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Critiques of classification parity

Link https://arxiv.org/abs/1808.00023



Recap

e COMPAS: risk scoring system predicting recidivism

- Y: observed reoffend, X: 20-dim feature based on questionnaire

e ProPublica: COMPAS has different false positive rates

P( predicted high risk | not reoffend ), and FNR across
Blacks and Whites

 Northepoint: but COMPAS has similar predictive value
P( reoffend | predicted high risk)

 Chouldechova: impossible to satisfy these simultaneously
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General view

Predicted low risk Predicted high risk

Did not re-offend True Negative False Positive

.........................................................................................................

Re-offended False Negative True Positive
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Perspectives matter

* Viewpoints vary substantially between stakeholders

* Defendant: what is the probability I'll be wrongly labeled

high-risk?
Predicted low risk . Predicted high risk
Did not re-offend True Negative False Positive
| FPR = FP / (FP + TN)
Re-offended False Negative True Positive
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Perspectives matter

* Viewpoints vary substantially between stakeholders

* Decision-maker: of those I've predicted high-risk, what
fraction will re-offend?

Predicted low risk . Predicted high risk

Did not re-offend True Negative = False Positive
i Predictive value

........................................................................................

Re-offended False Negative True Positive
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Classification parity

e Equalize FPR, FNR, PV across pre-defined demographic

groups

* More generally, we can equalize any measure of performance

True condition

Total - -
Condition positive
population
& | Predicted
% condition True positive
c
8 positve
2 Predicted
& - False negative,
T condition
o ; Type | error
o negalive

True positive rate (TP}, Recall,

Sensitivty, probability of detection,

_ 3 Tru= positive
POWer = 5 andition positive

False negaiive rate (FNR), Miss rate
_ X False negative
— Z Condition positive
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Pravalence
_ 7 Condition positive
— 3 Toral population

Condition negative

Positive predictive value (FPY),
Precision =

Z True posilive
z Predicted condition positive

False positive,
Type | error

False omission rale (FOR) =

? False negative

True negative
2 Predicted ccncition negative

False positive rate (FP
( ) Positive likelihood ratio (LR+)
_1mrn

Fal-out, probability of false aarm
> False positive =~ FPR

= ¥ Condition negative
Spaciiaty (SPC), Selecuvry,

True negative rate (TNR)

_  Z True negative
~— L Condition negétive

Negative likzlihood ratic (LR-)
_ FNR
~ TNR

Accuracy (ACC) =
> True positive + 5 True negative
> Total population

False discovery ral2 (FDR) =
Z False positive
2 Predicted condition pcsitive

Negative predictive value (NPV) =

Z True negative
2 Predicted condition nejativa

Diagnoctic
odds ratio F, score =
(DORI 2. Precision - Racall
LR+ Precision + Recall
= R-



Risk distributions

The mean is fixed for all choices of X
[ It's the base rate of recidivism. |

P(Y = 1|X)

0 Likelihood of violent recidivism 1

The shape can change based on our choice of X

Slides by Sharad Goel
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Applying a threshold

0 Likelihood of violent recidivism 1

e Threshold rule maximizes social welfare, if errors are
equally costly across individuals

Slides by Sharad Goel
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Fairness of a single threshold
P(Y=1|X,R = red)

P(Y = 1| X, R = blue)

‘ —

O Likelihood of violent recidivism 1

Equally risky people are treated equally, regardless of group
membership. No taste-based discrimination. Inline with legal
norms. This is what is done in practice.

Slides by Sharad Goel

9



Recap

e FPR=FP/(FP + TN)

* FPR = Wouldn’t have reoffended & “predict high risk”

Wouldn’t have reoffended

e |In Broward County, FL, FPR was 31% for Blacks, and 15%
White
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Calculating false positive rates
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Calculating false positive rates
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Calculating false positive rates

e $ ‘ —_— . ‘ R ‘ ‘ 4 —_— ‘
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Did not reoffend & detained
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Did not reoffend
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Calculating false positive rates
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Calculating false positive rates
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Calculating false positive rates
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Calculating false positive rates
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Inframarginality

e Infra-marginal: below from the margins
- This means a metric depends on things away from the threshold

* FPR is a infra-marginal statistic
- It depends on the entire risk distribution, not just the threshold
- In general, metrics from confusion matrix suffer similar issues

* This leads to misleading fairness notions when risk
distributions differ across groups
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Calculating false positive rates
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The problem with false positive rates
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Limitations

 Argument so far based on when Y and X are fixed

- In a world where the legal, political, economic systems work against
marginalized communities, data will embody inequities and biases

- Both label and features biased

e Based on P(Y =1 | X) being known
- Estimating this uniformly over features X is notoriously difficult
- Model selection nontrivial
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Limitations

e Distribution shift
- All discussion so far based on data from Broward County, FL

- Demographics (X), Y | X changes over time and space

 Agents’ behavior may change in response to introduction of
the system; introduces dynamics through time and space

e Externalities
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More broadly

 Should this system exist at all?

* |s detaining people at higher risk of recidivating the right
intervention?

e Structural shifts in the socioeconomic, legal, political system

- When / how can prediction models help? As opposed to replicating
the patterns in the world

- different recidivism rates is a result of historical social and economic
discrimination
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Worst-case subpopulations,
tail-performance, and
distributional robustness

Links
https://www2.isye.gatech.edu/people/faculty/Alex_Shapiro/SPbook.pdf

https://arxiv.org/abs/1810.08750
https://arxiv.org/abs/2007.13982

https://arxiv.org/abs/1806.08010

24



Rest of the lecture

e So far, we focused on binary classification problems with
pre-defined demographic groups

 What about generic loss minimization problems?

e (Goal: guarantee good performance (low loss) uniformly
over demographic subgroups

- Quantify what “uniformly” means
- Quantify what “demographic subgroups” mean

* Previous caveats apply about (very) limited scope

B9145: Reliable Statistical Learning
Hongseok Namkoong

25



Standard Approach: Average Loss

e Loss/Objective £(0; Z) where 6 € © is parameter/
decision to be learned, and Z ~ P, IS random data

e Optimize average performance under P.; .

e

0(0; 2)]

minimizegce Ep , |

Linear regression 4(6; X,Y) = (Y —0' X)?
SVM (Classification) ¢(6;X,Y)=(1-Y0'X),
Deep neural networks 4(6; X,Y) = (Y — o1(61 - 0% (6k - X))))*

More examples: newsvendor, portfolio, scheduling...




Challenge 1: Long-tails

* | ong-tailed data is ubiquitous in modern applications

- At Google, a constant fraction of queries are new each day

e Tail inputs often determine quality of service

Long-tailed queries

1400
100l — T —— MSR Learning to Rank [Qin & Liu *13] |
n
D
O LOOO v
=
Qv]
S 800
s
@)
o 600}
O
S
- 400
200
O

0] 5000 10000 15000 20000 25000 30000 35000
queries



Example: Predicting Warfarin Dosage

30
e Warfarin is the most widely used —— sorted test error
. . — averaqge
blood-thinner worldwide = 25 1 J
lab 20 4
e Task: learn to predict therapeutic =
warfarin dosage 5 15
O
. 8 10 A
e Personalized treatment =
. >
recommendation based on 3 51
regression models [international Warfarin N A
Pharmacogenetics Consortium ’09] : : : : : // ,
0 500 1000 1500 200 2500

patient J
- Worked best out of polynomial regression, kernel

methods, neural networks, regression splines, ) i ;
boosting [IWPC 09 Tail performance is orders of magnitude

worse than average

Another use for Warfarin: rat poison ———#8



Challenge 2: Lack of Diversity in Data

yy [Oh et al. ’15,

“Clinical trials for new drugs skew heavily white” sucaceta s

SA Editors ’18]

- From 1993-2013, 98.1% of all studies on respiratory diseases
did not report inclusion of minority subjects [Burchard et al. *18]

- Racial minorities more likely to suffer from respiratory diseases

Majority of image data from US & Western Europe

ImageNet: country of origin Other examples:

 Language identification
[Blodgett et al. ’16, Jurgens et al. ’17]

UsS

ES * Part of speech tagging [Hovy & sgaard '15]

AU

* Video captioning [ratman 17]

GB

Y
I

[Shankar et al. ’17]

T e Recommenders [Ekstrand et al. 17, 18]



Example: Facial Recognition

 |abeled Faces in the Wild, a gold standard dataset for face
recognition, is 77.5% male, and 83.5% White [Han and Jain ’14]

e Commercial gender classification softwares have disparate
performance on different subpopulations

Gender Darker Darker Lighter Lighter Largest
Classifier Male Female Male Female Gap
=~'“ Microsoft 94.0% 79.2% 100% 98.3% 20.8%
L 1 [ 1 ] | [
1+ = FACE* 99.3% 65.5% 99.2% 94.0% 33.8%
{ | | ' | | |
T=nt 88.0% 65.3% 99.7% 92.9% 34.4%
T N I |

Gendered Shades: Intersectional accuracy disparity
[Buolamwini and Gebru ’18]




First ldea: Pre-defined groups

Given pre-defined demographic groups g € G,

» Separate model for each group Ep [£(0,; Z)]

* One model for worst-off group max Ep [€(0; Z)] leneaeens
geyg

See also [Kearns et al. ’18, Kim et al. ’19]

Problems

 |n some applications, demographic information is unavailable (e.g.
speech recognition), or illegal to use (e.g. insurance)

 Protected groups are hard to define a priori
- variables often comprise continuous spectrum (e.g. skin color)

- performance determined in an intersectional fashion

 Accounting for intersections gives exponentially many subgroups
- computational & statistical difficulties



Example: Predicting Warfarin Dosage

Error per racial group

100
40- B Error Per Race
' B Error Quantiles
3.5 ® Demographics (%) - 80

W
o
1

- 60

N
Ul

squared error E(Y — 8 7X)?
N
o
demographic proportion (%)

- 40
1.5 -
1.0 -

- 20
0.5
0.0 - L0

Asian Black White NA



Example: Predicting Warfarin Dosage

Error per racial group for
patients with high dosage (> 49mg)

B Error Per Race
4.0 - | - 14
B Error Quantiles
3.5 ® Demographics (%) 12
f:;? 3.0 A E\i
10
2 5
| | gt
> 2.5 S
5 -8 O
B o
2 2.0- =
g o
o ° 5
S 1.5 - e
a O
-4 ©
1.0 -
0.5 2
0.0 - 0

Asian Black White NA




Preview

Automatically find worst-off subpopulations,
and optimize performance on them

e Guarantee uniform performance across
subpopulations

e Computationally efficient

 Characterize statistical price of subpopulation
performance



Subpopulations

e () is a subpopulation of P if it’s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation ¢==p st. P()=aQ+ (1—a))

Q' QO
P: base distribution
4,

0(0; 2)



Subpopulations
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Subpopulations

e () is a subpopulation of P if it’s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation ¢==p st. P()=aQ+ (1—a))

/
P: base distribution Q
\
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Subpopulations

e () is a subpopulation of P if it’s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation ¢==p st. P()=aQ+ (1—a))

P: base distribution

\
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Subpopulations

e () is a subpopulation of P if it’s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation ¢==p st. P()=aQ+ (1—a))

(;?/
P: base distribution

\>

0(0; 2)



Subpopulations

e () is a subpopulation of P if it’s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation <¢==p st. P() = aQ + (1 — )0

" Notation
. 0: Jdprobability (', and a > «
Rzoa € st. P=aQ+ (1—a)Q

subpopulation with proportion larger than « € (0, 1]




Subpopulations

! Notation
. 0 Jdprobability (', and a > «
Rz o st. P=aQ+ (1 —a)Q’

subpopulation with proportion larger than « € (0, 1]

* Worst-case loss over subpopulations larger than a € (0, 1]

sup Eq [£(0; Z)]
Q>=a




Risk Aversion

(91;23)

43[6(91; Z)] > 43[8(92; Z)]

Tail|l(01; Z)] < Tail[€(02; Z))

Risk-aversion: prefer (J; over




Conditional Value-at-Risk

e CVaR defines a tail-average after the (1 — «)-quantile

CVaR,(6; P) :=Ep

— 1nf <
N

\

0(60;Z) | £0;Z) > P71 (1 — a)]
1

—Ep(£(0;Z) — ++n>\

@7
[Rockafellar and Uryasev ’00] \

(1 — a}-quantile of £(0; Z)

0(0; 2) P (1 -a)



CVaR & Worst-case Subpopulations

CVaR,(0; P) :=

Z) | 0(60;2) > P71 — a)]

\
Lp(l(0;Z) — )y + 77}

Lp

(1 — a)-quantile

£(6
E
| &

— 1nf <
n

r

.

Lemma: worst-case subpopulation loss = CVaR
T S VAl (o7
o[BS i
Worst-case over all subpopulations larger than « € (0, 1]

\




Conditional Value-at-Risk

e CVaR defines a tail-average after the (1 — a)-quantile

\

Lp(0(0;Z) —n)4 +n¢

/

— 1nf <
n

CVaR,(0; P) :=Epll(0;2) | £(0; Z) > P (1 — o]
1
| X

e Only count inputs that suffer loss higher than #

e If @ > £(0;7) is convex, then jointly convex in (6, 1)

e Tail-performance = worst-case subpopulation performance



Random minority proportions

e Worst-case loss over subpopulations larger than o € (0, 1]

sup Eq [£(0; Z)]
Qo

e et A ~ P4, bearandom minority proportion

e Take another worst-case over P4 € Py

worst-case over subpopulation larger than A € (0, 1]

é )

i

sup Eaop, | sup Eq|4(0; 2))
QZA
worst-case over probability 4 on minority proportion A

. J




Coherent Risk Measures e 99

7

\

Definition A risk measure R : L?(Z) — R is coherent if

1) Convexity: for t € |0, 1]

R(AL+ (1 —t)L") <tR(L)+ (1 —t)R(L")
2) Monotonicity: if L < L a.s., then R(L) < R(L')

3) Translation Equivariance: for c € R
R(L+c)=R(L)+c

4) Positive Homogeneity: for ¢ > 0, R(tL) = tR(L)

A

Pdf(L) R(L1) < R(Lz2)

>
L=1¢0;7)

~

\—

Risk-aversion: prefer [

_




Worst-case subpopulations = coherence

Worst-case over all subpopulations ()g

4 j W _ )
Rp,(W):= sup Eaop, |sup Eg|[W]
faclha 4 4
~ SR J

Worst-case over probability 4 on minority proportion

( )

Lemma (Kusuoka ’0l, Pflug & Romisch '07)
Under mild regularity, for any coherent risk measure,
there is a convex set P4 of probabilities such that

the risk measure Is equal to RPA ()

. J

From previous lecture, we have DRO =
coherence = worst-case subpopulations




f-divergences DRO

aq) .

f-divergence: If L = — is “near 1”, then () and P are near

dP
L
For a convex function /(L)

FiRy =Ry with £(1) =0
a5 (5)

As curvature of f decreases, the
divergence becomes smaller!

minimize max Coll(0; 2))
€O  Q:Dy(Q[Pobs)<p




f-divergences DRO

o) = (k(k—=1))"'(t" = 1) for k € (1, 0)

( )

Lemma: f-div DRO optimizes worst-case subpopulation

| 1 o
sup  Eq[((0; 2)] = inf {— (Er(0(0:2) ~ )} ) +n}
Q:Dy, (Q|Pobs)<p moLa

= sup Ea.p, |sup Egll(0;2)
PA€PA k.o Q= A |

where ai(p) ' = (1+k(k—1p)"" Jand k., = k/(k —1)

Pap: = { Set of random minority proportions lower bounded by o (p) }

See also [Dentcheva 10]
. J




Convexity

minimize <

rl(
| X

0cO,n

convex loss
0 — 6(9; Z)

1

—_—

Example: ((0;X,Y) = §(Y — 9" X)?

\ /

Conic form representable
[Krokhmal '07]

Efficient first-order methods
[N. & Duchi ’17]

N

convex worst-case risk
0 — Rp,oz((g; Pobs,n)




Interpretation

fu(t) = (k(k — 1)1 (t* — 1) for k € (1, 00)

r ™
minimize < Sup Eoll(0;2)] = sup Eawp, [sup Eo [4(6; Z)]] %
veo \Q:ka (Qll Pows)<p PA€PAk,p QzA /
. y
Less robust More robust

Minority

Subpopulation

e Heuristically, tune ~ and a(p) on some preliminary subpopulation



A principle: minimax

|.We choose procedure 9, nature chooses Py

2. Receive data Z; i.i.d. from P, , 8§ makes decision

Define R, p(0; P) :=

sup — Eql6(0;2))
Q:Dy,, (QIP)<p

7

Minimax (excess) risk

min _max { e Rk o (

AN

6 Pobs €EDobs

Worst case over distri

[Wald 39, von Neumann 28]:

S

(Zn) Pobs)] g%l(f)l Rk p(e Pobs)

butions D,

S

Best case over procedures 6: 2" — 0

}




Main result

Theorem (Duchi & Namkoong "20)

S

1
min max {EpobS[Rk;,p( (Z{L);Pobs)]—mian,p(ﬁ;PobS)}zn fox V2

0 ASS) /

6 Pobs €Dobs
k € [2,00): parametric
ke (1,2) :slower

where k, = k/(k —1).

Worst case over distributions Deops

AN

Best case over procedures §: 2" — ©

Two pronged approach
1. Convergence guarantee: find good procedure

2. Lower bound: show no procedure can do better




Convergence guarantee

~

Plug-in procedure:

1id

Let P, be the empirical distribution on Zi, .., Z,, ~ P.s

fr°" € argmin Ri.»(0; P,) = sup Zq%(@; Z;)
0cO Q:ka (Q”ﬁn)gp 1=1 J

\_

Theorem (Duchi & N.’18)

For bounded Lipschitz losses, with probability at least 1 — e~

. 1
R, p (0503 Pops) — min Ry, p(0; Pobs) S v/t +dlogn - 10 F+V2
c

HcO
where k, =k/(k—1). /

~\

t
y

k € [2,00): parametric rate, k € (1,2):slower rate



Fundamental lower bound

Theorem (Duchi & N.’18)
Linear function 4(8; Z) = 6Z on [—1,1], P st Z bounded

i 1

min max {Epobs Ri.p(0(Z7); Pobs)| — min Ry ,(0; Pobs)} > n k2

é\ Pobsepobs (96@

where k, = k/(k—1).

.

e Matching upper and lower bounds in n

= Plug-in procedure is optimal in sample complexity!

e Statistical price of subpopulation performance

e Slow nonparametric rates unavoidable for k € (1, 2)



Warfarin dosage

e Warfarin is the most widely used blood-thinner worldwide

* Y: therapeutic dosage
e X: demographics, genetic info

e Model: linear

- Worked best out of polynomial regression,  *°
kernel methods, neural networks, splines,  °s
boosting, bagging [I[WPC ’'09] 00-

I Error Per Race

HE Error Quantiles

1 @ Demographics (%)

Asian Black  White

e Loss: squared loss /(0; X,Y) = (Y — ' X)?

ERM suffered high prediction error on

patients with high dosage

NA q80 q90 q95

T T T
H (o)) oo = - =
o N N
demographic proportion

T
N

T
o

(%)



squared error E(Y — 07 X)?

High warfarin dosage (>49mg)

—e— ERM —( = —&
—¥— k=0
—- £=15
2.4 7 o o o o o o
2.3

N
N
1

N
=
1

2.0 - Average error for ERM = .997

0.5 0.4 0.3 0.2 0.15 0.1 0.075 0.05
Lower bound on minority proportion . (p) == (1 + k(k —1)p)~ /"

fr(t) ~ th —1



High warfarin dosage (>49mg)

3.5
ERM
a=.1
B o=.05

3.0 -
N
< ® Demographics (%)
|_
)
| 2.5 A
>
Ky
| -
@)
t 2 0 -
5 2.
©
)
| -
©
-] ®
O 1.5 -

1.0 -

. I
High dosage High dosage Population
Asian Black

Takeawd{f:

- 14

=
N

=
o

demographic proportion (%)

- dnprevedo-peHormance on-hard subpopulation,

slight deterioration in average-case



Fine-grained recognition

» Task: classify image of dog to breed (120 classes)

e Kernel features

. -" .\ '
A - \

Stanford Dogs Dataset .[Khosla et al. '11]

No underrepresentation:
same number of images per class



top-5 error rate

ERM error rate

=
o

o
O
1

o
oo
1

o
~
]

©
o
1

—
Ul
1

o
S
]

BIG gap in performance even
when no underrepresentation

40 60 80 100
classes

120




standard deviation of class-wise error

Variation in error over 120 class

—@— train
0.16 - —¥— test
.7
0.14 -
0.12 - ‘
0.10 -
0.08 -
1.0 (ERM) .99 90 .60 20 .07

Lower bound on minority proportion 042(,0) L= (1 + 2,0)_1/2

fg(t) ~ t2 —1




Worst x-classes

© o o o
~ (00) (0] O
0] o Ul o

1 1 1 1

tail-averaged top-5 error rate

0.70 -

0.65 -

0.60 -

20 40 60 80 100 120
classes

—1/2

Takeaway: GUSFAMHSLURIFOPHPBRMBIMaNte dérose dog breeds



Repeated loss minimization

Average loss
ignores minorites

Group recieves Group becomes
high loss small

Lower retention rate

Problem: Degradation over time



Problem: Degradation over time

Small disparities can amplify to exacerbate subpopulation performance

Toy Example
> i —
§ 0.80 l||||III|||||"||
)
Y 0.75 -
O
>
= 0.704{ —+— ERM
.CE> —— DRO
E 065_ I T | | I
0 100 200 300 400
Time
r )

“Theorem” (HSNL'18) Under general user retention dynamics,

|) ERM is unstable

2) minimizing Rp.«(0; Plps) controls latent minority proportions

over time
\_ y,




Experiment: Auto-complete

Motivation: Autocomplete system for text

W - Tl P

Tschechien

Tirkel

fersiony Thiringen
Techechoslowakei

Texas

The New"r’DTimes.

Problem: Atypical text doesn't get surfaced

African American Vernacular (AAVE)

If u wit me den u pose to RESPECT ME

Standard American English (SAE)

If you are with me then you are supposed to respect me.



Experiment: Auto-complete

Retention feedback loop

Average loss
ignores AAVE

AAVE group
receives high loss

AAVE group
becomes smaller

b

How does loss relate
. " |
to retention rate* Lower retention rate




Experiment: Auto-complete

Blodgett 16

African American English (AAE) Standard American English (SAE)

0.1
YYIYY . YIIXY) .

Subcorpora
on Twitter

Autocomplete system
with different AAVE fractions

~
Retention for both groups (AAETest ot ) ( SAE Test set )
Amazon Mechanical Turk

Y Y

TIII1I1III11 ( User retention for each group )

+Tab Q@ W E R T Y U 1 o P

A 8 D F G H J B o

-ZXCVBNM-
clear




Mitigating Disparity Amplification

0.90 T 1L Jiasganspmesaungsuahunnsaunpbunprag-spr- i
o 0.85 ~
O B - N 1 A T ) I
c 0.80 -
e
@ 0.75 -
2 - ERM (AAE)
0.70 - - DRO (AAE)
----- ERM (SAE)
0.654 7 aaaas DRO (SAE)
0 10 20 30 40 50

Time

Takeaway: Control minority proportion = uniform performance over time



Covariate shift

» Conditional distribution Py |x fixed

* Only consider subpopulations of marginal Px

Notation

Qx = C=—p

O : dprobability , and a > «
* st Py = alx + (1 —a)

subpopulation over X with proportion larger than « € (0, 1]

sup
QX ~— QX

|

LQx X Py | x 0(0; X,Y)] =

le(0; X) :=Ep,  [£(0; X,Y) | X]

\

LQ x wc(‘ga X)] }




Covariate shift

Standard approach: Solve average risk minimization problem

Ce n XV
mlggéllze Poys [6(97 ) )]

DRO over covariate shift

Inimize s 4, / 9,X
mlrelérénz Qilga O« el )]

worst-case loss over subpopulations in X larger than « € (0, 1]

Problem: We don’t observe ¢.(0; X) :=Ep, ,[¢(0; X,Y) | X]!

Hard to estimate because of limited replicate labels Y| X




Dual representation

Let (.(0; X) :=Ep,, [£(0; X,Y) | X].

2 (£a(6: X) = 7). + n}

1
e’

sup Eo . [£e(0; X)] = inf {

Qx =« n

Forany k,k, > 1 suchthat 1/k+1/k. =1

L Px (66(97 X) _ 77)-|— < (ﬂpx (80(97 X) _ U)i*)l/k*

— sup SR (X)(£(0; X,Y) —n)]
h>0,E[h(X)F]<1




Var

lational form

.

‘Lemma (Duchi, Hashimoto & N "1 9)

If x — £.(0;2), and (z,y) — £(0;x,y) are L-Lipschitz,

(EPX (0c(0; X) — n)i*>1/k*

for any k,

= sup

h>0,E[h(X)]

Elh(X)(€(0; X,Y) —n)]
<1,0(L)-smooth

k. > 1 sucht

nat 1/k+1/k. =1

Estimable bound

sup Eqg ., [:(0; X)]

Qx o

< inf |
7

(

1

& h>0,E[R(X)F

sup E[h(X)(£(0; X,Y) —n)]
]<1,0(L)-smooth

Replaced /.(0;X) :=Ep,  [¢(0; X,Y) | X] with £(6; X,Y)




Estimator

Standard approach: Solve empirical risk minimization problem

1 n
inimize — » £(0; X, Y;
minimize — ; (6; )

Worst-case subpopulation approach: Optimize worst-case
subpopulation performance

( )

1 1 <
minimize { — sup — h(Xi)(€(9§X7ja Yz) — 77)] +n
0cO,n \ Q hZO,% L h(X;)F<1,0(L)-smooth n ;

/|\

/

Can efficiently solve using dual version. See paper for details.



Semantic similarity

Given two word vectors (GloVe), predict their semantic
similarity [Agirre et al. *09]

Per word pair, there are 13 human annotations on similarity in
range {0, ..., 10}

Train on 1989 indiv. annotations, test on 246 averaged values

Similfrity
2(9;$17$27y) — ‘y o (wl o $2)T91($1 o 33.2) o 92‘
Word 1 WcIrd2

Fix train-time o = .3, test on varying o



Semantic similarity

Ratest (9) - = SUp EQX X Py | x [6(97 X? Y)]
Q x 7~ Atest
Joint DRO £ =2
—$— ERM
Joint DRO k& =
Marginal DRO

102 101 109




