B9145: Reliable Statistical Learning Spring 2023

Lecture 2: Stochastic Gradient Descent
Lecturer: Hongseok Namkoong Scribe: Tianyu Wang

2.1 Proof of Dudley’s entropy integral bound

Theorem 1 (Dudley’s entropy integral). Let {V}, : h € T} be a sub-Gaussian process w.r.t. d on T. For
any 6 € [0, D],

EsupV, <E
heT

sup Vh - Vh/
h,h' €T

D
+ 32/ Vieg N(T,d,e)de
5

/4

<2E [ sup (Vy =Vy)

d(v,y) <8,y €T

Remark 1. Setting 0 = 0 gives Esup,cs Vi, < 32 fooo V0eg N(T,d,e)de. (N(T,d,d) =1 for any 6 > D)

Proof. We begin with the inequality established before:

sup (Vi — Vi) <2 sup (Vy = Vo) +2 max Vg, — Vp,|. (2.1)
h.h'e€T d(y,y)<87,y €T d(y,y) <6 ASA

Instead of bounding the last term via the max lemma, we use a chaining argument.

Recall that U := {h;}}_, is a é-cover of T. For each m = 1,2,..., L, define Uy, := minimal (D2~™)-cover
of U,,_1, where we allow for any element of T to be used in forming the cover.

Since U is finite, for L = [logy(D/6)] such that 271 < &. We can set Uy, = U. By definition, |U,,| <
N(T,d,D2™™). For each m, we define 7, : U — U,, such that 7,,(h) = argming, ., - d(h, iL) Using this, we

can construct a chaining process for any h € U, where we define v, = h, ym—1 = Tm—1(7Vm) recursively for
m=LL-—1,...,2.

By construction, we have the chaining relation:

L
Vi — V’Yl = Z (V’}’m - V’Ym,—l)?

m=2

and therefore, |V}, —V,,| < Zi:z sup,cp,, |Vy = Va,._.(y|- See for an illustration of this setup in Figure 2.1.
Similarly, for any other A’ € T, we have the same bound with ~/,. Therefore, we arrive at:

|Vh — Vh/| = ‘V’h - V’Yi + Vi — V’n +V’Yi — Vh/|
S Vo = Vgl + Ve = Voo [ 4+ [Vy = Vi

L
< max (Vi = V|42 sup [Vy = Vo ),

71,71 €0 =0 VEUm

where we apply the chaining technique for the second and third term in the second inequality. From previous
lemma, we know

D
E| max [V, — V%@ < 2D\/10gN (’T, d, 2).

71,71 €UL
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Figure 2.1: Illustration of the chaining relationship (extracted from Figure 5.3 in Wainwright (2019)

And since max.,cp,, d(v, Tm—1(7)) < D271 and |U,,| < N(T,d, D2~™), we have:

E [hr%axU Vi, — Vh/] <202~V /log N(T,d, D2=™).
h'e

Combining the pieces, we conclude that: E [supy, ey [V — Vir|] < 4 anzl D2=(m=Y log N {T,d, D2-™}.
Since the metric entropy log N(7,d,d) is decreasing in §, we have:

D2—™

D27™\/log N(T,d, D2=™ < 2 / Vlog N(T,d,¢)de.

D2—(m+1)

Therefore, 2E [supy, ey [Va — Vir|] < 32 f5?4 V1og N(T,d,e)de. Combining with Equation (2.1), we get the
result. O

2.2 Stochastic Gradient Descent (SGD)

Definition 1. A function R : R® — R is convex if V0,6’ € R?,
R(t0+ (1 —t)0") <tR(0)+ (1 —t)R(#"),Vt € [0,1].

Lemma 1. Let the function R : R — R be differentiable on the interior of its domain. Then R is convex
iff R(0") > R(0) +VR(0)T (0 —0),V0,0 € RY.

This result shows that in convex functions, first order approximation is a global minimization.

Proof. “If” part: V6,6 € R%, define ; = t0 + (1 — t)¢’. Combining:

%

R(0)
R(9)

R(0:)
R(0:)

VR(0:)" (0 — 6y),

_|_
+VR(,)" (0 - 6,),

%



Lecture 2: Stochastic Gradient Descent 2-3

we have: tR(0) + (1 —t)R(¢') > R(6;) + VR(,) " (t0 + (1 — )0’ — 6,) = R(6,),Vt € [0, 1].

“Only if” part: From the definition of convexity, we have:
R(O+t(0") < R(O) +t(R(O") — R(9))
which is equivalent to saying:

R(0") — R(0) > ~(R(0 + t(6/ — 0)) — R()),Vt € (0,1]

~+ | =

Then letting ¢ — 0 in the right hand side above yields VR(6) " (6" — 6). O

This result shows that in convex functions, first order approximation is a global minimization.

First, we consider mingeg R(f) for R : R? — R differentiable and convex.

Lemma 2 (Optimality Condition). §* = argmingcg R(0) iff VR(0*)T (6 — 6*) > 0,V0 € ©.

Proof. “If” part: From Lemma 1, R(f) — R(6*) > VR(6*)T (0 — 6*) > 0,V0 € ©.

“Only if” part: VR(6*)T (0 — 6*) = lim;—,o 1 (R(6* + t(6 — %)) — R(6*)) > 0,V6 € ©. O
Corollary 1. Let © be a closed convex set in R%. Define the projection operator Ilg(0) = argming ¢ |0 —
0'||2. Then |Te(0) — 0’|, < |6 — 0|, ,V8' € ©,V0 € R4,

Proof. We apply Lemma 2 to R(0') := ||§ — 0'||,. Then V0 € ©, we have:

0< (e(f) —0)" (¢ — ()
= (e (0) — ' + 0 —0)" (¢ — Te(0))
=—[|l0' =TI (0)[l + (¢ — 0) T (¢ — e (0))
< — [0/ = Te(0)]l5 + 116" = 6ll, 16" — TTe (6))]l,

where the last inequality follows by Cauchy-Schwarz inequality. O

Definition 2 (Stochastic Gradient). A stochastic gradient G(0) is a random variable s.t. E[G(0)] = VR().

We study the first-order optimization method based on the stochastic gradient, where the canonical problem
is:
in{EL(0; Z) =: R(A)}.
min {E((6; Z) =: R(6)}
The idea of SGD is to go in the direction of the stochastic gradient, then project to ©.
The algorithm is: let G (0) be a stochastic gradient of R(#). At each iteration k, we set:

Or+1 = He (0 — apGr(0r)), for some stepsize oy > 0.

Note that we are completely assuming that projections are efficient to compute.

We would like to study the convergence of SGD. Assume §* € argmingcg R(f) > —o0 exists.
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Theorem 2. Let © be compact. Assume 3D > 0 s.t. supgeg ||0 — 0|, < D. IM > 0, s.t. EHG(G)Hg <
M? V0 € ©.

Let oy, be the sequence of (decreasing and positive) step sizes, and O = % Zszl 0. Then:

_ D2 mE
E[R(0x) — R(0%)] < i
[R(0K) — R( )]_QKaK+2K

.
k=1

Proof. We expand on the error ||0;4+1 — 0*||§

1 Lo 1 .
5 1541 — 0 I3 = 5 IMe Ok — arG(6r)) — 6 &

IN

1 *
5 106 — arG(6) — 0713

1 3
= 110k = 0713 — ax{G(6r), 61 — %) + Z= G603

1 2
5 16 = 6713 — (Y R(60), 0 — 0°) + S [ GOW)II3 — an(G(0r) = VR(6,), b, — )

A

%nek — 07|l — a(R(0x) — R(6%)) + % IG(O)5 — (G (6r) = VR(6)), 0 — 6,

where the first inequality follows by the non-expansiveness of Ilg in Corollary 1, and the second inequality
follows by convexity of R(-).

Then we divide each side by «ay and rearrange:

* 1 * * QL .
R(O) — R(O0") < 5o (166 = 015~ 160~ 6°13) + S 1GODI5 — (GBx) — VR(B). 05— 6. (22)
Now, note that:
K K
1 |2 a2y Lo e 1 2 11 .
;2% 10k = 07115 = 10041 = 07112) = 5= 101 = 0713 = 50— s — 0 ||2+k222(2ak 5 165 = "1
p: prE& 1 D?
DY P B =
200 2 o o1 20

So summing both sides of Equation (2.2) and taking expectation, we have:

K D2
E[Y  R(6x) — R(6%)] <

k=1

M K K
+5 ;ak - ;MG(% — VR(0k)), 0 — 07)

And notice:
E[(G(0k — VR(0k)), 0 — 07)] = E[E[(G(0r — VR(6k)), Ok — 07)[0k]]
= E[(E[G(6k)|0k] — VR(0k), 0k — 07)] =

— 2«

result. O

Then we get E[Zle R(0) — R(6%)] < % + MTzak. And notice R(fx) < + Zﬁil R(6x), we would get the

Corollary 2. If we choose the step size ay = ML\/E’ then ER(Ox) — R(0*) < Z?/M
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Proof. Noticing Zszl ﬁ < fOK %dt = 2K, therefore applying the result in Theorem 2, we have:

. 3DM _ DM DM
2K T 2VK VK

ER(0x) — R(60%)

O

Remark 2. We can think of K as the number of access to the gradient oracle. If G(0) = Vol(0;£(6; Z;)),
then K is the number of samples.

Remark 3. Often, we iterate through data C times. This gives gains on the empirical loss. But the
population loss-wise, theory doesn’t give gains as C grows. In fact, we cannot do better and we will show this
through information theoretical minimazx bound next class.

We refer the detailed notes of minimax analysis of stochastic optimization to Chapter 5 in ( ).
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