Do ImageNet Classifiers
Generalize to ImageNet?

Guest Lecture in B9145: Reliable Statistical Learning

Ludwig Schmidt
UC Berkeley — Toyota Research = UW



One Theoretician’s Perspective on Empirical ML

Goals for today:

1. Get an overview of progress on the empirical side of machine learning.

2. Understand how the benchmarking paradigm creates reliable empirical
knowledge about machine learning.

3. ldentity limitations of current machine learning methods.

4. Learn to connect theoretical & empirical perspectives and discuss the
role of theory in contemporary machine learning.

Different flavor compared to previous lectures: focus on experiments.

Please ask questions!



1. Empirical progress in machine learning: benchmarks

2.\What can we learn from ML benchmarks?

3. Limitations of current ML methods
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Explosive Growth in ML

Ehe New York Eimes Magazine st
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Senator Charles Schumer (D-NY) unveiled his artificial intelligence plan last week at a meeting of the National
Security Commission on Artificial Intelligence. ALEX WON

United States should make a massive investment in Al,
top Senate Democrat says

By Jeffrey Mervis | Nov. 11,2019, 11:45 AM

e

The top Democrat in the U.S. Senate wants the government to create a new agency that would
invest an additional $100 billion over 5 years on basic research in artificial intelligence (Al).
Senator Charles Schumer (D-NY) says the initiative would enable the United States to keep pace
with China and Russia in a critical research arena and plug gaps in what U.S. companies are
unwilling to finance.

Time

How Google is Remaking Itself as a “Machine Learning First” Company

If you want to build artificial intelligence into every product, you better retrain your army of coders. Check.
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What are the key advancements”

Progress in multiple areas of machine learning with similar approach: deep learning

e Computer vision
* Automatic speech recognition
* Natural language processing

 Game playing (Go, Atari, Starcraft, DotA)

Focus today: computer vision
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ImageNet

Large image classification dataset: 1.2 mio training images, 1,000 image classes.
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ImageNet

t decade:

.....
'''''''''''''

Figure 7-1. Error Rate of Image Classification by Artificial

Intelligence and Humans, 2010-17 that the fO”OWing

Error rate (percent)
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ImageNet Ristory

Key person: Fei-Feli Li

Assistant prof at Princeton starting 2007

Princeton Is also home to the WordNet project

Hierarchical database of words in English and other languages

dog, domestic dog, Canis familiaris

T WORUNE
i

placental, placental mammal, eutherian, eutherian mammal
mammal

— vertebrate, craniate

| chardate

= animal, animate being, beast, brute, creature, fauna

l -



ImageNet Ristory

Fei-Feri’s vision (2006 — 2007):

 Humans know thousands of visual categories (heuroscience).

e |f we want human-like computer vision, we need correspondingly large datasets.

» Let’s populate all of WordNet with around 1,000 images per node!

» About 50 million images for about 50,000 classes (nouns in WordNet)

(Planned) ImageNet is 1000x larger!
Context: PASCAL VOC

 Most active object detection / classification dataset from 2005 - 2012
* Largest version (2012): 12,000 images total for 20 classes



Building ImageNet

Main student: Jia Deng (how back at Princeton as faculty)

Where do you get 50 million images?

» Internet! (increasing amount of consumer photos)

flickr
How do you label them?

» Internet! (Crowdsourcing platforms) admazZon

+ lots of clever task design

+ lots of hard work [Deng, Dong, Socher, Li, Li, Fei-Fei’09]
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ImageNet Competition

ImageNet was about 10% done (already 5 million images!)

Alex Berg (prof at UNC and research scientist at FAIR)
» Let’'s make it a competition!

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Olga Russakovsky (student then postdoc at Stanford)

“Small” version of ImageNet: 1,000 classes, 1.2 million images

» “ImageNet” has become equivalent to ILSVRC 2012




IMAGENE T Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)
Held as a "taster competition" in conjunction with PASCAL Visual Object Classes Challenge 2010 (VOC2010)

Begistration Download Introduction Data Task Developmentkit Timetable Features Submission Citation"®" Qrganizers
Contact

News

« September 2, 2014: A new paper which describes the collection of the ImageNet Large Scale Visual Recognition Challenge dataset,
analyzes the results of the past five years of the challenge, and even compares current computer accuracy with human accuracy is
now available. Please cite it when reporting ILSVRC2010 results or using the dataset.

« For latest challenge, please visit here.

« September 16, 2010: Slides for cverview of results are available, along with slides from the two winning teams:

Winner: NEC-UIUC

Yuangqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour, Kai Yu (NEC). LiangLiang Cao, Zhen Li, Min-Hsuan Tsai, Xi
Zhou, Thomas Huang (UIUC). Tong Zhang (Rutgers).

[PDF] NB: This is unpublished work. Please contact the authors if you plan to make use of any of the ideas presented.

Honorable mention: XRCE
Jorge Sanchez, Florent Perronnin, Thomas Mensink (XRCE)
[PDF] NB: This is unpublished work. Please contact the authors if you plan to make use of any of the ideas presented.

« September 3, 2010: Full results are available. Please join us at the VOC workshop at ECCV 2010 on 9/11/2010 at Crete, Greece. At
the workshop we will provide an overview of the results and invite winning teams to present their methods. We look forward to

seeing you there.
« August 9, 2010: Submission deadline is extended to 4:59pm PDT, August 30, 2010. There will be no further extensions.
« August 8, 2010: Submission site is up.
« June 16, 2010: Test data is available for download!.
« May 3, 2010: Training data, validation data and development kit are available for download!.
« May 3, 2010: Registration is up!. Please register to stay updated.
« Mar 18, 2010: We are preparing to run the ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)




ImageNet Classification Task

Training data: 1.2 million images for 1,000 classes (roughly class-balanced)
Validation set: 50,000 images for 1,000 classes (exactly class-balanced)
Test set: 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)

Evaluation metric: Top-5 accuracy

Five predictions per image
*Prediction counts as correct if the image label is among the five predictions

Why? Sometimes multiple labels per image, sometimes unclear class boundaries.
+ task Is already hard enough
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OK, now we have trained Hong
=» Test time!
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Immediate Controversy in 2012

“ Yann LeCun » Public Oct 13, 2012

+Alex Krizhevsky's talk at the ImageNet ECCV workshop yesterday made a bit of
a splash. The room was overflowing with people standing and sitting on the
floor. There was a lively series of comments afterwards, with +Alyosha Efros,
Jitendra Malik, and | doing much of the talking.

Svetlana Lazebnik +1 Oct
Too bad | couldn't be there! Any take-away points for those of us >

2012
who couldn't attend? +Alyosha Efros, I'd love to get your take as
well!

” Yann LeCun Oct
¥ 7 +Svetlana Lazebnik: Our friend +Alyosha Efros said that 25"2
ImageNet is the wrong task, wrong dataset, wrong everything.
You know him ;-)
Still, he likes the idea of feature learning.




Alyosha Efros +11 Oct
Something like that... ;) | do like feature learning, the less 210‘11' ,
supervised — the better. So, | am excited that people are working

in this direction, but | am not ready to declare success until they :

. . . . Geoffrey Hinton +31 Oct
can show improvement on PASCAL detection. Basically, | think g , o 15
imageNet is just too easy (+Yann LeCun did confirm that it's ¥ | predicted that some vision people would say that the task was 0019
easier than PASCAL in terms of objects being more centered and too easy if a neural net was successful. Luckily | know Jitendra
little scale variation). In my view, the important thing to look at is so | asked him in advance whether this task would really count
chance perfommance. Criance on PASCAL detectionls as doing proper object recognition and he said it would, though
something like 1 in a million. Chance on Imagenet classification o o _
is 1in 200 (easier than Caltech-256111). Chance on ImageNet he also said it would be good to do localization too. To his
detection is lower but still maybe around 1 in a thousand or so. credit, Andrew Zisserman says our result is impressive.

When chance is so high, the temptation for a classifier to overfit

to the bias is in the data is too great. The fact that "t-short” L : : . . e
. | think its pretty amazing to claim that a vision task is "just 100
category turned out to be one of the easiest ones for all the

classifiers in the competition should give us pause as to whether easy” when we succeed even though some really good vision
t | - datit and failed to do nearly as well. | also think

izfm. LeC;m +1|'6 | » ; | | . t ?gt scredit a system that gets about 84% correct by
is is not a reli war between rning and computer ' . .
> 1S Ot @ TEgIoUs warbetween deep fearming ant Computer 5012 |d get 0.5% correct by chance is a bit desperate.

vision. Everyone wins when someone improves a result on some

<

" . —
2 benchmark. No one should feel "defeated"”, and no one should
3 give up unless they no longer believe in what they are doing.
— Progress is always exciting, particularly when it comes from a

brand new way of doing things, rather than from a carefully
tweaked combination of existing methods.

NOTE: Alyosha is a great scientist.
When he’s wrong, he’s happy to admit it and he is wrong in interesting ways.



AlexNet

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@dcs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates ot 37.5%
and 17.0% which 1s considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared (o 26.2% achieved by the second-best entry.




AlexNet

Large convolutional neural network (CNN)

Basic idea like In the late 80s, many “tricks” to get it to work on ImageNet
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Basic building block:
Structured, learnable linear layer followed by a simple element-wise non-linearity

Repeat the building block several times, add a classification loss at the end.
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ReLU (rectified linear unit) non-linearity

Local response normalization
Training on GPUs

Overlapping pooling

Dropout

Data augmentation

Why these? Each change lead to 0 - 2 percentage points of accuracy improvement.



AlexNet Background

Alex’ Masters thesis: “Learning Multiple Layers of Features from Tiny Images”

Built a smaller image classification dataset CIFAR-10
50,000 images

10 classes

e 32Xx32 pixels

 Subset of a large dataset Tinylmages (80 million images)

Alex worked on fast neural network implementations for CIFAR-10.

» Good results, so they decided to scale up the approach

» Alex tuned the model for one year on ImageNet



AlexNet Results

Model Top-1 Top-5 Model Top-1 (val) | Top-S (val) | Top-35 (test)
. SIFT + FVs [7] - — 26.2%
Sparse coding [2] | 47.1% | 28.2% 1 CNN 40.7% 182% —
SIFT + FVs [24] | 45.7% | 25.7% 5 CNNs 38.1% 16.4% 16.4%
CNN 37.5% | 17.0% 1 CNN* 39.0% 16.6% _
7 CNNs* 36.7% 15.4% 15.3%
Table 1: Comp arison. of.results on ILSVRC- Table 2: Comparison of error rates on ILSVRC-2012 validation and
2010 test set. In italics are best results test sets. In italics are best results achieved by others. Models with an
achieved by others. asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall

release. See Section 6 for details.

» About 9 percentage points improvement over previous state-of-the art

» 74,000 citations, Turing award, transformation of computer science

?2??




ILSVRC top-5 Error on ImageNet
30

25

AlexNet
20 ‘
15
10
| - - -
O B e
2010 2011 2012 2013 2014 Human 2015 2016 2017
11 teams 4 teams ©Oteams 24 teams 32 teams 68 teams 84 teams 28 teams

Large improvement, new method » Tremendous interest from the community



Impact on ImageNet

Effectively every team switches to convolutional neural networks.

Subsequent networks

« VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters
 ResNet (2015): 150 layers, more parameters

e Wide ResNets, ResNeXT, SE-ResNet, EfficientNet, AmoebaNet,
MobileNet, Inception, NASNet, DenseNet, SqueezeNet, etc.

Training times increase to weeks on dozens of GPUs ($30K) ...

... and decrease by orders of magnitude ($100 for a ResNet)

VGG-19 maodel [41] (19.6 hillion FLOPs) as a reference. Mid-
dle: 4 plain network with 34 parameter layers (3.6 billion FLOPs).
Right: 4 residual network with 34 purameter layers (3.6 billion
FLOPs). The dotted shortcuts incrcasce dimensions. Table 1 shows
more details and orher variants.



Impact on Computer Vision

Effectively the entire field switches to convolutional neural networks.

Object detection

* Image segmentation

o8, F car. gog:rzgk.égmc I?@‘ 1.00
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* Image inpainting . - ool e s

e (Generative models

* elc.

» Deep learning revolution in computer vision



Historical Comparison - Revolutions

Karl Marx Cited by VIEW ALL
British National Library All Since 2015
Verified email at tsn.at
Kapitalismuskritiker Marxist Religionskritiker Philosophie Soziologie Citations 142067
h-index 213 134
i10-index 1431 902
TITLE CITED BY YEAR 27000

Le capital 38580 1875 et
K Marx
Librairie du progrés 13500
*

Capital: volume | 19350 2004 6750
K Marx
Penguin UK

0

2013 2014 2015 2016 2017 2018 2019 2020

The communist manifesto 11661 2002
K Marx, F Engels

Penguin

The german ideology 11652 1970

K Marx, F Engels
International Publishers Co

Grundrisse: Foundations of the critique of political economy 11326 2005
K Marx

Penguin UK

Aideologia alema: critica da mais recente filosofia alema em seus representantes Feuerbach, 8366 2015

B. Bauer e Stirner, e do socialismo alemao em seus diferentes profetas
K Marx, F Engels
Boitempo editorial

Das kapital 7511 2018
K Marx
e-artnow



Historical Comparison - Revolutions

Geoffrey Hinton FOLLOWING Cited by VIEW ALL 1 O k more

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Al M
Verified email at cs.toronto.edu - Homepage t h a n M a rX!

machine learning psychology artificial intelligence cognitive science computer science Citations 333951 294127

h-index 157 117
i10-index 359 270

TITLE CITED BY YEAR 77000

Imagenet classification with deep convolutional neural networks 73778 2017 27750

A Krizhevsky, | Sutskever, GE Hinton

Communications of the ACM 60 (6), 84-90 38500

Deep learning 32431 2015 19250

Y LeCun, Y Bengio, G Hinton

Nature 521 (7553), 436-444 [] . I

CAVEAT: DO NOT MEASURE SCIENCE
BY CITATION COUNT

e 2 - - 10l - - 9 JV U JiIobadldac L S e o
DE Rumelhart, GE Hinton, RJ Williams
MIT Press, Cambridge, MA 1 (318)

George E. Dahl >

Google Brain

N Srivastava, G Hinton, A Krizhevsky, | Sutskever, R Salakhutdinov Research scientist, Facebook Al ...
The journal of machine learning research 15 (1), 1929-1958
Vinod Nair >

Learning representations by back-propagating errors 23115 1986 Research Sclentist, Deephiind

DE Rumelhart, GE Hinton, RJ Williams

Nature 323 (6088), 533-536 Radford Neal >

Emeritus Professor, Dept. of Stat. ..

Dropout: a simple way to prevent neural networks from overfitting 23994 2014 g Abdelrahman Mohamed 5




Similar Performance Trends for Many Other Datasets
Object detection (PASCAL VOC)
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BOX AP

Object Detection (MS COCO
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https://paperswithcode.com/sota

Jul'l8 Jan'19

-0~ Models with highest box AP

EfficientDet-D/7x (single-scale)
EM)

Jul 20



90

MEAN IOU (CLASS)
~ os
O S

&)
o

50

Jan'15

Jul'"15

Jan'16

Jul'16

lan "1/

Other models

Jul'l7/ Jan'18 Jul'18

-- Models with highest Mean loU (class)

lan'19

Jul"19

Semantic Segmentation (Cityscapes

Jan '20




BLEU SCORE
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Question Answering (SQuUAD 1.1

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-

Reinforced Mnemonic Reader (ensemble modd P€l @nd hail... Precipitation forms as smaller
_— | droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
Maten-LSTM with Ans-Ptr (Boundsry) (ensemble) tense periods of rain in scattered locations are
called “showers” .

Rea§o§§;jensenﬂﬂéf:ﬁ

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
‘sides drizzle, rain, snow, sleet and hail?
Jan '17 Jul'17 graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud

e model)

-

|

Jul '19

Jan 20

LL,._\_L
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Transformer (Adaptive inputs)
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Key points

Field largely guided by benchmarks
Small number of key datasets for each task (image classification, detection, etc.)

Algorithmic / model innovations justified by improvements on benchmarks

Algorithmic innovations usually tested on multiple datasets

Little to no mathematical theory

Substantial progress on a wide range of benchmarks



Culture shift

2000 - 2010 2010 - 2020
e Support vector machines & kernels * Convolutional neural networks
* Boosting * Recurrent neural networks
 Matrix factorization and tensor * Transformers (NLP)
methods

 Network architecture improvements

* Compressed sensing / high-dim stats » Zoo of different architectures

* Convex optimization

Empirical progress usually goes Empirical progress usually comes
hand in hand with theoretical results without mathematical theory



Culture shift

2000 - 2010 2010 - 2020
Empirical progress usually goes Empirical progress usually comes
hand in hand with theoretical results without mathematical theory
Emphasis on provable guarantees Emphasis on benchmarks
Optimization problems often convex Non-convexity is fine

No specialized hardware Large-scale purely experimental work



History of Benchmarking in ML

1960s: large investments in science and technology
(Result of Sputnik, etc.)

Speech recognition and translation get a lot of attention,
are glamorous fields, and attract funding.

But results are lacking



John R. Pierce (1910 - 2002)

Director of research at Bell Labs

Co-invented pulse code modulation, managed
the team that invented the transistor (and
invented the name), led development of first
commercial communications satellite, etc.

Did not like Al and wrote about it in the ALPAC
report and “Whither Speech Recognition?”



ALPAC Report (1964 - 1966)

Automatic Language Processing Advisory Committee: 7 researchers led by Pierce

Established by the US government to evaluate potential of machine translation for
various government agencies (mostly defense / science focused (Russian journals)).

Negative conclusions for machine translation, recommends
iInvestment in computational linguistics instead

» No government funding for machine translation for 10 - 20 years



“Whither Speech Recognition?” (1969)

Again John Pierce, this time a single-author short 1.5 page letter to the Journal of the
Acoustical Society of America

Very critical of speech recognition research

“We are safe in asserting that speech recognition is attractive to money. The
attraction is perhaps similar to the attraction of schemes for turning water into
gasoline, extracting gold from the sea, curing cancetr, or going to the moon. One
doesn’t attract thoughtlessly given dollars by means of schemes for cutting the cost
of soap by 10%. To sell suckers, one uses deceit and offers glamour.”

» No funding for speech recognition for 10 - 20 years



Quote from “Whither Speech Recognition?”

Most recognizers behave, not like scientists, but like mad inventors or
untrustworthy engineers. he typical recognizer gets it into his head
that he can solve “the problem.” The basis for this is either individual
Inspiration (the “mad inventor” source of knowledge) or acceptance of
untested rules, schemes, or information (the untrustworthy engineer
approach). . ..

The typical recognizer . . . builds or programs an elaborate system that
either does very little or flops in an obscure way. A lot of money and
time are spent. No simple, clear, sure knowledge is gained. The
work has been an experience, not an experiment.



Quote from “Whither Speech Recognition?”

It is clear that glamor and any deceit in the field of speech recognition blind

the takers of funds as much as they blind the givers of funds. What particular
considerations have led to this enthusiasm? |...]

Turing asked, On what basis can we say that a machine thinks? His perfectly
rational answer was that if, in conversing with a machine, we cannot tell

whether it is a human being or a machine, then we can scarcely deny that the
machine thinks. |[...]

We should consider, however, that in deception, studied and artful deceit is
apt to succeed better and more quickly than science.



Bringing Funding for Translation and Speech
Recognition Back

Two people were key in resuming government funding for speech and translation
INn the mid to late 80s:

Fred Jelinek: research manager at IBM

Charles Wayne: program manager at DARPA

Key idea: make evaluations “glamour and deceit”-proof




Fred Jelinek

PhD in information theory (Fano)

Led IBM'’s effort on the “general dictation problem” from 1972 to 1980

Advocate for comparing the quantitative performance of alternative algorithms
on test sets, using fixed and automatically calculated evaluation metrics.

Also strongly in favor of sharing datasets, evaluation metric, algorithms, etc.

Same approach for machine translation and other problems in his group.

"Every time | fire a linquist, the performance of the speech recognizer goes up.”
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DARPA program manager responsible for funding restart in 1986

Key idea: emphasize evaluation. Well-defined objective evaluation, applied by
a neutral agent (NIST) on shared datasets (often Linguistic Data Consortium)

Initially both Pierce-style engineers and speech researchers were skeptical, but the
approach was successful

“Glamour and deceit”-proof, funders could measure progress
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Summary

Progress on key benchmarks, especially ImageNet

Empirically motivated methods outperform theoretically grounded methods

Shift towards benchmark-driven research in machine learning over the past 10 years



1. Empirical progress in machine learning: benchmarks

2.\What can we learn from ML benchmarks?

3. Limitations of current ML methods



Caveats with Benchmarks

A: Are new methods really better”? What about the methods we already had?

Glamor and
decelt?

B: Are we just overfitting to the benchmark test sets?

C: Do we have progress beyond the immediate benchmark?

If we don't have proofs any more, our experiments better be rock-solid!



Caveats with Benchmarks

A: Are new methods really better”? What about the methods we already had?



What about Kernels?

Lots of insightful theory, Gaussian kernel SVM was / is competitive on many tasks

Could we have “solved” ImageNet with kernels”?

Counterfactuals here are hard
* Deep learning requires lots of engineering

 Major community effort

Ben and Vaishaal worked on this for multiple years

Vaishaal Shankar



Neural Kernels Without Tangents

Vaishaal Shankar!, Alex Fang!, Wenshuo Guo!, Sara Fridovich-Keil', Ludwig Schmidt?,
Jonathan Ragan-Kelley?, and Benjamin Recht!

'University of California, Berkeley
2MIT CSA

Abstract

We investigate the connections between neural networks and simple building blocks in kernel
space. In particular, using well established feature space tools such as direct s, averaging, and
moment lifting, we present an algebra for creating “compositional” kernels from bags of features.
We show that these operations correspond to many of the building blocks of “neural tangent
kernels" (NTK). Experimentally, we show a correlation in test error between neural network
architectures and the associated kernels. We construct a sirnple neural network architecture
using only 3 X 3 convolutions, 2 X 2 average pooling, ReLU, and optimized with SGD and MSE
loss that achieves 96% accuracy on CIFAR10, and whose corresponding compositional kernel
achieves 90% accuracy. We also use our constructions to investigate the relative performance of
ncural nctworks, NTKs, and compositional kernels in the small dataset regime. In particular, we
find that compositional kernels outperform NTKs and neural networks outperform both kernel
methods.

90% accuracy on CIFAR-10
AlexNet had 89% in 2012

Kernel is CNN-inspired
87% with two-layer kernels

Computationally expensive
100x more than a CNN (but unfair)

No published results on ImageNet

Currently best kernel on CIFAR-10
Better than any NTK!

» At least we know beating CNNs with kernels is not easy.



What about Wavelets?

Another image representation. Very active in signal processing in the 90s.

Multi-layer variant: scattering transform (2013)

Also multiple years of work, currently culminating in:

DEEP NETWORK CLASSIFICATION BY SCATTERING Stephane Ma”at

AND HOMOTOPY DICTIONARY LEARNING

ik, Lol T Tk g Surpasses AlexNet-performance by

Département d'informatique de I’ENS, ENS, CNRS, PSL University, Paris, France
{John.zarka,loulis.thiry, tomas.angles}@ens. fr

— 6 percentage points (pp) in 2020.

College de France, Paris, France
Flatiron Institute, New York, USA

ABSTRACT

We introduce a sparse scatlering deep convolutional neural network, which pro-

]
vides a simple model to analyze properties of deep representation learning for
classilication. Learning a single dicionary matrix with a classilier yields a higher n e I I l ea n I I I l e y aC C u racy aS
classification accuracy than AlexNel over the ImageNet 2012 dataset. The net-

work first applies a scattering transform that linearizes variabilities due to ge-
ometric transformations such as translations and small deformations. A sparse

| ]
£ dictionary coding reduces intra-class variability while preserving class sepa- I m rcved b 32
ration through projections over unions of linear spaces. It is implemented in a p y p p L]
deep convolutional network with a homotopy algorithm having an exponential O a n ru n a
convergence. A convergence proof is given in a general framework that includes

ALISTA. Classification results are analyzed on ImageNet.
>




ImageNet & Co are solid so far

But: Not Everything Neural is Good!



Different Field: Recommender Systems

On the Difficulty of Evaluating Baselines

A Study on Recommender Systems

Steffen Rendle” Li Zhang®
srendle@google.com ligzhang@google.com

Yehuda Koren!
yehuda@google.com

Abstract

Numerical evaluations with comparisons to baselines play a central role
when judging research in recommender systems. In this paper, we show
that running baselines properly is difficult. We demonstrate this issue on
two extensively studied datasets. First, we show that results for baselines
that have been used in numerous publications over the past five years for
the Movielens 10M benchmark are suboptimal. With a careful setup of a
vanilla matrix factorization baseline, we are not only able to improve upon
the reported results for this baseline but even outperform the reported re-
sults of any newly proposed method. Secondly, we recap the tremendous
effort that was required by the community to obtain high quality results
for simple methods on the Netflix Prize. Our results indicate that empiri-
cal findings in research papers are questionable unless they were obtained
on standardized benchmarks where baselines have been tuned extensively
by the research community.

01395v1l [cs.IR] 4 May 2019




Recommender Systems & Matrix Factorization
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Actual State of the Art

Progress on Rating Prediction on ML10M (corrected)
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Danger with Empirical Evaluations

Difficulty of properly running baselines
Variations in tasks (exact dataset, evaluation metric, etc.)
Incentives around baselines

» Standardized, competitive benchmarks address these points

Standard computer vision benchmarks (CIFAR-10, ImageNet, COCO) are
SO competitive that missed baselines seem unlikely by now.

Similar for major NLP benchmarks (but smaller datasets have quality problems)



Caveats with Benchmarks

B: Are we just overfitting to the benchmark test sets?



What are we Measuring with a Benchmark?

ILSVRC top-5 Error on ImageNet
30

25
AlexNet
20 ‘
15
10
| - - -
O B e
2010 2011 2012 2013 2014 Human 2015 2016 2017

There Is nothing special about the 100k images in the ImageNet test set.
» What do we really care about?




(Generalization

At least, the classifiers should perform similarly well on new data from the same source.
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How can we reliably measure generalization??



1. Collect data

2. Split data

Training set

3. Train and
tune model

ldeal ML Worktflow

Validation set

Test set

4. Compute final test accuracy

33



Typical ML Workflow
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Danger with Test Set Re-Use: Overfitting

Maybe we are just incrementally fitting to more and more random noise.

Overfitting sketch
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Overfitting from
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To be clear: We now know that there is no evidence of
overfitting through test set re-use on many
contemporary ML benchmarks (e.g., ImageNet)

However, the community was majorly
confused about this.

We can learn from this story.



Textbooks

Chapter 1:

[...] we should not use [the test set| for model fitting or
model selection, otherwise we will get an unrealistically

optimistic estimate of performance of our method. This is
one of the “golden rules” of machine learning research.

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy



Slides from a Stanford NLP Class

Training models and pots of data

 The train, tune, dev, and test sets need to be completely distinct
e |tisinvalid to test on material you have trained on

* You will get a falsely good performance. We usually overfit on train

* You need an independent tuning set
* The hyperparameters won’t be set right if tune is same as train

| If you keep running on the same evaluation set, you begin to
overfit to that evaluation set

* Effectively you are “training” on the evaluation set ... you are learning
things that do and don’t work on that particular eval set and using the info

* To get avalid measure of system performance you need another
untrained on, independent test set ... hence dev2 and final test



Research Papers, e.qg., PASCAL VOC

“Withholding the annotation of the test data until completion of
the challenge played a significant part in preventing over-fitting
of the parameters of classification or detection methods. In the
VOCZ2005 challenge, test annotation was released and this led to
some “optimistic” reported results, where a number of
parameter settings had been run on the test set, and only
the best reported. This danger emerges in any evaluation
Initiative where ground truth is publicly available.”

+ several more mentions of “danger of overfitting” in the various PASCAL papers.

(Note: | searched for a while, there is not a single documented case of overfitting
through test set re-use on PASCAL VOC. Alyosha helped with this.)



Context: a group had just released a new test set for MNIST .

0 0
[
L’ |
~ 0

0

Invented CNNs, won a Turing award o

/ o
Yann LeCun M 10
N~ @ylecun 20

MNIST reborn, restored and expanded.
Now with an extra 50,000 training samples. MNIST: digit classification

If you used the original MNIST test set more than a few 60k train, 10K test

times,|chances are your models overfit the test set

Time to test them on those extra samples.
arxiv.org/abs/1905.10498 Released in 1998

/.03 AM - May 29, 2019 - Facebook

10 classes

Oldest widely used dataset

699 Retweets 2K Likes .
Now considered “easy”



https://lukeoakdenrayner.wordpress.com/2019/09/19/ai-competitions-dont-produce-useful-models/

Al competitions don’t produce
useful models

ImageNet Classification Error (Top 5)

30,0

e 26,0
Reliable improvement

2.0

15,0
Probably overfitting

Questionable
10,0
R I ﬁ
0.0 ‘ . :

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) (GoogleNet-vd)

[ can’t really estimate the numbers, but knowing what we know about multiple testing
does anyone really believe the SOTA rush in the mid 2010s was anything but
crowdsourced overfitting?



Multiple hypothesis

testing

“p-hacking”
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Replication Crisis in the Sciences
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Real Cause for Concern

ILSVRC top-5 Error on ImageNet
30

25
AIexNet
20
15
10
O B

2010 2011 2012 2013 2014 2015 2016 2017

AII the same test set!
Also true for CIFAR-10: fixed, public train / test split since 2008.

» Numbers looked good, but there was substantial uncertainty around them.



Testing for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht* Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

ystract

nd ImageNet datasets. Both be
1de, raising the danger of over
| ar iginal dataset creation processes, we test to what
extent current classification models generahze to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.
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Our experiment: sample a new ImageNet test set nearly i.i.d. 102



Overfitting
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Three Forms of Overtfitting

1. Test error = training error

2. Overfitting through test set re-use
—

Original Test Se New Test Set 104



Two Possible Causes

New test accuracy

/

acCs(f) —acCsr (f)

/

~ 11%

Overfitting through test set re-use

/

Original test accuracy (orig. test set S, new S’)

acCs(f) =

accp(f) =t

> 1f(z) =]
(x,y)€S

(S is drawn from D)

Distribution shift

/

Generalization error (= 1%)
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Three Forms of Overfitting

1. Test error = training error

2. Overfitting through test set re-use

Original Test Set New Test Set 106



ImageNet
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» The best models on the original test set stay the best models on the new test set.

» All models see a substantial drop in accuracy. |[Recht, Roelofs, Schmidt, Shankar "19]
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New test accuracy (%)

CIFAR-10
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100 - Synthetic overfitting sketch
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» Later models see a smaller drop in accuracy.

AutoAugment vs. ResNet:

4.9% difference on CIFAR-10

AutoAugment vs. ResNet: 10.3% difference on CIFAR-10.1

100

108



Overfitting Is Surprisingly Absent

No overfitting despite 10 years of test set re-use on CIFAR-10 and ImageNet.

» Relative ordering preserved. Progress is real!

MNIST: similar conclusions in |Yadav, Bottou’19] ; ;
no overfitting after 20+ years of MNIST

Kaggle: Meta-analysis of 120 ML competitions [rociofs, Fridovich-Keil, Miller, Shankar, Hardt, Recht, Schmidt "19]

Our results unambiguously confirm the trends observed by Recht et al. [2018, 2019]:
although the misclassification rates are slightly off, classifier ordering and model
selection remain broadly reliable.

"0 2% 50 75 100 "0 2% 50 75 100 "0 2% 50 75 100 "0 2% 50 75 100
Public accurac y Public accurac y Public accurac y Public accurac y

® Submission ~ mess= [inear fit ~wm s y=x 10¢€



Why Does Test Set Re-use Not Lead to Overfitting?

One mechanism: model similarity mitigates test set re-use.
[IMania, Miller, Schmidt, Hardt, Recht’19]

Similarity of two models fi and fj: agreement of 0-1 loss on the data distribution.

Model Similarities on ImageNet

7 == Naive Bayes Bound |
0 10 ,

0-95° S Similarity Bound
J U‘U imilarity Boun :
0527 o 10° I
£ Mean Similarity 2 :
T (T [

& =
= I
—— Actual Similarity 23 10! I
0.50 - Independent Similarity :
0.0 0.5 1.0 0.65 0.75 0.85

Fraction of Models

Model Similarity

Likely only a partial explanation (see Moritz Hardt’s keynote at COLT 2019).
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Two Possible Causes

New test accuracy Overfitting through test set re-use (= 0%)
- - / / Distribution shift
acCs(f) —accg/(f) = acc Cp (/) /
< 1% +accp(f) —accpr(f)
+accp/(f) —accg/ (f)

Original test accuracy (orig. test set S, new S’) /
_— 1
acCq(f) = — L f(x) =y

> S| (Q%:E q Generalization error (= 1%)

acCp(f) =Lk yp1llf(z) =y (Sisdrawn from D)
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Three Forms of Overfitting

1. Test error = training error

2. Overfitting through test set re-use

3. Distribution shift

"y =
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£ P
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e 0 el >

Original Test Set

New Test Set 112



ImageNet Creation Process

Detailed description in [Deng, Dong, Socher, Li, Li, Fel-Fel’09]:

/TN
i

WORDNET

1. Find relevant search keywords for each class from WordNet e 8
N | / ' d

(e.g., “goldfish”, “Carassius auratus” for wnid “n014435377)

2. Search for images on Flickr + fl ICkr
3.| Show images to MTurk workers | +— Likely source of _I_ amazZon

distribution shift
4. Sample a class-balanced dataset

IMAGE

We replicated this process as closely as possible.
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Data Cleaning With MTurk

Instructions: Select all
Images containing a bow.

é e _;,c-.».:-_-'f_.w;-'\- "
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Data Cleaning With MTurk

Number of workers who selected image i
Number of workers who saw image i

Main quantity

N
13
9"
Q
o,
O
-
.
q
9",
Lo
c
D
-
QO
<
|
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Three New Test Sets

ApproxCalibrated: Selection frequencies comparable to the original test set (0.71).
Easier: Different sampling strateqgy, higher selection frequencies. \

IS 919 : Al correctly
Easiest: Highest selection frequencies in our candidate pool. — labeled!

Average MTurk Average Top-1

Test Set

Selection Frequency Accuracy Change

ApproxCalibrated 0.73 -12%

» Selection frequencies have large impact on classification accuracies.
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Caveats with Benchmarks

C: Do we have progress beyond the immediate benchmark?



Why Focus on ImageNet”?

The community has spent a lot of effort on ImageNet.
In the end, ImageNet is not a real problem but an experiment / toy dataset.

Does progress on ImageNet actually lead to progress more broadly”

e

‘VAOL" ‘$ é ! EE/

@C Nf‘*’"‘ A

Food-101 Medical imaging




Transfer Learning

Common paradigm in machine learning

Core idea: leverage a large dataset to improve performance on a small dataset

Transfer Learning

ImageNet randomly initialized Network trained to Fine-tune model
weights classify 1000 classes (update weights)

A .. - 9. O ®)
X QL O O O
o S A ew ) @)
T o o
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D-;"l \ r 2 .:::'0':'."—'0 -

ﬂ
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O~ d New data
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Do Better ImageNet Models Transfer Better?

Simon Kornblith] Jonathon Shlens, and Quoc V. Le
Google Brain
{skornblith, shlens,gvl}@google.com

Abstract

Transfer learning is a cornerstone of compulter vision,
vet little work has been done to evaluate the relationship
between architecture and transfer. An implicit hypothesis
in modern computer vision research is that models that per-
form better on ImageNet necessarily perform better on other
vision tasks. However, this hypothesis has never been sys-
tematically tested. Here, we compare the performance of 16
classification networks on 12 image classification datasets.
We find that, when networks are used as fixed feature ex-
tractors or fine-tuned, there is a strong correlation between
ImageNet accuracy and transfer accuracy (r — 0.99 and
(.96, respectively). In the former setting, we find that this re-
lationship is very sensitive to the way in which networks are
trained on ImageNet; many common forms of regularization
slightly improve ImageNet accuracy but yield penultimate
layer features that are much worse for transfer learning.
Additionally, we find that, on two small fine-grained image
classification datasets, pretraining on ImageNet provides
minimal benefits, indicating the learned features from Ima-
geNet do not transfer well to fine-grained tasks. Together,
our results show that ImageNet architectures generalize well
across datasets, but ImageNet features are less general than
previously suggested.
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Figure 1. Transfer leaming performance is highly correlated with
ImageNet top-1 accuracy for fixed ImageNet features (left) and
fine-tuning from ImageNet initialization (right). The 16 points in
each plot represent transfer accuracy for 16 distinct CNN architec-
tures, averaged across 12 datasets after logit transformation (see
Section 3). Error bars measure variation in transfer accuracy across
datasets. These plots are replicated in Figure 2 (right).

ter network architectures learn better features that can be
transferred across vision-based tasks. Although previous
studies have provided some evidence for these hypotheses
(e.g. [6,71,37,735, 31]), they have never been systematically
explored across network architectures.

In the present work, we seek to test these hypotheses by in-
vestigating the transferability of both ImageNet features and



Datasets evaluated

Dataset | Classes | Size (train/test) | Accuracy metric
Food-101 [5] 101 75,750/25,250 top-1
CIFAR-10 [43] 10 50,000/10,000 top-1
CIFAR-100 [43] 100 50,000/10,000 top-1
Birdsnap [4] 500 47,386/2,443 top-1
SUN397 [84] 397 19,850/19,850 top-1
Stanford Cars [41] 196 8,144/8,041 top-1
FGVC Aircraft [55] 100 6,667/3,333 mean per-class
PASCAL VOC 2007 Cls. [22] 20 5,011/4,952 11-point mAP
Describable Textures (DTD) [10] | 47 3,760/1,880 top-1
Oxford-IIIT Pets [61] 37 3,680/3,369 mean per-class
Caltech-101 [24] 102 3,060/6,084 mean per-class
Oxford 102 Flowers [59] 102 2,040/6,149 mean per-class

Recall ImageNet has 1.2 million training images (and 1,000 classes).



Better ImageNet Models Transfer Better

Fine-Tuned
Food-101 CIFAR-10 38 CIFAR-100 Birdsnap 67 SUN397 Stanford Cars

g Xy* 78 ¥ %66 -
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ImageNet Top-1 Accuracy (%) ImageNet Top-1 Accuracy (%)

» Progress on ImageNet helps on a wide range of image classification datasets.
Also transfer of techniques to other tasks (object detection, etc.)

But: This is not guaranteed. Some datasets are considered “bad” or too specialized.
(Models don’t work “in the wild”)



Caveats with Benchmarks

A: Are new methods really better”? What about the methods we already had?
Depends on the benchmark. Competitive, standardized benchmarks

usually have good baselines.

B: Are we just overfitting to the benchmark test sets?

Not in classification tasks with at least 1,000 test examples.

C: Do we have progress beyond the immediate benchmark?
Depends on the benchmark. Several popular benchmarks promote broad progress.

» ImageNet served as a reliable indicator of progress for 10 years!



1. Empirical progress in machine learning: benchmarks

2. \What can we learn from ML benchmarks?

3. Limitations of current ML methods



So Far, Things are Looking Good

ILSVRC top-5 Error on ImageNet

Glamor and
decelt?

30

25 e
AIexNet
20 1
15
10
| .
0

2010 2011 2012 2013 2014 Human 2015 2016 2017

= Andre]
» What is good performance (Bayes error)?

» Can we get a more fine-grained understanding of model performance?
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Also: What about ImageNetV2?

Is this possible?

ImageNet o
O\.. 80 - ,z”
— *\ - 112 drop
S ge\\l .
= 70- O\\a‘\ — g8~ | — Best model
o w>_- " (early 2019)
860' ,z”’
I e
@ 50-
P
< 4 O | . . : - .
Alexnet (2012) 60 70 80

Original test accuracy (top-1, %)

12€



Evaluating Machine Accuracy on ImageNet

Vaishaal Shankar *! Rebecca Roelofs *> Horia Mania! Alex Fang! Benjamin Recht! Ludwig Schmidt®

Abstract In this paper, we contextualize progress on ImageNet by
We evaluate a wide range of ImageNet models comparing a wide range of ImageNet models to five trained
with five trained human labelers. In our year-long human labelers. Our year-long experiment consists of two
experiment, trained humans first annotated 40,000 parts: first, three labelers thoroughly re-annotated 40,000
images from the ImageNet and ImageNetV?2 test test images 1n order to create a testbed with minimal annota-
sets with multi-class labels to enable a semanti- tion artifacts. The images are drawn from both the original
cally coherent evaluation. Then we measured the ImageNet validation set and the ImageNetV2 replication
classification accuracy of the five trained humans study of Recht et al. (2019). Second, we measured the
on the tull task with 1,000 classes. Only the lat- classification accuracy of the five trained labelers on the
est models from 2020 are on par with our best full 1,000-class ImageNet task. We again utilized images
human labeler, and human accuracy on the 590 from both the original and the ImageNetV2 test sets. This
object classes is still 4% and 11% higher than experiment led to the following contributions:

the best model on ImageNet and ImageNetV?2,
respectively. Moreover, humans achieve the same
accuracy on ImageNet and ImageNetV2, while all
models see a consistent accuracy drop. Overall,
our results show that there 1s still substantial room
for improvement on ImageNet and direct accuracy

Multi-label annotations. Our expert labels quantify mul-
tiple issues with the widely used top—1 and top—-5 met-
rics on ImageNet. For instance, about 20% of images have
more then one valid label, which makes t op—-1 numbers
comparisons between humans and machines may overly Qessimistic. To ensure a consistent ann.otatim.l of all
overstate machine performance. 40,000 images, we created a 400-page labeling guide de-

scribing the ﬁne-grained class distinctions. In additioni we
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-> Same accuracy on ImageNet and ImageNetV2 is possible (achieved by humans)

» Humans still better than best models in early 2020 (much better than 2015)



How Should We Evaluate ImageNet”?

Recall: current evaluation metrics are top-1 and top-5 accuracy.

These are informative in the medium accuracy regime from 2010,
but have drawbacks in the high accuracy regime in 2020.

Problem 1: images with several objects

ImageNet classes:

. Monitor - Computer keyboard
- Screen * Mouse

- Table lamp * Speaker

. Lamp shade - Desktop computer

. Desk * maybe more ...




Problem 2: subset relationships in the ImageNet class hierarchy

Tusker vs. Indian Elephant Mushroom vs. Gyromitra
| e . P .




Shortcomings of Current Metrics

Top-1 Accuracy Top-5 Accuracy

Desk, Laptop, Monitor, etc... Mushroom vs.Gyromitra
| . | o ,

Paper Towel, Dock, Pier, ... Tusker vs African Elephant

S
B .' - .
Lagie o d
| e |
X
o » . |
", .'i,‘:..“ ' "
= %) i ol
: v o
% 3 )
4 L
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£y

Chesapeake Rhodesian

Crowded Images Subset Relationships

Makes the task too hard Makes the task too easy
(Multiple correct answers) (Classes can be distinguished)



Our Approach: Multi-Label Accuracy

Each Classifier predicts one label per image /‘A a1

oy
N
P
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S
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An image can have multiple labels

Il

35/*('

Prediction counts as correct if in the label set “ | "
|

‘
i
J

Multi-label accuracy has been studied before. ImageNet label: Picket Fence

Our labels: Groom, Bowtie,

We are the first to systematically collect Gown, Picket Fence

annotations with expert labelers.



Collecting Multi-Label Annotations

n03461385 grocery store, grocery, food market, market

a marketplace where groceries are sold; "the grocery store included a meat market”

@ correct () wrong (O (O Dontknow ()

n07717556 butternut squash
buff-colored squash with a long usually straight neck and sweet orange flesh

&~ @® Correct (O Wrong (O (O Dontknow (O

n07716906 spaghetti squash
medium-sized oval squash with flesh in the form of strings that resemble spaghetti

@ Correct () Wrong () (O Dontknow ()

n07717410 acorn squash
small dark green or yellow ribbed squash with yellow to orange flesh

1 @ Correct O Wrong O O Don't know O

e

set all unreviewed to wrong set assigned wnid to correct

toggle image name Problematic




Collecting Multi-Label Annotations

nD4152593 screen, CRT screen
the display that is electronically created on the surface of the large end of a cathode-ray tube

Correct Wron Don't know
O, O s O O O

n03179701 desk
a piece of furniture with a writing surface and usually drawers or other compartments

@ Correct O wrong O O Don't know O

n03180011 desktop computer
a perscnal computer small enough to fit canveniently in an individual workspace

(® correct () wWrong (O (O Dontknow ()

toggle image name Problematic n03793489 mouse, computer mouse
a hand-operaled electranic device thal controls the coordinales of a cursor on your computer screen as you move il

around on a pad; on the bottom of the device is a ball that rolls on the surface of the pad; "a mouse takes much
more rcom than a trackball”

@ Correct O Wrong O O Don't know O

n03782006 monitor
electronic equipment that is used to check the quality or content of electronic transmissions

@ correct () Wrong () (O Dontknow (O

nD3529860 home theater, home theatre
television and video equipment designed to reproduce in the home the experience of being in a movie theater

O cCorrect @ Wrong O O Dpontknow O

set all unreviewed to wrong set assigned wnid to carrect

Majority vote for contentious labels.



Collecting Multi-Label Annotations

Some classes (especially dog breeds, some monkeys, etc.) took hours of research.

French Bulldog Boston Terrier

X

Dl I AT
Head large and square. Eyes dark in color, wide The skull is square, flat on top, free from wrinkles,
apart, set low down in the skull, as far from the cheeks flat, brow abrupt and the stop well defined.
ears as possible, round in form, of moderate ... The eyes are wide apart, large and round and
size, neither sunken nor bulging... (AKC.org) dark in color... (AKC.org)

Our labeling guide is about 400 pages long (though parts of it are auto-generated).


http://AKC.org

Multi-Label Statistics

80%

40,683 Images Annotated from ImageNet
and ImageNetV2

182,597 unique model predictions reviewed.

Fraction of dataset

1 Label 2 Labels 3 Labels 4+ labels



Measuring the Accuracy of Five Humans

Phase 1: collection multi-label annotations (Becca, Ludwig, Vaishaal — 6 months)

Potential problem: We labeled the test set!

Solution: Part A: 6 month break before phase 2
(Subjectively you forget images fairly quickly, but not 100% sure)

Part B: Two expert labelers joined the project (Alex and Horia)

Phase 2: Train human labelers (2 months)
Phase 3: Evaluate human labelers (1 month)

Phase 4: Final label review (10 days)



Best model accuracy: 96%

L
mm

el
St e N
- 3

bl <

§

Ii-'

=
i
.

Best Model A




Accuracy difference
. QN°
Best model accuracy: 90% (-6%) - between ImageNet and

Best human accuracy: 97% (+0.5% ImageNetV?2

Humans still 11%
better on objects!

Best model accuracy: 90% (-6.3%) Best model accuracy: 89% (-5.9%
Best human accuracy: 93%(+0.2% Best human accuracy: 99.8% (+0.7%

v




ImageNetV2 Scatter Plot for Objects Only

Objects Only
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Multi-label Accuracy on ImageNetV2 (%)

» Likely closer to “real” relative performance on ImageNet
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CAVEAT:

Should we care
about accuracy
on 130 dog
breeds?

Probably not.

We worked with a judge from the American Kennel Club who has 20 years
of experience: there is still room for improvement in our dog accuracies.



More Evidence

Generalisation in humans and deep neural networks

Robert Geirhos!-3*3 Carlos R. Medina Temme'* Jonas Rauber?~*

Heiko H. Schiitt'*> Matthias Bethge*%’* Felix A. Wichmann'>%3%*

'Neural Information Processing Group, University of Tiibingen
2Centre for Integrative Neuroscience, University of Tiibingen
‘International Max Planck Research School for Intelligent Systems
4Graduate School of Neural and Behavioural Sciences, University of Tiibingen
>Department of Psychology, University of Potsdam
®Bernstein Center for Computational Neuroscience Tiibingen
"Max Planck Institute for Biological Cybernetics
8Max Planck Institute for Intelligent Systems
*Joint first / joint senior authors
3To whom correspondence should be addressed: robert .geirhos@bethgelab.org




Synthetic Distribution Shifts

Key idea: evaluate networks and humans under a range of synthetic distribution shifts

Advantage:

easy to generate Disadvantage: not real data

» Still a good starting point!

Unperturbed §

image

Figure 2: Example stimulus image of class bird across all distortion types. From left to right, image
manipulations are: colour (undistorted), greyscale, low contrast, high-pass, low-pass (blurring), phase

noise, power equalisation. Bottom row: opponent colour, rotation, Eidolon I, II and III, additive

uniform noise, salt-and-pepper noise. Example stimulus images across all used distortion levels are
available in the supplementary material.

Various
Perturbations



Results

Caveat: humans
saw the image for
only 200 ms (+ 1.5s
decision time)

Caveat: 16 class
version of ImageNet

» Networks fail to
generalize across
distribution shifts,
even Iif trained on
all but one.

colour 50.0 10.4)| 8.1 10.2|11.2
greyscale 10.3| 9.8 11.4|12.8
§ contrast (5%) [47.6]13.1(14.2 19.6|39.8(17.1(10.2|28.6|29.0)46.3|51.7 50.5 59.4|45.2(34.6(37.9
§ low-pass (std=7) |48.5]18.9(/16.1(16.4 11.9(16.01 9.8 | 6.9 | 6.6 |16.0(18.6(14.4 20.5|13.8|13.5| 7.1 9.3
g high-pass (std=0.7) (49.8]21.1(24.7|29.9(11.7 7.7| 8.3 {10.4(20.6]25.1(22.8|29.2(25.0 27.5(28.3|18.9(19.8
§ phase noise (90°) [57.4]23.3(28.3|31.2(27.0|46.6 24.4|7.4(8.9|30.8[31.4|30.6|31.4/43.4 24178 |7.6
E rotation (90°) 36.5(43.3|39.9(31.8|40.4(37.7 8.5 | 8.0 |38.5|41.9|40.3|35.2/40.1(40.5 8.3(8.8
salt-and-pepper noise (0.2) 6.1(/64|58(79|6.2|6.2|64 6.216.2(6.1/6.3|54|58|5.7|6.2 6.2 13.6
uniform noise (0.35) (45.6]6.2|7.3 6.9 |9.0|7.3(6.2|6.0(10.2 11.0
é@"@@’vﬂ’v"‘é”v’"é W R PSRRI R
@00606 D = manipulation included in training data
S

Model

Figure 4: Classification accuracy (in percent) for networks with potentially distorted training data.
Rows show different test conditions at an intermediate difficulty (exact condition indicated in brackets,
units as in Figure 3). Columns correspond to differently trained networks (leftmost column: human
observers for comparison; no human data available for salt-and-pepper noise). All of the networks
were trained from scratch on (a potentially manipulated version of) 16-class-ImageNet. Manipulations
included in the training data are indicated by a red rectangle; additionally ‘greyscale’ 1s underlined
if it was part of the training data because a certain distortion encompasses greyscale images at full
contrast. Models Al to A9: ResNet-50 trained on a single distortion (100 epochs). Models B1 to B9:
ResNet-50 trained on uniform noise plus one other distortion (200 epochs). Models C1 & C2:
ResNet-50 trained on all but one distortion (200 epochs). Chance performance is at 1—16 — 6.25%
accuracy.



Beyond Image Classification

SQUAD (Stanford Question Answering Dataset): question answering on paragraphs

New-Wiki F1
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y=X

90 95
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Amazon F1

t

Amazon

50 60 70
Original Test F1

Model F1

t

80 90

Human F1

95

» Similar trends in natural language processing. [Miller, Krauth, Recht, Schmidt "20]
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Distribution Shifts Are a Real Problem

Even in a carefully-controlled reproducibility experiment.

Variable generalization performance of a deep learning

February 2018: model to detect pneumonia in chest radiographs: A cross-
sectional study
Elon MUSK expeCts to do coaSt-to-coaSt John R. Zech @, Marcus A. Badgeley B, Manway Liu, Anthony B. Costa, Joseph J. Titano, Eric Karl Oermann [E]

autonomous Tesladrivein 3to 6 months Published: November 6, 2018 + https://doi.org/10.1371/ournal.pmed. 1002683
- ‘ : N ||

8 Even in the absence of recognized confounders, we
| would caution, following Recht and colleagues, that
“current accuracy numbers are brittle and susceptible to

September 2019 Enhanced Summon | even minute natural variations in the data distribution”. a



Implications for Evaluating ML

Need to go beyond i.i.d. data splits to measure robustness. oAl (n=35247)
— 100 —
1| e m— > 80
10 o e C
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Tralnlng Set TeSt Set Public accuracy

Amazon
Instead: measure performance with o .
test sets from different g
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First Attempt at Broader Evaluation

Mcasuring Robustness to Natural Distribution Shifts
in Image Classification

Rohan Taori Achal Dave Vaishaal Shankar
UC Berkeley CMU UC Berkeley
Nicholas Carlini Benjamin Recht Ludwig Schmidt
Google Brain UC Berkeley UC Berkeley
Abstract

We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image perturbations
(noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness
on synthetic distribution shift relates to distribution shift arising in real data. Informed by an
evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little
to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most
current techniques provide no robustness to the natural distribution shifts in our testbed. The
main exception is training on larger and more diverse datasets, which in multiple cases increases
robustuess, but is still far from closing the performance gaps. Our results indicate that distribution
shifts arising in real data are currently an open research problemm. We provide our testbed and
data as a resource for future work at https://modestyachts.github.io/imagenet-testbed, .




Synthetic vs Natural

Synthetic: computer-generated perturbations of a real dataset

Data source

ImageNet-Vid-Robust

[Shankar, Dave, Roelofs, Ramanan, Recht, Schmidt ' 9]

ImageNetV2



Overview

# Are current vision models robust to natural distribution shift?

1. Define what it means to be robust to distribution shift.
2. Evaluate 200+ models on 200+ distribution shifts.

3. Results on 3 “flavors” of natural distribution shifts.



Overview

# Are current vision models robust to natural distribution shift?

1. Define what it means to be robust to distribution shift.
2. Evaluate 200+ models on 200+ distribution shifts.

3. Results on 3 “flavors” of natural distribution shifts.



Hypothetical Models

In-distribution Out-of-distribution
(Source) Accuracy = (Target) Accuracy

Model A 759%




Hypothetical Models

In-distribution Out-of-distribution
(Source) Accuracy = (Target) Accuracy

Accuracy Drop

Model A 80% 75%

Model B 90% 777 3%

# How do we compare models with different in-distribution accuracy?
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Hypothetical Robustness Intervention
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» Do any current models achieve effective robustness?



Overview

# Are current vision models robust to natural distribution shift?

1. Define what it means to be robust to distribution shift.
2. Evaluate 200+ models on 200+ distribution shifts.

3. Results on 3 “flavors” of natural distribution shifts.



200+ models

Our Testbed

200+ distribution shifts

1 cell = 1 model evaluation on 1 dataset

(total 10” model evaluations).

Modaels:

® standard models

® robust models (adversarially robust models &
models with special data augmentation)
® models trained on more data

Natural distribution shifts:
* |mageNetV2, ObjectNet, ImageNet-Vid-
Anchors,Y I BB-Anchors
* |mageNet-Vid-Robust, Y [ BB-Robust
(video frames)
* |mageNet-A (adversarially filtered)

Synthetic distribution shifts:
® | p-attacks & Image corruptions




Distribution Shift to ImageNetV2
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» Do any current models achieve effective robustness?



Distribution Shift to ImageNetV2
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Takeaway: Most models and robustness strategies provide no additional robustness.



ImageNet-Vid-Robust
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[Shankar, Dave, Roelofs, Ramanan, Recht, Schmidt " 9]



3 Distribution Shift to ImageNet-Vid-Robust
N -
S 8o O
i
2 4
¥ EfficientNet-L2
NoisyStudent
— 50 55 60 65 70 75 80 85 90
ImageNet-Vid-Robust (pm-0, %)
------ y = X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Takeaway: Adversarially robust models have effective robustness (In low-accuracy regime).



ImageNet-A
(Adversarially Filtered Shift)

. Download a large number of labeled images from online.

2. Select only the subset that was misclassified by a ResNet-50 model.

[Hendrycks, Zhao, Basart, Steinhardt, Song " 9]



Distribution Shift to Imagenet-A
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Takeaway: Adversarial filtering creates a “knee’” in the response curve. Inrtial accuracy

drops are large, but higher accuracy models quickly make progress in closing the gap.



Summary

p We analyzed 200+ ImageNet models and 200+ datasets.

» We find most models & robustness strategies provide little to no effective

robustness on current natural distribution shifts.

p Iwo concrete recommendations for researchers moving forward:
|. Control for standard accuracy (look at effective robustness).

2. BEvaluate on natural distribution shifts.

https://tinyurl.com/imagenet-testbed


https://tinyurl.com/imagenet-testbed

1. Empirical progress in machine learning: benchmarks
Main paradigm: experiments, experiments, experiments

2.What can we learn from ML benchmarks?
If done well: performance trends across a range of tasks and methods

3. Limitations of current ML methods
Many settings going beyond i.i.d. performance



Discussion Part!



Why | Like ML Benchmarks

Opinion: Benchmarks are the only reliable framework we currently

have to scale the “scientific method” to the entire ML community.

Admittedly, we often don’t learn much in terms of science (causal relationship
between algorithmic interventions and performance, broad principles, etc.)

But at least methods get better and we can compare methods reliably

# Falsifiable statements about model performance (this is non-trivial)

There are certainly uninformative benchmarks (no generalizable knowledge)



Issues with ImageNet

ImageNet was not built for what it has become (this is not a fault of the authors).

Full ImageNet (21k classes) contained images for racial slurs, “rape suspect”, etc.
 Should not be part of a dataset  Harmful for crowdworkers

Biased representation of humans
Three human classes: groom, scuba diver, baseball player
Many humans in images for other classes (dogs, ping pong ball, instruments, etc.)

Biased towards affluent countries

Humans did not provide consent (+ unclear licensing)



Datasheets for Datasets

TIMNIT GEBRU, Google

JAMIE MORGENSTERN, Georgia Institute of Technology
BRIANA VECCHIONE, Cornell University

JENNIFER WORTMAN VAUGHAN, Microsoft Research
HANNA WALLACH, Microsoft Research

HAL DAUME lll, Microsoft Research; University of Maryland
KATE CRAWFORD, Microsoft Research; AI Now Institute

The machine learning community currently has no standardized process for docu-
menting datasets, which can lead to severe consequences in high-stakes domains. To
address this gap, we propose datasheets for datasets. In the electronics industry, every
component, no matter how simple or complex, is accompanied with a datasheet that
describes its operating characteristics, test results, recommended uses, and other infor-
mation. By analogy, we propose that every dataset be accompanied with a datasheet
that documents its motivation, composition, collection process, recommended uses,
and so on. Datasheets for datasets will facilitate better communication between dataset
creators and dataset consumers, and encourage the machine learning community to
prioritize transparency and accountability.

v7 [cs.DB] 19 Mar 2020

We should be specific about what datasets are for and what they aren’t.



What Kind of Science is Machine Learning?

2000 - 2010 2010 - 2020
Empirical progress usually goes Empirical progress usually comes
hand in hand with theoretical results without mathematical theory
More like physics? More like biology?
More analytical More descriptive

# techshop - Oct 16th, 2016

ﬁ brecht 1:31 pPM
) Also, this is much less interesting than finding bozons.

Maybe comparing machine learning to a science is wrong to begin with

Is it more an engineering discipline? Chemical engineering? Medicine?



Photo credit: Peg Skorpinski

Artificial Intelligence — The
Revolution Hasn’t Happened Yet

@M'h | Jordan Apr 18,2018 - 16 min read AN
IChael Jordan Nio, . minrea




95% on a Benchmark Can Be Science

——rrr— We didn’t know what to expect
The Road to a Coronavirus Vaccine  VaccineTracker ~ FAQ: ModernaVaccine  FAQ: Pfizers Vaccine  After the First Vaccine  Lonz-Term Safety (F a u C i S a i d h i S g u e S S W aS 7 O — 7 5 % )

Early Data Show Moderna’s Coronavirus There was / is a rigOrous process to
Vaccine Is 94.5% Effective _ _
to valigate the vaccine

Moderna is the second company to report preliminary results
from a large trial testing a vaccine. But there are still months to go

before it will be widely available to the public.

Vaccine development went through a
sequence of partially principled,
partially heuristic steps
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Role of Theory in ML

Good question! | don’t see a simple answer.

Two modes for mathematical contributions in TCS:
 Pure mathematics (e.g., P vs NP). No need for connections to practice.
* Theoretical physics. Some empirical grounding - how much?

Divergence of practical ML from theory over the past 10 years
This can be an opportunity: there may be a unifying theory we haven’t found yet.

There is also the danger of losing touch with reality (c.f. criticisms of string theory).

* On average more experiments are a good idea, but depends on the project.



Large Need for Rigor

How can we build reliable knowledge about machine learning?

ImageNet Statistics of acceptance rate NeurlPS
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Theoretically-trained researcher bring a different mindset and toolkit to empirical ML.
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Future Directions

Beyond I1.1.d. performance
Evaluations: what do we want our models to be robust t0?
How can we make the models more reliable?

“Theory you can plug numbers In”, e.g., for training set scaling
Could be extremely useful if we can reliably train on large training sets

Datasets as a research topic
The past 10 years have focused on model improvements
We know relatively little about how to build “good” datasets

For instance, what makes ImageNet a “good” dataset?



ImageNet
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Measurement is the contact of reason with nature.
Henry Margenau (1959)






[raining humans for high pertormance

We created a labeling guide:

Potentially confused with Tiger shark and Hammerhead shark.
Hammerhead sharks are usuzlly easy ¢ identify based on their diztinetive head.
The distinction with Tiger shark is more complicaizd.

Great white shark vs Tiger shark

» Poinist1o compare

o Stripes
= Tiger sharks have vertical s1r pes
¢ Thickness of the main bady
= Great White shzarks are thicker
o Hezd
= Tiger sharke seam to have ¢ more wedge-/ike / pointy shape
o Fins on the underside
= Tiger sharks have larger f ns cn the underside
o Shape of tai
= The top part of the tail (s2e the sketches below)
» Great White shark side sketch (from Wik ped a)

» Tiger shark s de sketch (from Wikipecia). Note for instance the lerger fins on the underside towards the tzil 2nd.
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« More information on hitas:/fishingaooksr.com/zlog/tiger-shark-ve-gre
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» Boxturtle
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Stingray vs. electric ray

« Thisis ahard class distinction.
« Some training images are incarrert

« Electric rays tend to have a finat the end of their tail, for instance (source biophysics.sby.ac.at)
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« Thetzile of electric rays a'so terd 10 b2 wicer and shorter than those of a stingray.
« Stingrays lock more like this (sourc2 unknown, via zazzle.com)
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