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Prediction and causality

e A central goal of ML is to predict an outcome given
variables describing a situation

- Given patient characteristics, will their outcome improve?

* Most decision-making problems revolve around a
decision / intervention / treatment

- What would happen if we changed the system?

- Given patient characteristics, will their outcome improve if they
follow a new diet?

 We want to develop a scientific understanding of a
decision

B9145: Reliable Statistical Learning
Hongseok Namkoong



Prediction and causality

e Causal inference is a multi-disciplinary field built across
economics, epidemiology, and statistics

* Focus is on questions about counterfactuals

- What structure of data do we need to answer this question?
- How do we interpret the key estimands?

* ML models can predict outcomes; when can it predict
counterfactuals?

- How can we leverage flexible ML models to infer causality?
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Binary actions

 Today we will focus on the setting with two actions
- One action represents treatment (1), the other is control (0)

e This is still foundational

- Key difficulties still persist here despite the simplicity
- Core technical insights will translate to more general settings

* |n complex problems, this is often the de facto standard

- Control is status quo, treatment is a new elaborate program

- Throughout economics, medicine, and tech, it requires a
tremendous amount of domain knowledge and effort to come up
with an alternative to the current system
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Secret to life

€he New YJork Times
Another Benefit to Going to Museums?
You May Live Longer

Researchers in Britain found that people who go to museums, the
theater and the opera were less likely to die in the study period
than those who didn't.

m I EE m Technology Svienee Culture Videao Reviews N i e

iking curtyFiesor
Facebook reveals your

1 What you Like on Facebook could reveal vour race, age, IQ,
I g sexuality and other personal data, even if you've set that

information to "private”.
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Causality

* You came up with a new diet regimen that you believe will
alleviate symptoms of rheumatism (e.g. chronic joint pain)

e Jo test it, you recruit people to try the diet

e You find that

- Small fraction on the diet experience chronic pain

- Large fraction not on the diet (aka all rheumatism patients outside
your volunteer pool) experience chronic pain

- Awesome! Everyone should try this diet

e But after years of adoption, you realize the diet does not
affect chronic pain
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Causality

 \What could have gone wrong?

- Volunteers to the diet may have been people with healthy
predispositions, and affluent socioeconomic backgrounds

* Fundamental problem: we don’t observe counterfactuals

e How do we model this?
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Potential outcomes

 Framework for explicitly modeling counterfactuals
* A: binary treatment assignment (1: treated, 0: control)
* Y(1) and Y(0) are potential outcomes

e X Is observed covariates

First goal: Estimate average treatment effect
T:=E[Y (1) — Y (0)]

Problem: We only observe Y := Y(A)



ATE

First goal: Estimate average treatment effect
T:=E[Y (1) — Y(0)]

* We only observe Y := Y(A) Y0 v(1) Y()-Y(0)

 What could go wrong?
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Randomized control trials

also called A/B testing, (randomized) experiments

* First try: let’s randomize treatment assignments
Y(1),Y(0) L A

* By virtue of randomized assignments, we have

t=E[Y(1) - Y(O)] =E[Y(1) [|A=1]-E[Y(O) | A= 0]

_[Y ‘ A = 1] _ _[Y | A = ()] observable

e \We can estimate final line from i.i.d. data (Yi, Ai)
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Randomized control trials
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Randomized control trials
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RCT with covariates

* |f you have access to covariates X, and can estimate
-[Y | X, A] accurately, then we can improve this

* |f by randomness more treatments get assigned to young
patients with a better prognosis, then we will exaggerate
the treatment effect

- Problem goes away in large samples, but matters for small samples

e Using any regression model, we can estimate
Y | X,A=1],E[Y | X,A = 0] observable

- Random forests, boosted decision trees, kernels, NNs etc
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Fitting outcome models
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CLT for covariate adjustments
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Beyond RCTs

e What if clean randomization is not possible?

e Randomization sometimes affected by the site

- Oxford / AstraZeneca trial made a dosage mistake at a location
- Turned out to be more effective

e |gnoring variables that affect treatment assignment leads to
biases
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Beyond RCTs

 Run large-scale experiment, randomized for each sex

Men Women

No disease Disease | No disease Disease
(Y =1) (Y = 0) (Y —=1) (V =0)

Treatment (A = 1) (0.1500 0.2250 0.1000 0.0250

Control ( A= 0) 0.0375  0.0875 | 02625  0.1125

(Here the numbers are the fractions of individuals in each
category.)

e PY=1|A=1)=05vs P¥=1|A=0)=0.6

- So maybe treatment is not effective?
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Simpson’s paradox

 But if you compute treatment effect for each sexes,

C[Y(1) — Y(0) | X = m] = E[Y(1) — Y(0) | X = w] = 0.1

e So ATE = 0.1. What happened?

e Women are more likely to be in control than treatment; men
are more likely to be in treatment than control. And women
have higher potential outcomes on average than men.
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Simpson’s paradox

e |ssue here Is that

=[Y(1) = Y(0)] # E[Y(D) [A =1] = E[Y(0) | A = 0]

e |f you ignore sex as a confounding variable, you create a
omitted variable bias in estimating the ATE
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Berkeley admissions

 Berkeley was sued for gender bias in admissions based
on 1973 numbers: 44% of men were admitted but only
35% of women

e But individual department’s admissions record showed no
evidence of such gender-based discrimination

* Turns out women systematically applied to more
competitive majors
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Observational studies

* Randomization is sometimes infeasible or prohibitively
expensive

- e.g. post-market drug surveillance, effect of air pollution on long-
term health outcomes

 Experimentation can be risky in high-stakes scenarios

- operational scenarios: new inventory system for Amazon, new
pricing algorithm for Uber

e May want to use existing large-scale data collected under
some data-generating policy (e.g. legacy system)
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No unobserved confounding

* Previous regression-based direct method still works if there
are no unobserved confounders (also called ignorability)

Assumption. Y(1),Y0) LA |X

 Observed treatment assignments are based on covariate
information alone (+ random noise)

- Treatment assignment does not use information about
counterfactuals

e Strong assumption. Often violated in practice.
- e.g. doctors often use unrecorded info to prescribe treatments
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No unobserved confounding
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Overlap

* We need enough samples for both control and treatment
throughout the covariate space

- This governs the effective sample size
e Propensity score e*(X) :=PA=1|X)

e Assume that there exists € > O such that
e < e*(X) <1 — e almost surely

e This means | have at least en number of samples for fitting
the two outcome models
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Overlap

* This breaks if data is generated by a deterministic policy
- e.g. always assign the drug (treatment) when age > 50

e \We need sufficient amount of randomness in treatment
assignment in all covariate regions

 Governs difficulty of estimation. Often violated in practice.
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Inverse probability weighting

e What if the outcome models are very complex and
difficult to estimate?

* A natural approach is to reweight samples, to change the
distribution E[ - | A = 1. X]to E[ - | X

- Essentially importance sampling
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Estimating propensity score
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Inverse probability weighting

e Can work well if propensity score is simple to estimate

e But estimating this well over the entire covariate space
can be difficult

- Calibration is hard, especially in high-dimensions

* When overlap doesn’t hold, importance weights blow up
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Augmented IPW

e Can we combine the best of both worlds?
- Direct method + IPW

* Propensity weight residuals to debias the direct method
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Efficiency

e |n fact, this is the best asymptotic variance we can get

 AIPW has optimal asymptotic variance, regardless of whether
the propensity score is known or not

 Formalizing this requires a lot of work
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Nuisance parameters

e |f a good parametric model exists, then can estimate at
the usual 1/4/n rates

* In general, these are infinite dimensional objects. Can be
difficult to estimate.
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Semiparametrics

We only care about estimating the ATE

- One-dimensional estimand, infinite dimensional nuisance parameters

Estimation accuracy of nuisance parameters is good only
insofar as it helps with estimating the ATE

Due to its high-dimensional nature, often difficult to estimate
nuisances at parametric rates

Goal: semiparametric estimators that are insensitive to errors
IN nuisance estimates
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Doubly robust

* One main advantage of AIPW is that even if one of the
nuisance parameter models are misspecified, you can still
get correct asymptotic behavior
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Orthogonality

e When is a semiparametric estimator insensitive to errors in
nuisance estimates?

e Directional derivative of functional wrt nuisance parameters
at true value Is near-zero

 Ensures that a little perturbation in nuisance parameters
near the truth values does not affect functional
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Orthogonality of AIPW
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Orthogonality of AIPW
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Why orthogonality?

Allows getting central limit rates on ATE estimation even when
we can only estimate nuisance parameters at slower rates

In addition to no unobserved confounding,
e*(X),e(X) € [e,1 — €], we assume the following rate condition

A A A ~1/2
18 = e* Nl pollidy = 1l pa + g — ug Il p2) = 0,(n="%)

This allows us to trade-off errors between nuisance
parameters. Only their product needs to go down at this rate!
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Central limit result

e CLT for the semiparametric AIPW, even when nuisance estimates
converge at slower-than-parametric rates

1 « N A A
\/E ; 2 WAIPW(XZ" Yia Ai; Hos K15 6) -7 )= N(O’GI%JPW)
=1

where quPW ;= Var <l//AIpW (X, YaA;ﬂg(aﬂl*, e*>>

* This is the oracle asymptotic variance; when the true nuisance
parameters are known

 AIPW achieves optimal asymptotic efficiency
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Sketch of asymptotics
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Sketch of asymptotics
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Cross-fitting

e |nstead of sample-splitting, we can alternate the role
of main and auxiliary samples over multiple splits

Vs data ¥ data 15 data ¥ data

Cross-fitting
[Chernozhukov '18]

He(X)~E[Y(a)| X =x|, a €{0,1}
e(X)~PA=1|X)

e Estimate nuisance parameters on the auxiliary sample



Cross-fitting

(@)
-_E ?‘5 ¥s data ¥ data s data 5 data ¥ data
£
N5
4 ¢
Gaj % data
z 1i 11(X;) — f1p(X) + A (Y — (X)) L (Y — py(X)
T — — ) — : — : — ,
1 " - Hi\A; HolA; é(Xl) H1\A, 1 — é(Xl) Ho\ A,

e Estimate ATE by plugging in nuisance estimates



Cross-fitting
[Chernozhukov '18]

)

Cross-fitting

¥% data ¥% data ¥% data V% data Vs data

| R R R R R
—( T1+7«'2+T3+T4+775

e Same procedure for direct method, IPW

e Similar central limit result follows as before



SUTVA

 Throughout we implicitly assumed there is only a single
version of the treatment that gets applied to all treated units

- This may not be true if drugs go stale in storage, or dosages differ

e \We also assumed there is no interference between units

- Whether or not individual i is treated has no impact on the treatment
effect of another individual |

- This can also fail in many real-world scenarios

Together these assumptions are called stable unit treatment
value assumption (SUTVA)
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Interference

* Any two-sided platform faces interference between units

 Consider the following scenario:
- Lyft A/B tests a new promotion strategy for drivers
- Each driver is randomized into treatment or control
- It is observed that drivers finish a lot more rides with the promotion
- So they decide this promotion is worth spending resources on

 But the estimate turned out to be an overestimate, not
worth the cost of the promotion. Why?
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Interference

e Both treated and control drivers see the same set of demand

e |f promotion incentivizes treated drivers to work more for less
nominal fares, this cannibalizes demand that would usually go to
control drivers

e |nterference occurs in a number of different settings
- Two-sided platforms: Airbnb, ridesharing, ad auctions
- Network effects: e.g. adoption of new education technology

 When this happens, the potential outcomes now depend on all
possible 2" treatment assignments

- \Very active area of research
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Assessing overlap

e “If the covariate distributions are similar, as they would be, in
expectation, in the setting of a completely randomized experiment,
there is less reason to be concerned about the sensitivity of
estimates to the specific method chosen than if these distributions
are substantially different.”

e “On the other hand, even if unconfoundedness holds, it may be
that there are regions of the covariate space with relatively few
treated units or relatively few control units, and, as a result,
inferences for such regions rely largely on extrapolation and are
therefore less credible than inferences for regions with substantial
overlap in covariate distributions.”

e |mbens and Rubin
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Assessing overlap

 QOverlap governs effective sample size

- Even approaches that don’t require propensity weighting is affected
under this fundamental restriction

e Causal inference literature has developed various
“supplementary analysis” tools for assessing credibility of
empirical claims

 One of the most common conventions is to plot the
propensity scores of treated and control groups

B9145: Reliable Statistical Learning
Hongseok Namkoong 60



Assessing overlap

e Difference in covariate distributions between treatment and control
group is summarized by the propensity score

e Letf(X) be the density of X in the treatment group (similarly /(X))
e Letp :=PA=1)

Var(e*(X)) = p(1 = p)(E [e*(X) | A = 1] = E [e*(X) | A =0])

2
HOO = fX)
=p*(1-p)*-E
PP (Pﬁ(X)+(1—P)fo(X)>

B9145: Reliable Statistical Learning
Hongseok Namkoong 61



Assessing overlap

e A common visualization is to look at the pdf of the
propensity score across treatment groups

* Plot approximates pdfs of the distribution
P(e*(X) € - | A = a)

e Foreach g € (0,1), plot fraction of observations in the
treatment group with e *(x) = g (and similarly for control)
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Assessing overlap

e Athey, Levin, Seira (2011) studied timber auctions

- Award timber harvest contracts via first price sealed auction or open
ascending auction

e |daho: randomized with different probabilities across
different regions

e California: determined by small vs. large sales volume;
cutoff varies by region
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ldaho

Very few observations with extreme propensity scores

f o\ Athey, Levin, Seira (2011)
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California

Untrimmed v. trimmed so that e(x) € [.025, .975]
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Heterogeneous treatment effects

 Treatment effect often varies with user / patient / agent
characteristics (covariates)

e Example: Oregon Health Insurance Experiment

- Evaluate effect of Medicaid on low-income adults on emergency
department (ED) visits in 2008

- Precursory study to federal Medicaid expansion in 2014, which cost
$553 billion/year

- Insurance allows visits ED, but access to preventive care may also
reduce need of ED visits
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Oregon Health Insurance Experiment
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Welfare attitudes experiment

e Evaluate effect of wording on survey results (“welfare”

vs “assistance to the poor”)

e Resoundingly positive treatment effects, but significant
heterogeneity across covariates

0.40

0.35

0.30 |

0.25

0.20

5K\
10K
15K
20K

0 5 10 15 20
Years of Education

0.4

0.3

0.2

0.1

5K {
10K [
15K
20K

18 28 38 48 58 68 78 88
Age

68



CATE

 Jo estimate personalized treatment effects, we want to
estimate the conditional average treatment effect (CATE)

7(X) = E[¥(1) = Y(0) | X]

* Few different ways to estimate this using black-box ML
models

e Again, key challenging is missing data

- We never observed counterfactuals

B9145: Reliable Statistical Learning
Hongseok Namkoong

69



S-Learner

e Shared feature representation, assuming similar model
class for both treatment and control
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T-Learner

e Can fit different models over treatment options
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X-Learner

Kunzel et al. (2018)

Regress on the imputed treatment effect Y(1) - Y(0)

Fit T-learner models and compute imputed treatment effects
Yi = loo(X) it A; = 1, fg (X)) — Y;ifA; =0

o Fit another set of models 7, 7, on the two category of
imputed values, take

20X 1= 2(X)E(X) + (1 — (X))E,(X)
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X-Learner

Kunzel et al. (2018)

e Usually, number of samples in treatment >> those in control

 Advantageous if CATE is much smoother than individual
outcome functions

Observed Outcome & First Stage Base Learners C Individual Treatment Effects & CATE Estimators

Imputed Treatment Effects & Second Stage Base Learners
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R-Learner

Nie and Wager (2020)
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R-Learner

Nie and Wager (2020)
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