B9145: Problem Set 2

Due: Oct 30, 11:59pm

Carefully follow submission instructions announced on Canvas.

Question 2.1 (Minimax bounds for estimation (30 points)):  We derive information theoretic
lower bounds for statistical estimation problems, analogous to those for stochastic optimization
we saw in class. For a class of distributions P, let 6 : P — R? be the statistical functional of
interest; 0(P) is often called the “parameter”. Let d be a metric on © := {#(P) : P € P}, and let

® : Ry — Ry be a non-decreasing function such that ®(0) = 0. For n observations X; by P, we
measure performance of an estimator 6,,(X1,...,X,) by

ISDEI;EX{%\JP [‘I’ (d(@(X{L),H(P)))} :

The minimax risk for estimation is given by

M, (P, @ o d) = inf sup Bp [@ (d(@(X{L), 9(13)))} ,

where the infimum is taken over all measurable functions of X7, ..., X,.
For parts (a)-(b), you may give a concise derivation based on results from class.

(a) Derive Le Cam’s method: for any fixed 6 > 0, and Py, P_; € P such that d(6(P1),0(P-1)) > 20,

(%)

M, (P, ®od) > N (1- HP{I_PLHHTV)'

(b) Derive Assouad’s method. Let V := {—1, +1}¢ be the binary hypercube, and let {P"},cy be a
collection of distributions on X7'. We say { P} },cy is 0-separated in the Hamming distance if
there exists a mapping v : © — V such that

d
@ (d(0,0(P.)) = 83 1{8(0); # vj}
j=1

n . _1 n n ._ _1 n
Define PY; := 57 Zm}j:l P} and P"; = o Ew)j:_l P. Then, we have

M=

5 n n
M, (P,Pod) > ij 1 (1 - HP+J' - P*jHTV)

whenever {P)'},cy is d-separated in Hamming distance.



(c) Consider the normal location model P,> := {N(6,0%I) : € RY}, where I is the d-by-d
dimensional identity matrix, and ¢? > 0 is a fixed variance. We're interested in estimating the
location parameter 6 in the squared Euclidean distance HH% Show the following lower bound

o, (P 1) 2 92 0

_ﬁ.

(d) Argue that the lower bound is tight up to numerical constants.

Question 2.2 (Differentially private estimation (50 points)):  We study estimation under a
privacy constraint, when the data collector cannot be trusted with sensitive information. Instead
of observing true data X; € X, a perturbed version Z; € Z is viewed; given X = x, we write
Z ~Q(|X =), and call Q a “channel”. For a > 0, we say Z; is a-differentially private if for
any measurable subset A C Z and any pair z,2’ € X,

QZeA|X =z)
QZecA|X=2)

< exp(a). (2)

Intuitively, differential privacy asks that x and 2’ are similarly likely to have generated the observed
signal Z. Letting q(z | ) := Q(Z = z | X = x) be the conditional density of Z | X, the condition
is equivalent to g((zj‘;,)) < e® for all x,2' € X, and almost surely all z € Z. In what follows, we
assume o < 1.

As we will show, differential privacy acts as a contraction on probabilities. For arbitrary prob-
abilities P, P» on X, let densities p; and ps be their densities w.r.t. a base measure u; you may

treat this as a continuous density for convenience. Define the marginal distributions

Mi(Z € A) = /X QZ € A| X = p)ps(@)du(z), ic{1,2}.

We will prove there is a universal (numerical) constant C' < oo such that for any P, P,
Dig (Mi]| M) + Dig (Mo M;) < C(e = 1)* | P = Po7y - (3)

We show this result assuming Z = {1,..., k} for some finite & € N; this is without loss of generality,
but you don’t have to justify this.

(a) Recall the definition of the total variation distance ||P1 — Pa||py = supacy {P1(A) — P2(A4)}.
Show [|Py = Pf|py = 5 [ |p1(w) = pa(2)ldp(x)-

(b) Define m;(z) := [q(z | )p;(z)du(x), prove that for a universal constant ¢ < oo,
ma(2) — ma(2)] < efe” 1) inf q(= | @) [P~ Palzy

(c) Show the result when Z = {1,...,k} for some finite k € N.

To see

Hint Use the following simple inequality: for any a,b > 0, we have |log %‘ < m‘iizzf,‘b}'

this, use log(1 + z) < z to note

log + = log (1+ 7 —1) <%0 and logl <Y
b b b a a




We now use the inequality to prove minimax lower bounds for differentially private es-
timation. Consider a survey data on individuals ¢ = 1,...,n, where we ask each individual
about illicit drug use: X; = 1 if person i uses illicit drugs, 0 otherwise (X = {0,1}). Define
(P) = P(X = 1) = Ep[X]. To protect privacy, we perturb each answer X; in a a-differentially
private manner, and use Z;’s as our data.

To make sure everyone feels suitably private, assume o < 1/2; in this case, (e® —1)? < 2a2. Let
Q. be the family of all a-differentially private channels, and let P denote the Bernoulli distributions
with parameter 0(P) = P(X; = 1) € [0,1]. We consider the minimax risk for private estimation of
the proportion 6(P)

~

M, (0(P),|-],a) = inf infsupE ye(zl,...,zn)—a(P)@,
QeQa § Pep

where the infimum is over (differentially private) channels @) and estimators @ and the expectation
is taken with respect to both the X; (according to P) and the Z; (according to Q(- | X;)).

(d) Use Le Cam’s method to argue that whenever Py, P, satisfy |0(Py) — 0(P2)| > 4,

~

J
M, (0(P),|-|,a) := inf inf E||6(Z1,...,Z,) —0(P)|| > = inf [1 — |[|M]" — M} )
(O(P).1-|.0) = jnf inf sup E [1B(Z1..... Z) = 0(P)]] > § jnt (1= |} = M5 [y

Then, use inequality to show that for some universal constant ¢/ > 0.

(e) Give a rate-optimal estimator for this problem. i.e., define a a-differentially private channel @
and an estimator 6 such that E[|0(Z]) — 0]] < C"/Vna?, where C' > 0 is a universal constant.

Hint Consider perturbing the data with probability 1 — ¢, where ¢, = ¢*/(1+€®). Note that
o \2
(2¢0 — 1) 2 = (e H) ~4/a? for a =~ 0.

e*—1

Question 2.3 (Adversarial robustness for linear logistic regression (10 points)):  Consider a
binary classification problem with label y € {—1,+1} and features 2 € R%. We study the logistic
regression loss £(0;x,y) = —logo(yf ' z), where o(a) = m. Derive an alternative form for
the adversarial loss:

max 00;z,y) = —logo (yGT:L“ - e||9||1) .

TERL:||Z—x|| 00 <e
Give an interpretation of this result.

Question 2.4 (ICLR 2020 Vision talk (10 points)):  Watch Ruha Benjamin’s ICLR talk on
“Reimagining the default settings of technology and society” via the url https://iclr.cc/virtual
2020/speaker_3.html. In 2-3 sentences, discuss how this may relate to your research, or other
professional activities.


https://iclr.cc/virtual_2020/speaker_3.html
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