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Lecture 4: Distributional Robustness

Hongseok Namkoong

October 5, 2020

As before, we consider a loss function ` : ⇥⇥Z ! R representing monetary cost or (a surrogate)
statistical prediction error. Let P be the data-generating distribution. In previous lectures, we
studied standard average-case optimization problems of the form

minimize
✓2⇥

EP [`(✓;Z)], (1)

where ⇥ ✓ Rd is the model class (or decision space), and Z ⇠ P is the random data. This simple
notation abstracts the complexities of real-world data-collection. The data collection distribution
P is an artifact made out of many di↵erent systems; it is the result of careful study (or product)
design, database management, data cleaning, and feature engineering.

The average-case formulation (1) is only e↵ective when the data-generating distribution P is
representative of the overall population of interest. However, this requirement is frequently violated.
Data is often collected from a particular set of geospatial locations, and may not represent the
population of interest. As a basic illustration, Figure 1 plots the demographic compositions of low-
income adults in Oregon and Texas. Over di↵erent points in space and time, compositions vary up to
fivefold. Even state-of-the-art models with high average test accuracy severely underperform under
small shifts in the environment; for example, average error of state-of-the-art models deteriorates
by 11-14% on a new test set for ImageNet [5].

Modern applications involve heterogeneous subpopulations across which we want uniformly good
performance. For example, in natural language processing (NLP), large-scale corpora is collected
over di↵erent domains, each with di↵erent di�culty levels. Almost all modern applications of
learning involve a diverse array of user groups across di↵erent demographics, but data collection
systems necessarily embody the societal biases we see throughout society. Statistical models that
optimize average-case performance (1) often perform poorly on minority groups underrepresented in
the dataset. Performance of speech recognition systems deteriorate on people with minority accents.
Similar significant performance fluctuations across demographic groupings such as race, gender, or
age have been observed in facial recognition, automatic video captioning, language identification,
academic recommender systems.

Figure 1: Demographics of low-income adults
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1 Distributional Robustness

Instead of taking an average-case approach (1) over the random observations Z ⇠ P , we may con-
sider a deterministic worst-case approach: for some uncertainty set U ⇢ Z representing “plausible”
values of Z, we can optimize for the worst-case scenario over z 2 U

minimize
✓2⇥

sup
z2U

`(✓; z) (2)

This deterministic worst-case formulation (2) is called a robust optimization problem; see Ben-Tal
et al. [1] or Bertsimas et al. [2] for an extensive overview of solution methods, and their various
applications. The deterministic robust optimization formulation (2) tends to be overly conservative,
and the choice of the uncertainty set is usually driven by availability of e�cient solution methods.

To explicitly incorporate the statistical nature of the random vector Z ⇠ P , we can formulate a
distributionally robust problem that bridges the above two dichotomous frameworks. Given a set
P of probability distributions, we minimize the worst-case expected loss over probabilities Q 2 Q

minimize
✓2⇥

sup
Q2Q

EQ[`(✓;Z)]. (3)

By setting Q to be the set of point masses on the set U , any robust optimization formulation
can be represented as a distributionally robust optimization problem. The formulation (3) finds
models or decisions ✓ that maintains good performance over distributional shifts in Q. As a general
desiderata, the choice of the set Q should represent realistic distributional shifts, while allowing
e�cient solution methods for the minimax problem (3).

In this lecture, we explore distributional robustness in a neighborhood around the data-generating
distribution P . This is a natural goal for prediction problems where we are interested in learning
models ✓ that perform uniformly well across small perturbations to the data-generating distribu-
tion. To make the inner worst-case problem (3) over infinite-dimensional probability distributions
tractable, we will derive a dual reformulation. We will formulate the entire problem (3) as a sin-
gle minimization problem over models ✓ 2 ⇥ and dual variables relating to the inner worst-case
problem.

The most important hyperparameter in these formulations are 1) the choice of distance—for
probability distributions—that defines the neighborhood around P , and 2) the radius of this neigh-
borhood. Both are nontrivial to choose, and a principled understanding of related trade-o↵s remain
an open problem.

1.1 f-divergences

First, we consider f -divergences, which define a notion of closeness between two distributions using
a convex function f . Let f : R ! R+ = R+ [ {1} be a convex function satisfying f(1) = 0 and
f(t) = +1 for any t < 0. Then, the the f -divergence between Q and P is

Df (Q||P ) :=

Z
f

✓
dQ

dP

◆
dP.

For f(t) = t log t, we get KL-divergences. For f(t) = |t � 1|, we get the total variation distance.
For f(t) = (t� 1)2, we get the �2 divergence.

[Draw picture visualizing f -divergences]
Rather than minimizing the average loss EP0 [`(✓;X)], consider the distributionally robust prob-

lem over f -divergence balls around P

minimize
✓2⇥

(
Rf (✓;P ) := sup

Q⌧P
{EQ[`(✓;Z)] : Df (Q||P )  ⇢}

)
, (4)
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where the hyperparameter ⇢ > 0 modulates the magnitude of the unknown distributional shift.
The worst-case risk (4) upweights regions of X with high losses `(✓;Z), and thus formulation (4)

optimizes performance on the tails, as measured by the loss on “hard” examples. So long as
the perturbed distribution Q remains ⇢-close to the data-generating distribution P , the model
✓? 2 ⇥ optimizing the distributionally robust formulation (4) guarantees EQ[`(✓?;Z)]  Rf (✓?;P0),
providing the smallest such bound. The main limitation of f -divergence balls is that it only allows
distributions Q with the same support as P ; by definition, this is what is required for the likelihood
ratio dQ

dP to be well defined. In particular, the empirical estimator of the worst-case formulation (4)
adaptively upweights hard examples—at the current model ✓.

We now derive a dual reformulation of the worst-case objective (4). We may use the likelihood
ratio L(Z) := dQ(Z)/dP (Z) to reformulate our distributionally robust problem (4) via

Rf (✓;P ) = sup
L�0

{EP [L(Z)`(✓;Z)] | EP [f(L(Z))]  ⇢,EP [L(Z)] = 1} , (5)

where the supremum is over measurable functions. Let f⇤ be the Fenchel conjugate of f

f⇤(s) := sup
t
{st� f(t)}.

Proposition 1. Let P be a probability measure on Z and ⇢ > 0. Then

Rf (✓;P ) = inf
��0,⌘2R

⇢
EP


�f⇤

✓
`(✓;Z)� ⌘

�

◆�
+ �⇢+ ⌘

�
(6)

for all ✓. Moreover, if the supremum on the left hand side is finite, there are finite �(✓) � 0 and

⌘(✓) 2 R attaining the infimum on the right hand side.

For convex losses ✓ 7! `(✓;Z), the dual form (6) is jointly convex in (✓, ⌘,�).
Sketch of Proof Fix any ✓ 2 ⇥ and let B(z) = `(✓; z) to simplify notation. Let us consider
the likelihood ratio formulation (5). Introducing Lagrange multiplier � � 0 for the constraintR
f(L)dP  ⇢ and ⌘ 2 R for EP [L] = 1, we obtain the Lagrangian

L(L,�, ⌘) =
Z

Z
[(B(z)� ⌘)L(z)� �f(L(z))] dP (x) + �⇢+ ⌘.

Then taking L ⌘ 1, we have that
R
f(L)dP = 0 and EP [L] = 1, so the extended Slater condition

holds. Thus we have (see, e.g., Luenberger [4, Theorem 8.6.1 and Problem 8.7]) that

sup
Q⌧P

{EQ[W ] : Df (Q||P )  ⇢}

= inf
��0,⌘2R

sup
L�0

⇢Z

X
[(B(z)� ⌘)L(x)� �f(L(x))] dP (x) + �⇢+ ⌘

�
. (7)

Next, we wish to interchange the inner supremum over all (measurable) nonnegative functions
L : Z ! R+ and the integral in the dual (7). In this case, we have sup`�0{

z�⌘
� `� f(`)} = f⇤( z�⌘

� ).
The reason this is a proof sketch is because we need to carefully deal with measurability issues

and corner cases.

As a concrete illustration, consider divergences that look like tk. The For k 2 (1,1), k⇤ =
k

k�1 ,
the Cressie-Read family of f -divergences [3] is given by

fk(t) := tk � 1 so f⇤
k (s) := k�k⇤(k � 1) (s)k⇤+ + 1 (8)

We let fk(t) = +1 for t < 0. As k becomes smaller, we have a more conservative DRO formulation.
By minimizing out � � 0 in the above dual, we obtain a simplified formulation for this family

of divergences. Let ck(⇢) := (1 + ⇢)
1
k to ease notation.
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Lemma 1. For any probability P on Z,

Rk(✓;P ) = inf
⌘2R

⇢
ck(⇢)EP

h
(`(✓;Z)� ⌘)k⇤+

i 1
k⇤ + ⌘

�
. (9)

This simplified form shows that distributional robustness is equivalent to optimizing the tail-
performance of a model. Equivalently, we are only considering harder examples in your data,
those with loss above the threshold ⌘; tail inputs are emphasized by a power of k⇤. From the
lemma, our final distributionally robust problem for the Cressie-Read family becomes

minimize
✓2⇥,⌘2R

⇢
ck(⇢)EP

h
(`(✓;Z)� ⌘)k⇤+

i 1
k⇤ + ⌘

�
,

which is jointly convex in (✓, ⌘) if ✓ 7! `(✓; z) is convex.

1.2 Wasserstein distances

The f -divergence takes value 1 whenever a perturbed distribution Q has support outside of that
of P . This may be limiting when there is a natural geometry in the data space. In this case, instead
reweighting data, we may consider directly perturbing data values according to this geometry. For
example, this is appropriate for adversarial attacks that perturb pixels of images by an amount
imperceptible to humans.

Wasserstein distances uses the geometry of the underlying space to define a notion of closeness
between distributions. Let Z ⇢ Rm, and let (Z,A, P ) be a probability space. Let the transporta-
tion cost c : Z ⇥ Z ! [0,1) be nonnegative, lower semi-continuous, and satisfy c(z, z) = 0. For
probability measures P and Q supported on Z, let ⇧(P,Q) denote their couplings, meaning mea-
sures ⇡ on Z2 with ⇡(A,Z) = P (A) and ⇡(Z, A) = Q(A) for all A ⇢ Z. The Wasserstein distance
between P and Q is

Wc(Q,P ) := inf
⇡2⇧(P,Q)

E⇡[c(Z,Z
0)].

This infimization problem is known as the optimal transport problem, where we wish to transport
mass away from P to Q, where c(z, z0) represents the unit cost of transporting mass from z to z0.

For ⇢ � 0 and distribution P0, we let Q = {Q : Wc(Q,P )  ⇢}, considering the Wasserstein
distributionally robust optimization (DRO) problem

minimize
✓2⇥

(
Rc(✓;P ) := sup

Q⌧P
{EQ[`(✓;Z)] : Wc(Q,P )  ⇢}

)
. (10)

In particular, the Wasserstein ball allows distributions Q that have a di↵erent support to P , so
long as the cost of transporting mass from P to Q is not too high.

The following duality result gives a duality result for Wasserstein DRO (10). We assume
EP [`(✓;Z)] < 1 throughout.

Proposition 2. Fix any ✓ 2 ⇥. Let z 7! `(✓; z) be upper semi-continuous. Let ��(✓; z0) =
supz2Z {`(✓; z)� �c(z, z0)} be the robust surrogate. For any distribution Q and any ⇢ > 0,

sup
Q:Wc(Q,P )⇢

EP [`(✓;Z)] = inf
��0

�
�⇢+ EP [��(✓;Z)]

 
. (11)

The dual form makes crisp how the optimal transport problem plays a role in defining worst-case
perturbations. The supremum inside the expectation considers a perturbation z to the data Z,
such that it makes the loss `(✓; z) bigger, while being penalized by the cost of moving mass from Z
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to z. Comparing this to the f-divergence dual (6) that upweighted examples with higher loss, we
see that Wasserstein DRO (10) considers the geometry of the inputs by using the cost function c.

The computational cost of considering probabilities whose support may di↵er from P is steep.
The dual formulation (11) has reformulated an infinite-dimensional problem over probabilities to
computing the robust surrogate ��, but even evaluating the robust surrogate is computationally
intractable in general. The maximization problem ��(✓;Z) = supz `(✓; z) � �c(Z, z) is almost
always non-concave, even for simple linear models. Furthermore, a naive analysis of the statistical
estimation of Wasserstein DRO yields nonparametric rates. Identifying structured scenarios with
alleviated computational and statistical di�culties is an area of active research.

Although the proof of Proposition 2 is involved, we can gain basic intuition by considering a
substantially simplified scenario. Consider a discrete sample space

Z := {z1, . . . , zk}.
The definition of the Wasserstein distance can then be simplified to

min
⇡(zi,zj)�0

8
<

:
X

i,j

⇡(zi, zj)c(zi, zj) :
X

i

⇡(zi, zj) = q(zj),
X

j

⇡(zi, zj) = p(zi),
X

i,j

⇡(zi, zj) = 1

9
=

; .

Then, Rc(✓;P ), the Wasserstein distributionally robust objective (10) can be written as

max
⇡(zi,zj)�0

8
<

:
X

i,j

⇡(zi, zj)`(✓; zj) :
X

j

⇡(zi, zj) = p(zi),
X

i,j

⇡(zi, zj) = 1,
X

i,j

⇡(zi, zj)c(zi, zj)  ⇢

9
=

; .

Now, use Lagrangian duality to note that

Rc(✓;P ) = min
��0

max
⇡�0

8
<

:�⇢+
X

i,j

⇡(zi, zj)(`(✓; zj)� �c(zi, zj)) :
X

j

⇡(zi, zj) = p(zi),
X

i,j

⇡(zi, zj) = 1

9
=

; .

The inner maximum problem is evidently attained at

⇡(zi, zj) =

(
p(zi) if j is the smallest index in argmaxj{`(✓; zj)� �c(zi, zj)}
0 otherwise

.

We conclude that

Rc(✓;P ) = min
��0

(
�⇢+

X

i

p(zi)max
j

{`(✓; zj)� �c(zi, zj)}
)
,

which is the desired result (11) for discrete sample spaces.
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