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Potential outcomes

 Framework for explicitly modeling counterfactuals
* A: binary treatment assignment (1: treated, 0: control)
* Y(1) and Y(0) are potential outcomes

e X Is observed covariates

First goal: Estimate average treatment effect
T:=E[Y (1) — Y (0)]

Problem: We only observe Y := Y(A)



No unobserved confounding

* Previous regression-based direct method still works if there
are no unobserved confounders (also called ignorability)

Assumption. Y(1),Y0) LA |X

 Observed treatment assignments are based on covariate
information alone (+ random noise)

- Treatment assignment does not use information about
counterfactuals

e Strong assumption. Often violated in practice.
- e.g. doctors often use unrecorded info to prescribe treatments
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Overlap

* We need enough samples for both control and treatment
throughout the covariate space

- This governs the effective sample size
e Propensity score e*(X) :=PA=1|X)

e Assume that there exists € > O such that
e < e*(X) <1 — e almost surely

e This means | have at least en number of samples for fitting
the two outcome models
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Overlap

* This breaks if data is generated by a deterministic policy
- e.g. always assign the drug (treatment) when age > 50

e \We need sufficient amount of randomness in treatment
assignment in all covariate regions

 Governs difficulty of estimation. Often violated in practice.
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Direct method

By no unobserved confounding,
ur(X) = E[¥(a) | X] = E[¥(a) | X,A = a]

— —[Y ‘ X,A — Cl: = observable

e Fit u*(X) via the loss minimization problem
minimize, ey E[(Y — ,ua(X))z | A = al

1 n
ATE estimator 7y, 1= — 2 (X)) — fo(X;)
" =1

e Good if the outcome models are easy to learn
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Inverse propensity weighting

e What if the outcome models are very complex and difficult to
estimate?

* A natural approach is to reweight samples to correct for
confounding bias

- Essentially importance sampling

e First, estimate the propensity score e*(X) :=P(A =1 | X)

- e.g. run logistic regression to predict A given X
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Inverse propensity weighting

] — A,
Tiow = — Y.
W Z} e(X) 1 —e(X)

e Can work well if propensity score is simple to estimate

e But estimating this well over the entire covariate space
can be difficult

- Calibration is hard, especially in high-dimensions

* When overlap doesn’t hold, importance weights blow up
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Augmented IPW

e Can we combine the best of both worlds?
- Direct method + IPW

* Propensity weight residuals to debias the direct method

1 n
Batpw = — ) (01(X) = (X))
=1

+1i A Y, (X)) — (Y, — (X))
2(X) i — M4 I — (X)) i — Ho\A
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Augmented IPW

 Best asymptotic variance; semiparametrically efficient

 Doubly robust: asymptotically consistent as long as either
outcome model or the propensity score model is well-specified

e Insensitive to errors in nuisance parameters y, e*

- Neyman orthogonality gives central limit behavior so long as
le — e*“P,z(”ﬂl - /41*||P,2 + |l — /48(||P,2) = 0p(n_1/2)
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Cross-fitting

e |nstead of sample-splitting, we can alternate the role
of main and auxiliary samples over multiple splits

Vs data ¥ data 15 data ¥ data

Cross-fitting
[Chernozhukov '18]

He(X)~E[Y(a)| X =x|, a €{0,1}
e(X)~PA=1|X)

e Estimate nuisance parameters on the auxiliary sample



Cross-fitting

(@)
-_E ?‘5 ¥s data ¥ data s data 5 data ¥ data
£
N5
4 ¢
Gaj % data
z 1i 11(X;) — f1p(X) + A (Y — (X)) L (Y — py(X)
T — — ) — : — : — ,
1 " - Hi\A; HolA; é(Xl) H1\A, 1 — é(Xl) Ho\ A,

e Estimate ATE by plugging in nuisance estimates



Cross-fitting
[Chernozhukov '18]

)

Cross-fitting

¥% data ¥% data ¥% data V% data Vs data

| R R R R R
—( T1+7«'2+T3+T4+775

e Same procedure for direct method, IPW

e Similar central limit result follows as before



SUTVA

 Throughout we implicitly assumed there is only a single
version of the treatment that gets applied to all treated units

- This may not be true if drugs go stale in storage, or dosages differ

e \We also assumed there is no interference between units

- Whether or not individual i is treated has no impact on the treatment
effect of another individual |

- This can also fail in many real-world scenarios

Together these assumptions are called stable unit treatment
value assumption (SUTVA)
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Interference

* Any two-sided platform faces interference between units

 Consider the following scenario:
- Lyft A/B tests a new promotion strategy for drivers
- Each driver is randomized into treatment or control
- It is observed that drivers finish a lot more rides with the promotion
- So they decide this promotion is worth spending resources on

 But the estimate turned out to be an overestimate, not
worth the cost of the promotion. Why?
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Interference

e Both treated and control drivers see the same set of demand

e |f promotion incentivizes treated drivers to work more for less
nominal fares, this cannibalizes demand that would usually go to
control drivers

e |nterference occurs in a number of different settings
- Two-sided platforms: Airbnb, ridesharing, ad auctions
- Network effects: e.g. adoption of new education technology

 When this happens, the potential outcomes now depend on all
possible 2" treatment assignments

- \Very active area of research
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Assessing overlap

e “If the covariate distributions are similar, as they would be, in
expectation, in the setting of a completely randomized experiment,
there is less reason to be concerned about the sensitivity of
estimates to the specific method chosen than if these distributions
are substantially different.”

e “On the other hand, even if unconfoundedness holds, it may be
that there are regions of the covariate space with relatively few
treated units or relatively few control units, and, as a result,
inferences for such regions rely largely on extrapolation and are
therefore less credible than inferences for regions with substantial
overlap in covariate distributions.”

e |mbens and Rubin
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Assessing overlap

 QOverlap governs effective sample size

- Even approaches that don’t require propensity weighting is affected
under this fundamental restriction

e Causal inference literature has developed various
“supplementary analysis” tools for assessing credibility of
empirical claims

 One of the most common conventions is to plot the
propensity scores of treated and control groups
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Assessing overlap

e Difference in covariate distributions between treatment and control
group is summarized by the propensity score

e Letf(X) be the density of X in the treatment group (similarly /(X))
e Letp :=PA=1)

Var(e*(X)) = p(1 = p)(E [e*(X) | A = 1] = E [e*(X) | A =0])

2
HOO = fX)
=p*(1-p)*-E
PP (Pﬁ(X)+(1—P)fo(X)>
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Assessing overlap

e A common visualization is to look at the pdf of the
propensity score across treatment groups

* Plot approximates pdfs of the distribution
P(e*(X) € - | A = a)

e Foreach g € (0,1), plot fraction of observations in the
treatment group with e *(x) = g (and similarly for control)
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Assessing overlap

e Athey, Levin, Seira (2011) studied timber auctions

- Award timber harvest contracts via first price sealed auction or open
ascending auction

e |daho: randomized with different probabilities across
different regions

e California: determined by small vs. large sales volume;
cutoff varies by region
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ldaho

Very few observations with extreme propensity scores

f o\ Athey, Levin, Seira (2011)
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California

Untrimmed v. trimmed so that e(x) € [.025, .975]
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Heterogenous Treatment Effects
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CATE

 Treatment effect often varies with user / patient / agent
characteristics (covariates)

 Jo estimate personalized treatment effects, we want to
estimate the conditional average treatment effect (CATE)

o(X) = E[¥Y(1) = Y(0) | X]

* Few different ways to estimate this using black-box ML
models

 Again, key challenging is missing data

- We never observed counterfactuals
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S-Learner

By no unobserved confounding,
u*(a,x) = E[Y(a) | X =x] = E[Y(a) | X =x,A =d]
=E[Y|X=x,A=a

e Fit u*(a, x) via the loss minimization problem

minimize, con (Y — (A, X))

 Shared feature representation, assuming similar model
class for both treatment and control
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T-Learner

By no unobserved confounding,

ur(X) :=E[Y(a) | X] =

=[Y(a) | X, A = al

=E[Y|X,A=a

Fit 4 *(X) via the loss minimization problem
minimize, e;p E[(Y — p,(X))* | A = a]

7(X) = 1 (X) = fip(X)

Can fit different models over treatment options
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Welfare attitudes experiment

e Evaluate effect of wording on survey results (“welfare”

vs “assistance to the poor”)

e Resoundingly positive treatment effects, but significant
heterogeneity across covariates
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X-Learner

Kunzel et al. (2018)

Regress on the imputed treatment effect Y(1) - Y(0)

Fit T-learner models and compute imputed treatment effects
Y — (X)) it A; = 1, iy (X)) — Y;ifA; = 0

o Fit another set of models 7, 7, on the two category of
imputed values, take

1(X) = e(X)75(X) + (1 — e(X))7,(X)
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X-Learner

Kunzel et al. (2018)

e Usually, number of samples in treatment << those in control

 Advantageous if CATE is much smoother than individual
outcome functions

Observed Outcome & First Stage Base Learners C Individual Treatment Effects & CATE Estimators

Imputed Treatment Effects & Second Stage Base Learners
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R-Learner

Nie and Wager (2020)
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R-Learner

Nie and Wager (2020)
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Sensitivity Analysis



Observational studies

* When experimentation is risky, crucial to leverage collected
data

* Historically, many important findings from observational data

- “citrus fruit curing scurvy described in the 1700s or insulin as a

treatment for diabetes in the 1920s long preceded the advent of the
modern randomized clinical trial.”

- “these methods had in common a reliable method of diagnosis, a

predictable clinical course, and a large and obvious effect of the
treatment.” [Corrigan-Curay et al. 2018]

e These results need to be contextualized and viewed with
more skepticism than RCTs
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Unobserved confounding

e So far, we assumed that there are no unobserved confounders
that simultaneously affect potential outcomes and treatment

assigments

e \What if there's a hidden variable U that wasn't observed?

Judges are more lenient after taking a
break, study finds [Danziger '11]

Overlooked factors in the analysis of parole
decisions [Weinshall-Margel '11]

Other examples: Antioxidant vitamin beta carotene [willett '90, ATBC CPSG '94]

Hormone replacement therapy [Pedersen '03 WHI, Lawlor '04]
[Rutter '07]

 Even in tech, important features are unrecorded due to privacy
or data management issues



Unobserved confounding

Clinicians use visual observations or discussions with patients
to inform treatment decisions (e.g. admission to NICU)

Drugs are preferentially prescribed to patients for which it will
be effective, or those who can tolerate them

These factors are not properly recorded even at the resolution
of large databases.

Example: Patients in emergency departments often do not
have an existing record in the hospital’s electronic health
system. This leaves important information unobserved in
subseqguent observational analysis.



Bounded unobserved confounding

e What if there's a hidden variable U that wasn't observed
- Estimates can be arbitrarily bad under general confounding

e Often it is reasonable to assume an unobserved confounder
has bounded effect on observed treatment assignments

- Odds ratio of treatment can only vary by up to a factor of I > 1

(- )

Relaxed assumption: Bounded unobserved confounding

1 _PA=1|XU=w)PA=0]|X.U=0v) __
I " PA=0|X,U=u)P(A=1|X,U=1u') ~

and Y(l), Y(O)LA | X, U [Rosenbaum '02]

\.

e Such U always exists since we can set U = (Y(1), Y(0))



Equivalence

Let there exist a random variable U such that Y (1), Y (0) LA | X,U

( N\
There exists al” > 1 such that

1 PA=1|X,U=u)P(A=0|X,U =u)
— < <TI as.
[ T PA=0|X,U=u)PA=1| X,U =)

If and only if there exists f(X), g(X, U) s.t. g(X,U) € [0,1] a.s. and

log A=A Y) sy L X 1) - TosT
ng(A:O X, U) =/ Sh oS

Odds ratio of treatment can only vary by up to a factor of I

Bounded influence of U in a nonparametric logistic regression model



Equivalence



FAQSs

N
! Bounded unobserved confounding
1<IP>(A:1 X, U=u)P(A=0 X,U:u’)<F
' " PA=0|X,U=u)PA=1|X,U=1u") —
and Y(].), Y(O)LA | X, U [Rosenbaum '02]
. J

e How do | choose 1 ?

= Domain expertise (e.g. clinical intuition)
= Reverse thinking: what would be a clinically significant result? what value

of I' would change its significance?

m» Sensitivity of a study: at what level of I is the conclusion of the study
invalidated?

* |s this the only natural confounding model?

= No. Today we discuss a modern semiparametric framework under this
model; the framework may be developed under different models.






Estimate lower bound on ATE

Estimate ©; = E[AY (1) 4+ (1 — A)61(X)] < E[Y(1)]

Cross-fitting

% % data % data % data % data % data
Estimatel
A1(X) = argmin E,[(r(0(X),Y (1)) | A = 1]
6(X)EOn Plug-in
e(X)~P(A=1]|X)
VX)=14+ T —-1D)P(Y(1) <61(X) | X)
\ 4
S ~ A; (Y — 6, (X)) +T(Y; — 6, (X5))—
Hy = ZAz'Yq; + (1 — A;)0:(X;) 4 50X, 51 (X))
1=1 7 7

Reduces to AIPW when [' = 1



Asymptotics
Assume nuisance variables can be estimated reasonably well
H@l(.) — 6’1(-)H2 , =14 o) —PA=1]X=")|,p= 0, (n~ /%)

[9() =1 = (T =1PY (1) <6:() | X =)l p = 0p(n /%)

[L ™ cross-fitting estimator for uy = E[AY (1) + (1 — A)6;(X)]

r N
Theorem Under regularity conditions,

< E[Y(1)

VR G~ ) 4 N, )

On

for some specified (known) o
\. J

Combining, we can develop a central limit theorem for the bound on ATE



Example: fish consumption

Study analyzing the impact of fish consumption on total blood
mercury concentration

N = 2,512 adult participants in 2013-14 NHANES survey in US

Treatment is high fish consumption, >12 servings of fish or
shellfish in the previous month

Control is low fish consumption, 0 or 1 servings of fish

Outcome as log, of total blood mercury concentration (ug/L)

Covariates: gender, age, income, missing income, race, education,
ever smoked, and number of cigarettes smoked last month)



Effect size

Example: fish consumption

fill

Filled areas are estimated bounds

Dashed lines represent 95%
confidence intervals around filled area

Differences in centers due to statistical
bias

Tighter Cls under this approach
consistent with theoretical results



