Critiques of classification parity

Link https://arxiv.org/abs/1808.00023

Recap

- COMPAS: risk scoring system predicting recidivism
 - Y: observed reoffend, X: 20-dim feature based on questionnaire
- ProPublica: COMPAS has different false positive rates P(predicted high risk | not reoffend), and FNR across Blacks and Whites
- Northepoint: but COMPAS has similar predictive value
 P(reoffend | predicted high risk)
- Chouldechova: impossible to satisfy these simultaneously

General view

	Predicted low risk	Predicted high risk		
Did not re-offend	True Negative	False Positive		
Re-offended	False Negative	True Positive		

Perspectives matter

- Viewpoints vary substantially between stakeholders
- Defendant: what is the probability I'll be wrongly labeled high-risk?

Perspectives matter

- Viewpoints vary substantially between stakeholders
- **Decision-maker**: of those I've predicted high-risk, what fraction will re-offend?

Classification parity

- Equalize FPR, FNR, PV across pre-defined demographic groups
- More generally, we can equalize any measure of performance

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition negative}} = \frac{\Sigma \text{ True negative rate (TNR)}}{\Sigma \text{ Condition negative}} = \frac{\Gamma \text{NR}}{\Gamma \text{NR}}$	Negative likelihood ratio (LR-) = FNR TNR	(DOR) = <u>LR+</u> LR-	2 · Precision · Recall Precision + Recall	

Risk distributions

The shape can change based on our choice of X

Applying a threshold

 Threshold rule maximizes social welfare, if errors are equally costly across individuals

Fairness of a single threshold

$$P(Y = 1 | X, R = \text{red})$$

$$O \quad \text{Likelihood of violent recidivism}$$

Equally risky people are treated equally, regardless of group membership. No taste-based discrimination. Inline with legal norms. This is what is done in practice.

Recap

- FPR = FP / (FP + TN)
- FPR = Wouldn't have reoffended & "predict high risk"
 Wouldn't have reoffended
- In Broward County, FL, FPR was 31% for Blacks, and 15% White

Slides by Sharad Goel

Did not reoffend & detained

Did not reoffend

Slides by Sharad Goel

Slides by Sharad Goel

Slides by Sharad Goel

Inframarginality

- Infra-marginal: below from the margins
 - This means a metric depends on things away from the threshold
- FPR is a infra-marginal statistic
 - It depends on the entire risk distribution, not just the threshold
 - In general, metrics from confusion matrix suffer similar issues
- This leads to misleading fairness notions when risk distributions differ across groups

Slides by Sharad Goel

The problem with false positive rates

Limitations

- Argument so far based on when Y and X are fixed
 - In a world where the legal, political, economic systems work against marginalized communities, data will embody inequities and biases
 - Both label and features biased
- Based on P(Y = 1 | X) being known
 - Estimating this uniformly over features X is notoriously difficult
 - Model selection nontrivial

Limitations

- Distribution shift
 - All discussion so far based on data from Broward County, FL
 - Demographics (X), Y | X changes over time and space
- Agents' behavior may change in response to introduction of the system; introduces dynamics through time and space
- Externalities

More broadly

- Should this system exist at all?
- Is detaining people at higher risk of recidivating the right intervention?
- Structural shifts in the socioeconomic, legal, political system
 - When / how can prediction models help? As opposed to replicating the patterns in the world
 - different recidivism rates is a result of historical social and economic discrimination

Worst-case subpopulations, tail-performance, and distributional robustness

Links

https://www2.isye.gatech.edu/people/faculty/Alex_Shapiro/SPbook.pdf

https://arxiv.org/abs/1810.08750

https://arxiv.org/abs/2007.13982

https://arxiv.org/abs/1806.08010

Rest of the lecture

- So far, we focused on binary classification problems with pre-defined demographic groups
- What about generic loss minimization problems?
- Goal: guarantee good performance (low loss) uniformly over demographic subgroups
 - Quantify what "uniformly" means
 - Quantify what "demographic subgroups" mean
- Previous caveats apply about (very) limited scope

Standard Approach: Average Loss

- Loss/Objective $\ell(\theta;Z)$ where $\theta \in \Theta$ is parameter/decision to be learned, and $Z \sim P_{\rm obs}$ is random data
- Optimize average performance under $P_{
 m obs}$

minimize
$$\theta \in \Theta$$
 $\mathbb{E}_{P_{\text{obs}}}[\ell(\theta; Z)]$

Linear regression $\ell(\theta; X, Y) = (Y - \theta^{\top} X)^2$

SVM (Classification) $\ell(\theta; X, Y) = (1 - Y\theta^{\top}X)_{+}$

Deep neural networks $\ell(\theta; X, Y) = (Y - \sigma_1(\theta_1 \cdots \sigma_k(\theta_k \cdot X)))^2$

More examples: newsvendor, portfolio, scheduling...

Challenge 1: Long-tails

- Long-tailed data is ubiquitous in modern applications
 - At Google, a constant fraction of queries are new each day
- Tail inputs often determine quality of service

Example: Predicting Warfarin Dosage

- Warfarin is the most widely used blood-thinner worldwide
- Task: learn to predict therapeutic warfarin dosage
- Personalized treatment recommendation based on regression models [International Warfarin Pharmacogenetics Consortium '09]
 - Worked best out of polynomial regression, kernel methods, neural networks, regression splines, boosting [IWPC '09]

Tail performance is *orders of magnitude* worse than average

Another use for Warfarin: rat poison

Challenge 2: Lack of Diversity in Data

"Clinical trials for new drugs skew heavily white"

[Oh et al. '15, Burchard et al. '15, SA Editors '18]

- From 1993-2013, **98.1**% of all studies on respiratory diseases did not report inclusion of **minority subjects** [Burchard et al. '18]
- Racial minorities more likely to suffer from respiratory diseases
- Majority of image data from US & Western Europe

Other examples:

- Language identification
 [Blodgett et al. '16, Jurgens et al. '17]
- Part of speech tagging [Hovy & Sgaard '15]
- Video captioning [Tatman '17]
- Recommenders [Ekstrand et al. '17, '18]

Example: Facial Recognition

- Labeled Faces in the Wild, a gold standard dataset for face recognition, is 77.5% male, and 83.5% White [Han and Jain '14]
- Commercial gender classification softwares have disparate performance on different subpopulations

Gendered Shades: Intersectional accuracy disparity [Buolamwini and Gebru '18]

First Idea: Pre-defined groups

Given pre-defined demographic groups $g \in \mathcal{G}$,

- Separate model for **each** group $\mathbb{E}_{P_{m{g}}}[\ell(m{ heta_g};Z)]$
- One model for worst-off group $\max_{g \in \mathcal{G}} \mathbb{E}_{P_g}[\ell(\theta; Z)]$ [Meinshausen & Buhlmann '15]

See also [Kearns et al. '18, Kim et al. '19]

Problems

- In some applications, demographic information is unavailable (e.g. speech recognition), or illegal to use (e.g. insurance)
- Protected groups are hard to define a priori
 - variables often comprise continuous spectrum (e.g. skin color)
 - performance determined in an intersectional fashion
- Accounting for intersections gives exponentially many subgroups
 - computational & statistical difficulties

Example: Predicting Warfarin Dosage

Error per racial group

Example: Predicting Warfarin Dosage

Error per racial group for patients with high dosage (> 49mg)

Preview

Automatically find worst-off subpopulations, and optimize performance on them

- Guarantee uniform performance across subpopulations
- Computationally efficient
- Characterize statistical price of subpopulation performance

Subpopulations

• Q is a subpopulation of P if it's a mixture component

Q is a subpopulation \longleftrightarrow

 $\exists \text{proportion } a \in (0, 1], \text{ prob. } Q'$ $\text{s.t. } P(\cdot) = aQ + (1 - a)Q'$

Subpopulations

• Q is a subpopulation of P if it's a mixture component

• Q is a subpopulation of P if it's a mixture component

Q is a subpopulation \longleftrightarrow $\exists \text{proportion } a \in (0,1], \text{ prob. } Q'$ s.t. $P(\cdot) = aQ + (1-a)Q'$

• Q is a subpopulation of P if it's a mixture component

Q is a subpopulation \longleftrightarrow $\exists \text{proportion } a \in (0,1], \text{ prob. } Q'$ s.t. $P(\cdot) = aQ + (1-a)Q'$

• Q is a subpopulation of P if it's a mixture component

Q is a subpopulation \longleftrightarrow

 $\exists \text{proportion } a \in (0, 1], \text{ prob. } Q'$ $\text{s.t. } P(\cdot) = aQ + (1 - a)Q'$

Q is a subpopulation of P if it's a mixture component

Q is a subpopulation \longleftrightarrow $\exists \text{proportion } a \in (0,1], \text{ prob. } Q'$ s.t. $P(\cdot) = aQ + (1-a)Q'$

Notation

$$Q \succeq \alpha \longleftrightarrow \left\{ Q : \begin{array}{l} \exists \text{probability } Q', \text{ and } a \geq \alpha \\ \text{s.t. } P = aQ + (1-a)Q' \end{array} \right\}$$

subpopulation with proportion larger than $\alpha \in (0,1]$

Notation

$$Q \succeq \alpha \longleftrightarrow \left\{ Q : \frac{\exists \text{probability } Q', \text{ and } a \geq \alpha}{\text{s.t. } P = aQ + (1 - a)Q'} \right\}$$

subpopulation with proportion larger than $\alpha \in (0,1]$

• Worst-case loss over subpopulations larger than $\alpha \in (0,1]$

$$\sup_{Q\succeq\alpha}\mathbb{E}_{Q}[\ell(\theta;Z)]$$

Risk Aversion

Risk-aversion: prefer θ_1 over θ_2

Conditional Value-at-Risk

• CVaR defines a tail-average after the $(1 - \alpha)$ -quantile

$$\begin{aligned} \operatorname{CVaR}_{\pmb{\alpha}}(\theta;P) &:= \mathbb{E}_P[\ell(\theta;Z) \mid \ell(\theta;Z) \geq P^{-1}(\mathbf{1} - \pmb{\alpha})] \\ &= \inf_{\eta} \left\{ \frac{1}{\alpha} \mathbb{E}_P(\ell(\theta;Z) - \eta)_+ + \eta \right\} \\ & \text{[Rockafellar and Uryasev '00]} \end{aligned}$$

 $\ell(\theta;Z)$

CVaR & Worst-case Subpopulations

Lemma: worst-case subpopulation loss = CVaR

$$\sup_{Q} \left\{ \mathbb{E}_{Q}[\ell(\boldsymbol{\theta}|\boldsymbol{z})] \mathbb{E}_{Q}[\ell(\boldsymbol{\theta};\boldsymbol{z})] \stackrel{\text{defility }}{=} \text{CVaR}_{Q}(\boldsymbol{\theta};\boldsymbol{z}) \right\}$$

Worst-case over all subpopulations larger than $\alpha \in (0,1]$

Conditional Value-at-Risk

• CVaR defines a tail-average after the $(1 - \alpha)$ -quantile

$$CVaR_{\alpha}(\theta; P) := \mathbb{E}_{P}[\ell(\theta; Z) \mid \ell(\theta; Z) \geq P^{-1}(1 - \alpha)]$$
$$= \inf_{\eta} \left\{ \frac{1}{\alpha} \mathbb{E}_{P}(\ell(\theta; Z) - \eta)_{+} + \eta \right\}$$

- Only count inputs that suffer loss higher than η
- If $\theta \mapsto \ell(\theta; Z)$ is convex, then jointly convex in (θ, η)
- Tail-performance = worst-case subpopulation performance

Random minority proportions

• Worst-case loss over subpopulations larger than $\alpha \in (0,1]$

$$\sup_{Q\succeq\alpha}\mathbb{E}_Q[\ell(\theta;Z)]$$

- Let $A \sim P_A$ be a random minority proportion
- Take another worst-case over $P_A \in \mathcal{P}_A$

worst-case over subpopulation larger than $A \in (0,1]$

$$\sup_{P_A \in \mathcal{P}_A} \mathbb{E}_{A \sim P_A} \left[\sup_{Q \succeq A} \mathbb{E}_Q[\ell(\theta; Z)] \right]$$

worst-case over probability P_A on minority proportion A

Coherent Risk Measures [Artzner '99]

Definition A risk measure $\mathcal{R}: L^p(\mathcal{Z}) \to \mathbb{R}$ is **coherent** if

1) Convexity: for $t \in [0, 1]$

$$\mathcal{R}(tL + (1-t)L') \le t\mathcal{R}(L) + (1-t)\mathcal{R}(L')$$

- 2) Monotonicity: if $L \leq L'$ a.s., then $\mathcal{R}(L) \leq \mathcal{R}(L')$
- 3) Translation Equivariance: for $c \in \mathbb{R}$

$$\mathcal{R}(L+c) = \mathcal{R}(L) + c$$

4) Positive Homogeneity: for t > 0, $\mathcal{R}(tL) = t\mathcal{R}(L)$

Risk-aversion: prefer L_1

Worst-case subpopulations = coherence

Worst-case over all subpopulations Q_0

$$\mathcal{R}_{\mathcal{P}_A}(W) := \sup_{P_A \in \mathcal{P}_A} \mathbb{E}_{A \sim P_A} \left[\sup_{Q \succeq A} \mathbb{E}_Q[W] \right]$$

Worst-case over probability P_A on minority proportion

Lemma (Kusuoka '01, Pflug & Romisch '07)

Under mild regularity, for any coherent risk measure, there is a convex set \mathcal{P}_A of probabilities such that the risk measure is equal to $\mathcal{R}_{\mathcal{P}_A}(\cdot)$

From previous lecture, we have DRO = coherence = worst-case subpopulations

f-divergences DRO

f-divergence: If $L = \frac{dQ}{dP}$ is "near 1", then Q and P are near

For a convex function

$$f: \mathbb{R}_+ o \mathbb{R}_+$$
 with $f(1) = 0$,

$$D_f(Q||P) := \mathbb{E}_P\left[f\left(\frac{dQ}{dP}\right)\right]$$

As curvature of f decreases, the divergence becomes smaller!

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \max_{Q:D_f(Q \parallel P_{\text{obs}}) \leq \rho} \mathbb{E}_Q[\ell(\theta; Z)]$$

f-divergences DRO

$$f_k(t) = (k(k-1))^{-1}(t^k-1)$$
 for $k \in (1,\infty)$

Lemma: f-div DRO optimizes worst-case subpopulation

$$\sup_{\substack{\mathbf{Q}: D_{f_k}(\mathbf{Q} \parallel P_{\mathrm{obs}}) \leq \mathbf{\rho}}} \mathbb{E}_{\mathbf{Q}}[\ell(\theta; Z)] = \inf_{\eta} \left\{ \frac{1}{\alpha} \left(\mathbb{E}_P(\ell(\theta; Z) - \eta)_+^{k_*} \right)^{\frac{1}{k_*}} + \eta \right\}$$

$$= \sup_{P_A \in \mathcal{P}_{A,k,\rho}} \mathbb{E}_{A \sim P_A} \left[\sup_{Q \succeq A} \mathbb{E}_{Q}[\ell(\theta;Z)] \right]$$

where
$$\alpha_k(\rho)^{-1} := (1 + k(k-1)\rho)^{1/k}$$
, and $k_* = k/(k-1)$

$$|\mathcal{P}_{A,k,
ho}|:=\left\{ ext{ Set of random minority proportions lower bounded by } lpha_k(
ho)
ight.
ight.$$

See also [Dentcheva 10]

Convexity

$$\underset{\theta \in \Theta, \eta}{\text{minimize}} \left\{ \frac{1}{\alpha} \left(\mathbb{E}_{P_{\text{obs}}}(\ell(\theta; Z) - \eta)_{+}^{k_*} \right)^{\frac{1}{k_*}} + \eta \right\}$$

convex loss

$$\theta \mapsto \ell(\theta; Z)$$

 $\theta \mapsto \mathcal{R}_{p,\alpha}(\theta; \widehat{P}_{\text{obs},n})$

Example:
$$\ell(\theta; X, Y) = \frac{1}{2}(Y - \theta^{\top}X)^2$$

Interpretation

$$f_k(t) = (k(k-1))^{-1}(t^k-1)$$
 for $k \in (1,\infty)$

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \left\{ \sup_{\substack{Q: D_{f_k}(Q \| P_{\mathrm{obs}}) \leq \rho}} \mathbb{E}_{\substack{Q}}[\ell(\theta; Z)] = \sup_{\substack{P_A \in \mathcal{P}_{A, k, \rho}}} \mathbb{E}_{\substack{A \sim P_A}} \left[\sup_{\substack{Q \succeq A}} \mathbb{E}_{\substack{Q}}[\ell(\theta; Z)] \right] \right\}$$

• Heuristically, tune k and $\alpha(\rho)$ on some preliminary subpopulation

A principle: minimax

- I. We choose procedure $\widehat{\theta}$, nature chooses P_{obs}
- 2. Receive data Z_i i.i.d. from P_{obs} , $\widehat{\theta}$ makes decision

Define
$$\mathcal{R}_{k,\rho}(\theta;P) := \sup_{Q:D_{f_k}(Q\|P) \leq \rho} \mathbb{E}_Q[\ell(\theta;Z)]$$

Minimax (excess) risk [Wald 39, von Neumann 28]:

$$\min_{\widehat{\theta}} \max_{P_{\text{obs}} \in \mathcal{D}_{\text{obs}}} \left\{ \mathbb{E}_{P_{\text{obs}}}[\mathcal{R}_{k,\rho}(\widehat{\theta}(Z_1^n); P_{\text{obs}})] - \min_{\theta \in \Theta} \mathcal{R}_{k,\rho}(\theta; P_{\text{obs}}) \right\}$$

Worst case over distributions \mathcal{D}_{obs}

Best case over procedures $\widehat{\theta}: \mathbb{Z}^n \to \Theta$

Main result

Theorem (Duchi & Namkoong '20)

$$\min_{\widehat{\theta}} \max_{P_{\mathrm{obs}} \in \mathcal{D}_{\mathrm{obs}}} \left\{ \mathbb{E}_{P_{\mathrm{obs}}}[\mathcal{R}_{k,\rho}(\widehat{\theta}(Z_1^n); P_{\mathrm{obs}})] - \min_{\theta \in \Theta} \mathcal{R}_{k,\rho}(\theta; P_{\mathrm{obs}}) \right\} \approx n^{-\frac{1}{k_* \vee 2}}$$
 where $k_* = k/(k-1)$.
$$k \in [2,\infty) : \text{parametric}$$
 $k \in (1,2) : \text{slower}$

Worst case over distributions \mathcal{D}_{obs}

Best case over procedures $\widehat{\theta}: \mathbb{Z}^n \to \Theta$

Two pronged approach

- 1. Convergence guarantee: find good procedure
- 2. Lower bound: show no procedure can do better

Convergence guarantee

Plug-in procedure:

Let \widehat{P}_n be the empirical distribution on $Z_1,..,Z_n \stackrel{\mathrm{iid}}{\sim} P_{\mathrm{obs}}$

$$\widehat{\boldsymbol{\theta}_{n}^{\text{rob}}} \in \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} \left\{ \mathcal{R}_{k,\rho}(\boldsymbol{\theta}; \widehat{P}_{n}) = \underset{Q:D_{f_{k}}(Q \| \widehat{P}_{n}) \leq \rho}{\sup} \sum_{i=1}^{n} q_{i} \ell(\boldsymbol{\theta}; Z_{i}) \right\}$$

Theorem (Duchi & N. '18)

For bounded Lipschitz losses, with probability at least $1 - e^{-t}$,

$$\mathcal{R}_{k,\rho}(\widehat{\boldsymbol{\theta}_{n}^{\text{rob}}}; P_{\text{obs}}) - \min_{\theta \in \Theta} \mathcal{R}_{k,\rho}(\theta; P_{\text{obs}}) \lesssim \sqrt{t + d \log n} \cdot n^{-\frac{1}{k_* \vee 2}}$$

where $k_* = k/(k-1)$.

 $k \in [2, \infty)$: parametric rate, $k \in (1, 2)$: slower rate

Fundamental lower bound

Theorem (Duchi & N. '18)

Linear function $\ell(\theta; Z) = \theta Z$ on [-1, 1], \mathcal{P} s.t. Z bounded

$$\min_{\widehat{\theta}} \max_{P_{\text{obs}} \in \mathcal{D}_{\text{obs}}} \left\{ \mathbb{E}_{P_{\text{obs}}} [\mathcal{R}_{k,\rho}(\widehat{\theta}(Z_1^n); P_{\text{obs}})] - \min_{\theta \in \Theta} \mathcal{R}_{k,\rho}(\theta; P_{\text{obs}}) \right\} \gtrsim \mathbf{n}^{-\frac{1}{\mathbf{k}_* \vee 2}}$$

where $k_* = k/(k-1)$.

- Matching upper and lower bounds in n
 - Plug-in procedure is **optimal** in sample complexity!
- Statistical price of subpopulation performance
- Slow nonparametric rates unavoidable for $k \in (1,2)$

Warfarin dosage

- Warfarin is the most widely used blood-thinner worldwide
- Y: therapeutic dosage
- X: demographics, genetic info
- Model: linear
 - Worked best out of polynomial regression, kernel methods, neural networks, splines, boosting, bagging [IWPC '09]

• Loss: squared loss $\ell(\theta; X, Y) = (Y - \theta^{\top}X)^2$

ERM suffered high prediction error on patients with high dosage

High warfarin dosage (>49mg)

 $f_k(t) \approx t^k - 1$

High warfarin dosage (>49mg)

Takeaway: Improved performance on hard subpopulation, slight deterioration in average-case

Fine-grained recognition

- Task: classify image of dog to breed (120 classes)
- Kernel features

Stanford Dogs Dataset [Khosla et al. '11]

No underrepresentation: same number of images per class

ERM error rate

Variation in error over 120 class

Worst x-classes

Takeaway: Gwarantee uniform performance across dog breeds

Repeated loss minimization

Average loss ignores minorites

Lower retention rate

Problem: Degradation over time

Problem: Degradation over time

Small disparities can amplify to exacerbate subpopulation performance

"Theorem" (HSNL'18) Under general user retention dynamics,

- 1) ERM is unstable
- 2) minimizing $\mathcal{R}_{p,\alpha}(\theta; P_{\text{obs}}^t)$ controls latent minority proportions over time

Experiment: Auto-complete

Motivation: Autocomplete system for text

Problem: Atypical text doesn't get surfaced

African American Vernacular (AAVE)

If u wit me den u pose to RESPECT ME

Standard American English (SAE)

If you are with me then you are supposed to respect me.

Experiment: Auto-complete

Retention feedback loop

Experiment: Auto-complete

Mitigating Disparity Amplification

Takeaway: Control minority proportion — uniform performance over time

Covariate shift

- ullet Conditional distribution $P_{Y|X}$ fixed
- Only consider **subpopulations** of marginal P_X

Notation
$$Q_X \succeq \alpha \qquad \longleftrightarrow \quad \left\{ Q_X : \begin{array}{l} \exists \text{probability } Q_X', \text{ and } a \geq \alpha \\ \text{s.t. } P_X = aQ_X + (1-a)Q_X' \end{array} \right\}$$

subpopulation over X with proportion larger than $\alpha \in (0,1]$

$$\sup_{\mathbf{Q}_{X}\succeq\boldsymbol{\alpha}}\left\{\mathbb{E}_{\mathbf{Q}_{X}\times P_{Y|X}}[\ell(\theta;X,Y)] = \mathbb{E}_{\mathbf{Q}_{X}}[\ell_{c}(\theta;X)]\right\}$$
$$\ell_{c}(\theta;X) := \mathbb{E}_{P_{Y|X}}[\ell(\theta;X,Y)\mid X]$$

Covariate shift

Standard approach: Solve average risk minimization problem

$$\underset{\theta \in \Theta}{\text{minimize}} \ \mathbb{E}_{P_{\text{obs}}}[\ell(\theta; X, Y)]$$

DRO over covariate shift

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \sup_{Q_X \succeq \alpha} \mathbb{E}_{Q_X} [\ell_c(\theta; X)]$$

worst-case loss over subpopulations in X larger than $\alpha \in (0,1]$

Problem: We don't observe $\ell_c(\theta; X) := \mathbb{E}_{P_{Y|X}}[\ell(\theta; X, Y) \mid X]!$

Hard to estimate because of limited replicate labels Y|X

Dual representation

Let $\ell_c(\theta;X) := \mathbb{E}_{P_{Y|X}}[\ell(\theta;X,Y) \mid X]$.

$$\sup_{Q_X \succeq \alpha} \mathbb{E}_{Q_X} [\ell_c(\theta; X)] = \inf_{\eta} \left\{ \frac{1}{\alpha} \mathbb{E}_{P_X} \left(\ell_c(\theta; X) - \eta \right)_+ + \eta \right\}$$

For any $k, k_* > 1$ such that $1/k + 1/k_* = 1$

$$\mathbb{E}_{P_X} (\ell_c(\theta; X) - \eta)_+ \leq (\mathbb{E}_{P_X} (\ell_c(\theta; X) - \eta)_+^{k_*})^{1/k_*}$$

$$= \sup_{h \geq 0, \mathbb{E}[h(X)^k] \leq 1} \mathbb{E}[h(X)(\ell(\theta; X, Y) - \eta)]$$

Variational form

Lemma (Duchi, Hashimoto & N'19)

If $x \mapsto \ell_c(\theta; x)$, and $(x, y) \mapsto \ell(\theta; x, y)$ are L-Lipschitz,

$$\left(\mathbb{E}_{P_X} \left(\ell_c(\theta; X) - \eta\right)_+^{k_*}\right)^{1/k_*}$$

$$= \sup_{\substack{h \ge 0, \mathbb{E}[h(X)^k] \le 1, \text{O}(L)\text{-smooth}}} \mathbb{E}[h(X)(\ell(\theta; X, Y) - \eta)]$$

for any $k, k_* > 1$ such that $1/k + 1/k_* = 1$

Estimable bound

$$\sup_{Q_X \succeq \alpha} \mathbb{E}_{Q_X} [\ell_c(\theta; X)]$$

$$\leq \inf_{\eta} \left\{ \frac{1}{\alpha} \sup_{h \geq 0, \mathbb{E}[h(X)^k] \leq 1, O(L)\text{-smooth}} \mathbb{E}[h(X)(\ell(\theta; X, Y) - \eta)] + \eta \right\}$$

Replaced $\ell_c(\theta; X) := \mathbb{E}_{P_{Y|X}}[\ell(\theta; X, Y) \mid X]$ with $\ell(\theta; X, Y)$

Estimator

Standard approach: Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\text{minimize}} \ \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; X_i, Y_i)$$

Worst-case subpopulation approach: Optimize worst-case subpopulation performance

$$\underset{\theta \in \Theta, \eta}{\operatorname{minimize}} \left\{ \frac{1}{\alpha} \sup_{h \geq 0, \frac{1}{n} \sum_{i=1}^{n} h(X_i)^k \leq 1, \mathcal{O}(L) \text{-smooth}} \frac{1}{n} \sum_{i=1}^{n} h(X_i) (\ell(\theta; X_i, Y_i) - \eta)] + \eta \right\}$$

Can efficiently solve using dual version. See paper for details.

Semantic similarity

- Given two word vectors (GloVe), predict their semantic similarity [Agirre et al. '09]
- Per word pair, there are 13 human annotations on similarity in range {0, ..., 10}
- Train on 1989 indiv. annotations, test on 246 averaged values

Similarity
$$\ell(\theta;x^1,x^2,y) = |\overset{\downarrow}{y} - (\overset{1}{x^1} - \overset{2}{x^2})^\top \theta_1(x^1-x^2) - \theta_2|$$
 Word 1 Word 2

• Fix train-time $\alpha = .3$, test on varying α_{test}

Semantic similarity

$$\mathcal{R}_{\underset{Q_X \succeq \alpha_{\text{test}}}{\boldsymbol{\alpha}_{\text{test}}}}(\boldsymbol{\theta}) := \sup_{Q_X \succeq \underset{\alpha_{\text{test}}}{\boldsymbol{\alpha}_{\text{test}}}} \mathbb{E}_{Q_X \times P_{Y|X}}[\ell(\boldsymbol{\theta}; X, Y)]$$

