) H defined over a kernel k : Ξ × Ξ→ R+ (Berlinet

and Thomas-Agnan 2004). For such nonparametric models, standard covering number bounds

are loose (Kühn 2011), while localized arguments can still provide fast concentration (Mendelson
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2003). Consider a RKHS with norm ‖·‖H and evaluation kernel k(·, ·). Mercer’s theorem (Cristianini

and Shawe-Taylor 2004) states that the integral operator Tk : L2(Ξ, P )→ L2(Ξ, P ), Tk(h)(ξ) =∫
h(ξ′)K(ξ, ξ′)dP (ξ′) is compact, and we have the eigenbasis expansion k(ξ, ξ′) =

∑∞
j=1 λjφj(ξ)φj(ξ

′)

where λj are eigenvalues of T sorted in decreasing order and φj give an orthonormal decomposition

in L2(Z, P ).

Let kS : S ×S →R+ and kA :A×A→R+ be kernels on S and A respectively, and let us denote

by BS and BA the unit ball in the respective RKHS’s. The kernels kS and kA induce a RKHS over

functions on S ×A formed with the kernel k((s, a), (s′, a′)) = kS(s, s′) + kA(a,a′); we denote the

unit ball in this space by BS×A. For simplicity, we assume that the function classes G1,G2(s), and

G3 belong in a unit ball in appropriately defined RKHS’s

G1 ⊂BS , G2(s)⊂BA for all s∈ S, G3 ⊂BS×A.

For RKHS-based models, the rate of decay of the eigenvalues of TkS controls the rate of convergence

in Theorem 2. For example, eigenvalues of the popular Gaussian kernel k(ξ, ξ′) = exp(− 1
2
‖ξ− ξ′‖22)

decay exponentially fast λj . e−j
2

(Mendelson 2003). Eigenvalues of kernel operators Tk for Sobolev

spaces (Birman and Solomjak 1967, Gu 2002) decay polynomially fast λj . j−2β, where β > 1
2

is the

smoothness level. e.g., in 1-dimension, the first-order Sobolev kernel k(ξ, ξ′) = 1 + min{ξ, ξ′} where

β = 1 generates RKHS of Lipschitz functions. We prove the below corollary in Section EC.4.2.

Corollary 1. Assume sups∈S kS(s, s) + supa∈A kA(a,a)≤B for some B > 0. If the eigenvalues of

TkS decay as λj . e−j
2
, there is a numerical constant C > 0 s.t. with probability at least 1− 2e−z

E
[
Dkl

(
π̄, πm̂ | S

)]
≤CMz+

√
logN

N
+CMB

√
z+ 1

NNa

.

If the eigenvalues of TkS decay as λj . j−2β for some β > 1/2, then there is another numerical

constant C > 0 such that with probability at least 1− 2e−z

E
[
Dkl

(
π̄, πm̂ | S

)]
≤C

(
Mz

N
+N

−2β
2β+1 +MB

√
z+ 1

NNa

)
.
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7. Discussion

In this paper, we used imitation learning to operationalize Thompson sampling, allowing it to

scale to applications where latency and software complexity are of concern. We demonstrated that

imitation learning provides a simple, practical, and efficient method with desirable regret properties.

By distilling the Thompson sampling policy into easy-to-deploy explicit policy representations (e.g.

neural networks), we allow state-of-the-art Bayesian approaches to be used in contextual bandit

problems. We hope that this work facilitates applications of modern deep learning-based Bayesian

approaches to large-scale contextual bandit problems.

While we have empirically evaluated two types of Bayesian models, our framework is compatible

with any type of probabilistic model. For example, practitioners may utilize domain knowledge to

develop grey-box models (see e.g., Schwartz et al. (2017)). Such models are simple to implement in

probabilistic programming languages (Carpenter et al. 2017, Bingham et al. 2018, Tran et al. 2018),

but challenging and inefficient to deploy. Our imitation framework can allow ease of deployment

for these models while maintaining a comparable level of performance. Although we restricted

attention to contextual bandits problems, an interesting research direction is to extend these

methods to combinatorial ranking problems (Cheung et al. 2018, Dimakopoulou et al. 2019), where

computational savings of distillation may be even larger. Extending our imitation framework to

reinforcement learning problems will also likely yield fruit.
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Appendix

EC.1. Imitation learning with Wasserstein distances

When actions can be naturally embedded in a continuous space, we may want to measure closeness

between the imitation and TS policy by incorporating the geometry of the action space A. In

this section, we provide an alternative instantiation of the abstract form of Algorithm 1 by using

Wasserstein distances as the notion of discrepancy D (·, · | s). Our previous theoretical development

for KL divergences has direct analogues in this setting, which we now briefly outline.

Given a metric d(·, ·) on A, the Wasserstein distance between two distributions q1 and q2 on A is

defined by the optimal transport problem

Dw

(
q1, q2

)
= inf

η∈L(q1,q2)
Eη[d(A,A′)]

where η(q1, q2) denotes the collection of all probabilities on A×A with marginals q1 and q2 (i.e.,

couplings). Intuitively, Dw (q1, q2) measures how much cost d(A,A′) is incurred by moving mass

away from A∼ q1 to A′ ∼ q2 in an optimal fashion5. Wasserstein distances encode the geometry of

the underlying space A via the distance d. Unlike the KL divergence Dkl (q
1||q2) that take value ∞

whenever q1 has support not contained in q2, Wasserstein distance allows imitation policies to have

different support than the Thompson sampling policy, which is more appropriate in continuous

action spaces. To simplify notation, for two policies π1 and π2, we let

Dw

(
π1, π2 | S

)
:=Dw

(
π1(· | S), π2(· | S)

)
.

When Algorithm 1 is instantiated with the Wasserstein distance as its notion of discrepancy

D (·, · | S) :=Dw (·, · | S), the imitation learning problem (3) becomes

minimize
m∈M

ES∼PS [Dw (π̄, πm | S)] . (EC.1)

5 For a discrete action space, Dw (·, ·) can be defined with any symmetric matrix d(ai, aj) satisfying d(ai, aj)≥ 0 with

0 iff ai = aj , and d(ai, aj)≤ d(ai, ak) + d(ak, aj) for any ai, aj , ak ∈A.
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To solve the above stochastic optimization problem, we can again use stochastic gradient descent

methods, where the stochastic gradient ∇mDw

(
π̄γ(t), π

m | S
)

can be computed by solving an optimal

transport problem. From Kantorovich-Rubinstein duality (see, for example, Villani (2009)), we have

Dw

(
π̄γ(t), π

m | s
)

= sup
g:A→R

{
EĀ∼π̄(·|s)g(Ā)−EA∼πm(·|s)g(A) : g(a)− g(a′)≤ d(a,a′) for all a,a′ ∈A

}
, (EC.2)

where d(·, ·) is the metric on A used to define Dw (·, ·). For discrete action spaces, the maximization

problem (EC.2) is a linear program with O(|A|) variables and constraints; for continuous action

spaces, we can solve the problem over empirical distributions to approximate the optimal transport

problem. We refer the interested reader to Peyré et al. (2019) for a comprehensive introduction to

computational methods for solving optimal transport problems.

Letting g? denote the optimal solution to the dual problem (EC.2), the envelope theorem (or

Danskin’s theorem; Bonnans and Shapiro (2000, Theorem 4.13)) implies that under simple regularity

conditions

∇mDw

(
π̄γ(t), π

m | s
)

=−∇mEA∼πm(·|s)[g
?(A)].

Assuming that an appropriate change of gradient and expectation is justified, we can use the policy

gradient trick to arrive at

−∇mEA∼πm(·|s)[g
?(A)] =−EA∼πm(·|s)[g

?(A)∇m logπm(A | s)].

We conclude that for A∼ πm(· | Si),

− g?(A)∇m logπm(A | Si) (EC.3)

is a stochastic gradient for the imitation problem (EC.1). As before, we can get lower variance

estimates of the gradient by averaging the above estimator over many actions A∼ πm(· | Si). Using

these stochastic gradients (EC.3), we can solve the imitation problem (EC.1) efficiently.

We now show that the resulting imitation policy admits a regret decomposition similar to Lemma 1

for KL divergences. As a direct consequence of this decomposition, the regret bounds in Section 5.2
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have their natural analogues with Wasserstein distances replacing KL divergences as the notion of

discrepancy, though we omit them for brevity.

Lemma EC.1. Let Ut(·;Hγ(t), St) :A→R be any upper confidence bound sequence that is measurable

with respect to Hγ(t), St,At. If there is a Lθ > 0 satisfying almost surely

|fθ(a, s)− fθ(a′, s)| ≤Lθd(a,a′) for all s∈ S, a, a′ ∈A, (EC.4)

BayesRegret
(
T,{πγ(t)}t∈N

)
≤

T∑
t=1

E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St)] +

T∑
t=1

E[Ut(Āt;Hγ(t), St)− fθ(Āt, St)]

+
T∑
t=1

E
[
LθDw

(
π̄γ(t), πγ(t) | St

)]
. (EC.5)

where Dw (·, · | ·) is the Wasserstein distance defined with the metric d in the condition (EC.4).

Proof The proof mirrors that of Lemma 1. By the Kantorovich dual representation (EC.2), we

have

E[fθ(Āt, St)− fθ(At, St) | θ,Hγ(t), St]≤LθDw

(
π̄γ(t), πγ(t) | St

)
.

Here, we have again used that Āt |Hγ(t), St and At |Hγ(t), St are independent of all else. Applying

this bound in the decomposition (EC.6), and taking expectation over (Hγ(t), St) on both sides and

summing t= 1, . . . , T , we get the desired bound. �

EC.2. Proof of Lemma 1

Conditional on (Hγ(t), St), Āt has the same distribution as A?t . Since Ut(a;Hγ(t), St) is a deterministic

function conditional on (Hγ(t), St), we have

E[Ut(Āt;Hγ(t), St) |Hγ(t), St] =E[Ut(A
?
t ;Hγ(t), St) |Hγ(t), St].

We can rewrite the (conditional) instantenous regret as

E[fθ(A
?
t , St)− fθ(At, St) |Hγ(t), St]

=E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St) |Hγ(t), St] +E[Ut(Āt;Hγ(t), St)− fθ(At, St) |Hγ(t), St]

=E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St) |Hγ(t), St] +E[Ut(Āt;Hγ(t), St)− fθ(Āt, St) |Hγ(t), St]

+E[fθ(Āt, St)− fθ(At, St) |Hγ(t), St]. (EC.6)
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We proceed by bounding the gap

E[fθ(Āt, St)− fθ(At, St) | θ,Hγ(t), St] (EC.7)

using the KL divergence between π̄γ(t) and πγ(t). Recall Pinsker’s inequality (Tsybakov 2009)

‖P −Q‖TV := sup
g:A→[−1,1]

|EP [g(A)]−EQ[g(A)]| ≤
√

1

2
Dkl (P ||Q).

From the hypothesis, Pinsker’s inequality implies

E[fθ(Āt, St)− fθ(At, St) | θ,Hγ(t), St]≤ sup
a∈A
|fθ(a,St)|

∥∥π̄γ(t)(· | St)−πγ(t)(· | St)
∥∥

TV

≤ sup
a∈A
|fθ(a,St)|

√
1

2
Dkl

(
π̄γ(t), πγ(t) | St

)
.

Here, we have used that Āt |Hγ(t), St and At |Hγ(t), St are independent of all else.

Applying this bound in the decomposition (EC.6), and taking expectation over (Hγ(t), St) on

both sides and summing t= 1, . . . , T , we get

BayesRegret (T,π)≤
T∑
t=1

E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St)] +

T∑
t=1

E[Ut(Āt;Hγ(t), St)− fθ(Āt, St)]

+
T∑
t=1

E

[
sup
a∈A
|fθ(a,St)|

√
1

2
Dkl

(
π̄γ(t), πγ(t) | St

)]
.

Applying Cauchy-Schwarz inequality and noting that
√

E[supa∈A fθ(a,St)
2] ≤ L, we obtain the

final decomposition. �

EC.3. Proof of regret bounds

EC.3.1. Proof of Theorem 1

In what follows, we abuse notation and let C be a universal constant that changes line by line. We

build on the batch UCB regret bound due to Desautels et al. (2014), defining the (batch) upper

confidence bound

Ut(a;Hγ(t), s) := µγ(t)(a, s) +
√
βtσγ(t)(a, s)
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with βt = 2 log((t4rd)dt2). From Borel-TIS inequality (e.g., see (Adler and Taylor 2009)), we have

L2 =E
[

sup
a∈A,s∈S

fθ(a, s)
2

]
<∞.

We bound the first two terms in the regret decomposition (5), starting with the second term

T∑
t=1

E[Ut(Āt;Hγ(t), St)− fθ(Āt, St)] =
T∑
t=1

√
βtE[σγ(t)(Āt, St)].

First, note that since |σγ(t)(a, s)| ≤
√
c2, Pinsker’s inequality gives

|E[σγ(t)(Āt, St) |Hγ(t), St]−E[σγ(t)(At, St) |Hγ(t), St]| ≤
√
c2

∥∥π̄γ(t)(· | St)−πγ(t)(· | St)
∥∥

TV

≤
√
c2

2
Dkl

(
π̄γ(t), πγ(t) | St

)
.

We arrive at the interim bound

T∑
t=1

E[Ut(Āt;Hγ(t), St)− fθ(Āt, St)]

≤
√
βT

T∑
t=1

E[σγ(t)(At, St)] +

√
βT c2

2

T∑
t=1

√
E[Dkl

(
π̄γ(t), πγ(t) | St

)
]. (EC.8)

By an elementary calculation (e.g., see Desautels et al. (2014, Proposition 1)), we have

σγ(t)(a, s)

σt(a, s)
= exp

(
I
(
f(s, a),{Rs}t−1

s=γ(t) | ~Rγ(t)
))
≤√ηB,

where the last line follows from Assumption A. Next, we use the following lemma due to Srinivas

et al. (2012).

Lemma EC.2 (Srinivas et al. (2012, Lemma 5.3)). For any sequence of At and St,

E

(
T∑
t=1

σ2
t (At, St)

) 1
2

≤

√
2γT

log(1 +σ−2)

Using the preceding two bounds, RHS of the inequality (EC.8) can be further bounded by

T∑
t=1

E[Ut(Āt;Hγ(t), St)− fθ(Āt, St)]

≤
√
TηBβTE

( T∑
t=1

σ2
t (At, St)

) 1
2

+

√
βT c2

2

T∑
t=1

√
E[Dkl

(
π̄γ(t), πγ(t) | St

)
]

≤

√
2TηBγTβT

log(1 +σ−2)
+

√
βT c2

2

T∑
t=1

√
E[Dkl

(
π̄γ(t), πγ(t) | St

)
]. (EC.9)
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We now bound the first term in the decomposition (5). Let At be a (1/t4)-cover of A, so that for

any a∈A, there exists [a]t ∈At such that ‖a− [a]t‖1 ≤ 1/t4.

T∑
t=1

E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St)] =

T∑
t=1

E[fθ(A
?
t , St)− fθ([A?t ]t, St)]︸ ︷︷ ︸

(a)

+
T∑
t=1

E[fθ([A
?
t ]t, St)−Ut([A?t ]t;Hγ(t), St)]︸ ︷︷ ︸

(b)

+
T∑
t=1

E[Ut([A
?
t ]t;Hγ(t), St)−Ut(A?t ;Hγ(t), St)]︸ ︷︷ ︸

(c)

.

Using the definition of Lf , the first term (a) in the above equality is bounded by

T∑
t=1

E[fθ(A
?
t , St)− fθ([A?t ]t, St)]≤E[Lf ]

T∑
t=1

‖A?t − [A?t ]t‖1 ≤E[Lf ]
∞∑
t=1

1

t4
≤CE[Lf ]

where we used the fact that At is a 1/t4-cover of A.

To bound the second term (b), use fθ(a, s) |Hγ(t) ∼N(µγ(t)(a, s), σ
2
γ(t)(a, s))

E[fθ(a, s)−Ut(a;Hγ(t), s) |Hγ(t)]≤E[
(
fθ(a, s)−Ut(a;Hγ(t), s)

)
+
|Hγ(t)]

=
σγ(t)(a, s)√

2π
e−

βt
2 ≤ c2√

2πt2|At|
, (EC.10)

where we used 2 log(|At|t2)≤ βt since |At| ≤ (t4rd)d. Hence, we obtain the bound

T∑
t=1

E[fθ([A
?
t ]t, St)−Ut([A?t ]t;Hγ(t), St)]≤

T∑
t=1

∑
a∈At

E[fθ(a,St)−Ut(a;Hγ(t), St)]≤
∞∑
t=1

c2√
2πt2

≤Cc2

where we used the independence of St and Hγ(t), and the bound (EC.10).

To bound the third term (c), we show the claim

|Ut(a;Hγ(t), s)−Ut(a′;Hγ(t), s)| ≤E[Lf |Hγ(t)]‖a− a′‖1 (EC.11)

+
√
βt

(
2E
[
Lf

(
sup

a∈A,s∈S
µ(a, s)2 + sup

a∈A,s∈S
fθ(a, s)

2

)
|Hγ(t)

]) 1
2

‖a− a′‖
1
2
1 .

From the above claimed bound, it follows that

T∑
t=1

E[Ut([A
?
t ]t;Hγ(t), St)−Ut(A?t ;Hγ(t), St)]≤

T∑
t=1

E[Lf ]

t4
+

T∑
t=1

√
2βt

c1

√
E[Lf ] + c3

√
E[L2

f ]

t2

≤CE[Lf ] +Cd log(rd)

(
c1

√
E[Lf ] + c3

√
E[L2

f ]

)
.
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To show the bound (EC.11), first note a 7→ E[fθ(a, s) | Hγ(t)] and a 7→ E[fθ(a, s)
2 | Hγ(t)] are

E[Lf | Hγ(t)]- and E[2Lf supa∈A,s∈S |fθ(a, s)| | Hγ(t)]- Lipschitz respectively, for all s ∈ S. Hence,

a 7→ σ2
γ(t)(a, s) is E[2Lf (c2

1 + supa∈A,s∈S |fθ(a, s)|2) |Hγ(t)]-Lipschitz. Noting that

|σγ(t)(a, s)−σγ(t)(a
′, s)|=

∣∣∣∣∣σ2
γ(t)(a, s)−σ2

γ(t)(a
′, s)

σγ(t)(a, s) +σγ(t)(a′, s)

∣∣∣∣∣≤ 1

c
|σ2
γ(t)(a, s)−σ2

γ(t)(a
′, s)|+ c

for any c > 0, taking the infimum over c > 0 on the right hand side yields

|σγ(t)(a, s)−σγ(t)(a
′, s)| ≤

√
2|σ2

γ(t)(a, s)−σ2
γ(t)(a

′, s)|

≤
(

2E
[
Lf

(
c2

1 + sup
a∈A,s∈S

fθ(a, s)
2

)
|Hγ(t)

]) 1
2

‖a− a′‖
1
2
1

which shows the bound (EC.11).

Collecting these bounds, we have shown that

T∑
t=1

E[fθ(A
?
t , St)−Ut(A?t ;Hγ(t), St)]≤CE[Lf ] +Cc2 +Cd log(rd)

(
c1

√
E[Lf ] + c3

√
E[L2

f ]

)
.

(EC.12)

Combining this with the bound (EC.9), we obtain our result.

EC.4. Proof of generalization results

EC.4.1. Proof of Theorem 2

We abuse notation and use C > 0 to denote a numerical constant that changes value line to line.

We use the following concentration guarantee using localized Rademacher averages.

Lemma EC.3 (Bartlett et al. (2005, Theorem 3.3)). For a class of functions G with range

[0,M ], let r?n be the unique positive fixed point of the sub-root function ψn satisfying the bound (10).

Then, for i.i.d. observations ξ
iid∼ P, there is a numerical constant C > 0 such that

E[g]≤
(

1 +
1

η

)
1

n

n∑
i=1

g(ξi) +C(1 + η)

(
1

M
r?n +

Mz

n

)
+
CMz

n
for all g ∈ G and η≥ 0

with probability at least 1− e−z.
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Notice that by Jensen inequality, we have

EĀ∼π̄(·|Si)

[
log

π̄(Ā | Si)
πm̂(Ā | Si)

]
≥ 0 almost surely.

Applying Lemma EC.3 with the function class G1 and η= 1/2, we have

E
[
Dkl

(
π̄, πm̂ | S

)]
≤ 3

2

1

N

N∑
i=1

EĀ∼π̄(·|Si)

[
log

π̄(Ā | Si)
πm̂(Ā | Si)

]
+
C

M
r?N +

CMz

N
. (EC.13)

In the rest of the proof, we bound the interim (uniform) approximation error

ZN,Na := sup
m∈M

{
1

N

N∑
i=1

(
EĀ∼π̄(·|Si)

[
log

π̄(Ā | Si)
πm(Ā | Si)

]
− 1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm(Āij | Si)

)}
.

This is indeed sufficient for our purposes since the bound (EC.13) implies

E
[
Dkl

(
π̄, πm̂ | S

)]
≤ 3

2

1

N

N∑
i=1

1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm̂(Āij | Si)

+C

(
ZN,Na +

1

M
r?N +

Mz

N

)
.

By the definition (8) of the empirical solution m̂ and by virtue of having a well-specified model

class M, the first term in the preceding bound is nonpositive

1

N

N∑
i=1

1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm̂(Āij | Si)

≤ 1

N

N∑
i=1

1

Na

Na∑
j=1

log
π̄(Āij | Si)
π̄m?(Āij | Si)

= 0.

Consider the Doob martingale M0 =E[ZN,Na ], and

Mk :=E[ZN,Na | S1, . . . , Sk] for 1≤ k≤N,

a martingale adapted to the filtration Fk := σ(S1, . . . , Sk). Denote the martingale difference sequence

Dk =Mk−Mk−1 for k≥ 1. Let S′k be an independent copy of Sk that is independent of all Si, and

let Ā′kj ∼ π̄(· | S′k) independent of everything other than S′k. We can write

Dk =E

[
sup
m∈M

{
1

N

N∑
i=1

(
EĀ∼π̄(·|Si)

[
log

π̄(Ā | Si)
πm(Ā | Si)

]
− 1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm(Āij | Si)

)}
| S1, . . . , Sk

]

−E

[
sup
m∈M

{
1

N

∑
i6=k

(
EĀ∼π̄(·|Si)

[
log

π̄(Ā | Si)
πm(Ā | Si)

]
− 1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm(Āij | Si)

)

+
1

N

(
EĀ′∼π̄(·|S′

k
)

[
log

π̄(Ā′ | S′k)
πm(Ā′ | S′k)

]
− 1

Na

Na∑
j=1

log
π̄(Ā′ij | S′k)
πm(Ā′ij | S′k)

)}∣∣∣∣∣S1, . . . , Sk

]
.
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Independence of Si’s yields

|Dk| ≤
1

N
E

[
sup
m∈M

∣∣∣∣∣ 1

Na

Na∑
j=1

EĀ∼π̄(·|Sk)

[
log

π̄(Ā | Sk)
πm(Ā | Sk)

]
− log

π̄(Āij | Sk)
πm(Āij | Sk)

−EĀ′∼π̄(·|S′
k

)

[
log

π̄(Ā′ | S′k)
πm(Ā′ | S′k)

]
+ log

π̄(Ā′ij | S′k)
πm(Ā′ij | S′k)

∣∣∣∣∣ | Sk
]

≤ 2

N
sup
s∈S

E
Āj

iid∼ π̄(·|s)

[
sup
m∈M

∣∣∣∣∣ 1

Na

Na∑
j=1

EĀ∼π̄(·|s)

[
log

π̄(Ā | s)
πm(Ā | s)

]
− log

π̄(Āj | s)
πm(Āj | s)

∣∣∣∣∣
]
.

Next, we use a standard symmetrization result to bound the last display; see, for example,

Chapter 2.3, van der Vaart and Wellner (1996) for a comprehensive treatment.

Lemma EC.4. If ξi
iid∼ P , we have

E

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

(g(ξi)−E[g(ξ)])

∣∣∣∣∣
]
≤ 4E[Rn(G)]

Applying Lemma EC.4 to the bound on |Dk|. we conclude |Dk| ≤ 8
N

sups∈S EĀj iid∼ π̄(·|s)
[RNa(G′2(s))],

where G′2(s) is the function class

G′2(s) :=

{
a 7→ log

π̄(a | s)
πm(a | s)

:m∈M
}
.

Note that RNa(G′2(s)) =RNa(G2(s)). Then, Azuma-Hoeffding bound (Corollary 2.20, Wainwright

(2019)) yields

ZN,Na ≤E[ZN,Na ] +

√
32z

N
sup
s∈S

E
Āj

iid∼ π̄(·|s)
[RNa(G2(s))]

with probability at least 1− e−z.

It now remains to bound E[ZN,Na ], for which we use a symmetrization argument. Although

(Si, Āij) are not i.i.d., a standard argument still applies, which we outline for completeness. Denoting

by (S′i, Ā
′
ij) independent copies of (Si, Āij) again, we have

E[ZN,Na ] =E

[
sup
m∈M

∣∣∣∣∣ 1

N

N∑
i=1

1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm(Āij | Si)

−E

[
1

N

N∑
i=1

1

Na

Na∑
j=1

log
π̄(Ā′ij | S′i)
πm(Ā′ij | S′i)

]∣∣∣∣∣
]

≤E

[
sup
m∈M

∣∣∣∣∣ 1

N

N∑
i=1

1

Na

Na∑
j=1

log
π̄(Āij | Si)
πm(Āij | Si)

− log
π̄(Ā′ij | S′i)
πm(Ā′ij | S′i)

∣∣∣∣∣
]

=E

[
sup
m∈M

∣∣∣∣∣ 1

N

N∑
i=1

1

Na

Na∑
j=1

εij

(
log

π̄(Āij | Si)
πm(Āij | Si)

− log
π̄(Ā′ij | S′i)
πm(Ā′ij | S′i)

)∣∣∣∣∣
]

≤ 2E[RNNa(G3)].
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Collecting these bounds, we obtain the desired result.

EC.4.2. Proof of Corollary 1

We use the following standard result that bound the Rademacher complexity of kernel models. Let

k be a reproducing kernel on Ξ, and let B be the unit ball in the RKHS H.

Claim EC.1. Let supξ∈Ξ k(ξ, ξ) =B <∞. Then, Rn(B)≤ B√
n

.

Proof of Claim EC.1 For any fixed ξ1, . . . , ξn,

Rn(B) =
1

n
Eε

[
sup
h∈B

〈
h,

n∑
i=1

εik(·, ξi)

〉]
=

1

n
Eε

[∥∥∥∥∥
n∑
i=1

εik(·, ξi)

∥∥∥∥∥
H

]

≤ 1

n

Eε

∥∥∥∥∥
n∑
i=1

εik(·, ξi)

∥∥∥∥∥
2

H

 1
2

=
1

n

√√√√ n∑
i=1

‖k(·, ξi)‖2H ≤
B√
n
. Q.E.D.

Applying the claim to BA and and BS×A, we get

sup
s∈S

RNa(G2(s))≤ B√
Na

and RNNa(G3)≤ B√
NNa

.

To bound r?N , we use the following result due to Mendelson (2003).

Lemma EC.5 (Mendelson (2003, Theorem 2.1)). If λ1 ≥ 1/N , then for all r≥ 1/N

E
[
RN

{
h∈B :E[h(S)2]≤ r

}]
.

(
1

N

∞∑
j=1

min{λj, r}

) 1
2

.

Consider the case where the spectrum of TkS decay exponentially

(
1

N

∞∑
j=1

min

{
e−j

2

,

√
logN

N

}) 1
2

.

 1

N

√
logN∑
j=1

√
logN

N
+

1

N

∫ ∞
√

logN

e−t
2

dt

 1
2

.

√
logN

N
,

where we use . to denote inequality up to a numerical constant. We conclude r?N .M
√

logN
N

. For

polynomially decaying spectrum λj . j−2β,

∞∑
j=1

min{j−2β, r} ≈ r
2β−1

2β +

∫ ∞
r−1/2β

t−2βdt� r
2β−1

2β .

Solving for the fixed point, we get r?N �Mn−
2β

2β+1 .

Collecting these bounds and plugging them into Theorem 2, we obtain the desired result.
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EC.5. Experiment Details

Hyperparameters We use hyperparameters from Riquelme et al. (2018) as follows. The Neu-

ralGreedy, NeuralLinearTS methods use a fully-connected neural network with two hidden

layers of containing 100 rectified linear units. The networks are multi-output, where each output

corresponds for predicted reward under each action. The networks are trained using 100 mini-batch

updates at each period to minimize the mean-squared error via RMSProp with an initial learning

rate of 0.01. The learning rate is decayed after each mini-batch update according to an inverse

time decay schedule with a decay rate of 0.55 and the learning rate is reset the initial learning rate

each update period. For Bootstrap-NN-TS, we use 10 replicates and train each replicate with all

observations as in Riquelme et al. (2018).

The Bayesian linear regression models used on the last linear layer for NeuralLinear-TS

use the normal inverse gamma prior NIG(µa = 0, αa = 3, βa = 3,Λa = 0.25Id). Linear-TS uses a

NIG(µa = 0, αa = 6, βa = 6,Λa = 0.25Id) prior distribution.

The imitation models used by the IL methods are fully-connected neural networks with two hidden

layers of 100 units and hyperbolic tangent activations. The networks use a Softmax function on the

outputs to predict the probability of selecting each action. The networks are trained using 2000

mini-batch updates via RMSProp to minimize the KL-divergence between the predicted probabilities

and the approximate propensity scores of the Thompson sampling policy πTS. For each observed

context Si, we approximate the propensity scores of the Thompson sampling policy πTS(·|Si) using

Na = 2048 Monte Carlo samples: π̂TS(a|Si) = 1
Na

∑Na
j=1 1{Aij = a} where Aij ∼ πTS(·|Si). We use an

initial learning rate of 0.001. learning rate is decayed every 100 mini-batches according to an inverse

time decay schedule with a decay rate of 0.05. In practice, the hyperparameters of the imitation

model can be optimized or adjusted at each update period by minimizing the KL-divergence on a

held-out subset of the observed data, which may lead to better regret performance. We do not use

inverse propensity-weighting on the observations, but we suspect that may it may further improve

performance.

We normalize all numeric features to be in [0,1] and one-hot encode all categorical features. For

the Warfarin dataset, we also normalize the rewards to be in [0,1].
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Figure EC.1 Cumulative regret on the Warfarin problem with 50 actions

Posterior Inference for Bayesian Linear Regression Linear-TS: For each action, We assume the

data for action a were generated from the linear function: ra = sTθa + ε where ε∼N (0, σ2
a).

σ2
a ∼ IG(αa, βa), θa|σ2

a ∼N (µa, σ
2
aΣa),

where the prior distribution is given by NIG(µa,Λa, αa, βa) and Λa = Σ−1
a is the precision matrix.

After na observations of contexts Xa ∈ Rna×(d+1) and rewards ya ∈ Rna×1, we denote the joint

posterior by P (θa, σ
2
a)∼NIG(µ̄a, Λ̄a, ᾱa, β̄a), where

Λ̄ =XT
a Xa + Λa, µ̄a = Λ̄−1

a (Λaµa +XT
a ya)

ᾱa = α+
na
2
, β̄a = β+

1

2
(yTa ya +µTaΛaµa− µ̄Ta Λ̄aµ̄a).

Additional Results Warfarin - 50 Actions Figure EC.1 shows the cumulative regret on Warfarin

using 50 actions. The imitation learning methods match the cumulative regret of the vanilla

Thompson sampling methods.

EC.6. Time and Space Complexity

EC.6.1. Complexity of Evaluated Methods

Table EC.1 shows the decision-making time complexity for the methods used in our empirical

analysis. The time complexity is equivalent to the space complexity for all evaluated methods.

NeuralGreedy The time complexity of NeuralGreedy is the sum of matrix-vector multipli-

cations involved in a forward pass.
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Linear-TS The time complexity of Linear-TS is dominated by sampling from the joint posterior,

which requires sampling from a multivariate normal with dimension d. To draw a sample from

the joint posterior P (θ, σ) at decision time, we first sample the noise level σ̃2 ∼ IG(α,β) and then

sample θ̃|σ̃2 ∼N
(
µ, σ̃2Λ−1

)
. Rather than inverting the precision matrix Σ̃ = σ̃2Λ−1, we compute

root decomposition (e.g. a Cholesky decomposition) of the d×d precision matrix Λ =LLT . The root

decomposition can be computed once, with cost O(d3), after an offline batch update and cached

until the next batch update. Given LT , we sample directly by computing θ̃=µ+z, where

1

σ̃
LTz = ζ (EC.14)

and ζ
iid∼ N (0,1). Since LT is upper triangular, Eqn. (EC.14) can be solved using a backward

substitution in quadratic time: O(d2).6

NeuralLinear-TS The time complexity of NeuralLinear-TS is the sum of a forward pass up

to the last hidden layer and sampling from a multivariate normal with dimension hM , where hM is

the size of the last hidden layer.

Imitation Learning The IL methods have the same time complexity as NeuralGreedy,

ignoring the cost of sampling from multinomial with k categories.

EC.6.2. Complexity Using Embedded Actions

An alternative modeling approach for the non-imitation methods is to embed the action with the

context as input to the reward model.

NeuralGreedy Using an embedded action, the time complexity for a forward pass up to the

last layer is Olast-layer =O
(
kdah1 + k

∑M−1

m=1 hmhm+1

)
because the input at decision time is a k× da

matrix where the context is embedded with each of the k actions and the each context-action vector

has dimension da. The time complexity of computing the output layer remains O(khM). The space

6 The alternative approach of inverting the precision matrix to compute the covariance matrix Σ = Λ−1, computing

and caching its root decomposition Σ =LΣL
T
Σ, and sampling θ̃ as θ̃ = µ+LΣζ, where ζ

iid∼ N (0,1) also has a time

complexity of O(d2) from the matrix-vector multiplication LΣζ.
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complexity remains linear in the number of parameters, but it also requires computing temporary

intermediate tensors of size k×hm for m= 1...M : O
(
dah1 +

∑M−1

m=1 hmhm+1 +
∑M

m=1 khm
)
.

Linear-TS Linear-TS with an embedded action only requires using a single sample of the

parameters, which yields a complexity of to O(d2
a + kda) for Linear-TS. The space complexity is

also O(d2
a + kda).

NeuralLinear-TS For NeuralLinear-TS the time complexity of computing the outputs given

the last hidden layer is O(h2
M + khM), since only a single sample of hM parameters is required for

computed the reward for all actions. The space complexity for NeuralLinear-TS the sum the

space complexities of NeuralGreedy and Linear-TS.

Imitation Learning The computatiuonal cost of the IL methods would be unchanged.

We choose to empirically evaluate models without embedded actions because linear methods

using embedded actions cannot model reward functions that involve non-linear interactions between

the contexts and actions, whereas modeling each action independently allows for more flexibility.

Riquelme et al. (2018) find that Thompson sampling using disjoint, exact linear bayesian regressions

are a strong baseline in many applications. Furthermore, Riquelme et al. (2018) observe that it is

important to model the noise levels independently for each action.

EC.6.3. Complexity of Alternative Methods

Alternative Thompson sampling methods including mean-field approaches, the low-rank approx-

imations of the covariance matrix, and bootstrapping can also decrease the computational cost

of posterior sampling. Mean-field approaches can reduce time complexity of sampling parameters

from the posterior from quadratic O(n2) to linear O(n) in the number of parameters n.7 However,

assuming independence among parameters has been observed to result in worse performance in

some settings (Riquelme et al. 2018). Low-rank approximations of the covariance matrix allow for

sampling parameters in O((n+ 1)ρ), where ρ is the rank of the approximate covariance, but such

7 We describe space complexity in terms of the number of parameters n, so that we do not make assumptions about

the underlying model.
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Table EC.1 Decision-making time complexity and space complexity for each method . For methods relying on

fully-connected neural networks, the time complexity of a forward pass to the last hidden layer is

Clast-layer = dh1 +
∑M−1
m=1 hmhm+1, where d is the dimension of the context and hm is the number of units in hidden

layer m. For Bootstrap-NN-TS, B denotes the number of bootstrap replicates.

Method Time Complexity Space Complexity

NeuralGreedy O(Clast-layer) +O(khM) O(Clast-layer) +O(khM)

Linear-TS O(kd2) O(kd2)

NeuralLinear-TS O(Clast-layer) +O
(
kh2

M) O(Clast-layer) +O
(
kh2

M)

Bootstrap-NN-TS O(Clast-layer) +O(khM) O(Clast-layer ·B) +O(khMB))

IL O(Clast-layer) +O(khM)

methods have a space complexity of O(ρn) since they require storing ρ copies of the parameters

Zhang et al. (2018), Maddox et al. (2019). Bootstrapping also requires storing multiple copies of

the parameters, so the space is O(bn) where b is the number of bootstrap replicates. However,

bootstrapping simply requires a multinomial draw to select one set of bootstrapped parameters. All

these methods require a forward pass using the sampled parameters, and the time complexity is the

sum of the time complexities of sampling parameters and the forward pass.
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