Lecture 2

COVARIATE AND LABEL SHIFTS
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Goals for today

Define covariate shifts + label shift

Understand importance-weighting estimators

Know how covariate shifts relate to spurious correlations



Motivating example

(Recap): Medical example of surgical skin markers

[A] unmarked benign [B] Marked benign [c] cropped benign
Training data: image with markings Test data: image without markings

Key point: the removal of features (marker) leads to performance loss



Another example

New example: Is it malaria?

Training data: from the north pole Test data: from the amazon

Key point: disease prevalence change results in different predictions



One final example

v

™

Grapefruit consumption

Longevity?
Statins
Training data: no statins Test data: statins

Key point: correlations between features and labels differ



Taxonomy of distribution shifts (non-exhaustive)

Covariate shift
* Theinputdistribution changes, labels given inputs does not.
* Litmus test: Is there a single predictor that does well on train and test?

@ @ Label (prior probability ) shift
b g’

* Theonly change is to the label frequency.

@ @ + Litmus test: Is the optimal predictor the same up to label frequency?
‘ ' ‘ Concept drift

Grapefruit consumption

Longewty’ *  The prediction function changes from train to test, the inputs do not.
. *  Litmus test: is the optimal predictor different?

Statins



Definition: covariate shift

m Unmarked benign nevus Marked benign nevus @ Cropped benign nevus image

Recall our example:

Representing this shift:

Removed marker, rest remains the same




Defining covariate shift

Representing this shift: @

Drest (cancer,image, marker) = }@

Pirain(Cancer|image, marker)p;.s: (image, marker) l

Definition:

A prediction problem x — y is called a covariate shift whenever the
training distribution p;,4i, and test distribution p;,¢: follows

ptest(ylx) = ptrain(Y|x) Deest(X) # Perain(X)

- J

(some texts also require that x — y be the true data generating distribution)




Covariate shifts in machine learning

Why is covariate shift so important?
1. Prediction problems fit well with covariate shift.

Supervised learning: estimate p(y|x)
Covariate shift: p(y|x) remains fixed

2. Annotator-driven data collection

p(y|x) - defined by annotators

Fixed annotators — covariate shift




Bayes optimal predictor remains identical

Bayes optimal predictor depends only on p(y|x), which doesn’t change

y

Storkey 2009



More examples of covariate shift in ML

Covariate shift due to human annotators

Object detection

1. @username R u a wizard or wat gan sef: in d mornin -
u tweet, afternoon - u tweet, nyt gan u dey tweet. beta
get ur IT placement wiv twitter

2. Be the lord lantern jaysus me heart after that match!!!

3. Aku hanya mengagumimu dari jauh sekarang . RDK
({}) * last tweet about you -_- , maybe

Figure 1: Challenges for socially-equitable LID in Twitter
include dialectal text, shown from Nigeria (#1) and Ireland
(#2), and multilingual text (Indonesian and English) in #3.

Language identification

Premise:
The economy could be still better.

Hypothesis:

The economy has never been better

Entailment

Other covariate shifts

Tumor detection (marker)

iy

Style changes




Definition: label shift

Recall the example:

Ptest (malaria, Symptoms) =
Derain (Symptoms|malaria)p;.s;(malaria)

Malaria

A prediction problem x — y is called a label shift whenever the
training distribution p;,4in, and test distribution p;,; follows

Definition:

k Ptest (x |}’) = Ptrain (x |.V) Dtest (V) # Derain (y)

(also called prior probability shift)
(some texts also require that y — x be the true data generating distribution)



Label shifts in machine learning and examples

Medical diagnostics Label-driven-data collection

Labels Image
(flickr tag) -

=R DOG —

Diseases (y) cause symptoms (x) Labels (y) are under selection bias

Label shifts for ‘deterministic’ predictions problems are also covariate shifts.



Sometimes label shifts are also covariate shifts

Labels Image
(flickr tag) T

DOG +«—

Covariate shift because.. Label shift shift because..
Ptest V1X) = Derain(y|x) Deest (X|Y) = Derain(x|y)
From a deterministic labeling map From selection on the tags

In these cases we can pick the easier type of shift (often label)



Covariate + label shift: summary

1. Covariate and label shifts are defined by what stays fixed

Covariate shift Label shift

Deest V%) = Perain(¥Ix) Deest (X|Y) = Derain(x|y)

2. Misspecification is key to covariate shift

3. These categories are flexible - some distributions can be both covariate + label shift

Labels Image
(flickr tag)

DOG




Reweighting: setup
How do we deal with covariate / label shifts?

What we can compute

Eptrain [{ (Z; 0)]

The loss function £ computed on examples z := (x, y)

and model 8 where z comes from ps-4in

What we want

Eptest [f(Z; 0)]



Reweighting

How do we deal with covariate / label shifts?

What we have What we want

ptram [‘B(Z 6)] ptest [f(Z 0)]

Most basic approach: reweight the loss

ptest(Z) f( 0)]

Ptrain L? train(2)

[£(z; 0)]

pt st

Weighted loss over the

training distribution .
(also possible: resample the dataset)



On the importance of overlap

High level idea: Ptest
N
S
1. Computeh = Prest Y Ptrain
. Dtrain -
2. Reweight the loss. PR '-
\N/ L}
<
Z
What can go wrong?
Z

Reweighting requires substantial overlap



Variance bounds

Variance bounds show this formally.

Let h(Z) = ptLt(z)

Ptrain(2)

Var[h(z)(z; 0)] = Var(€(z; 0)) + Ep,, ., [(h(2) — 1)¢(z;6)?]
Note: E.

Dtest

[A(2)] > 1
By Holder’s inequality
<Var(£(z;0)) + (|h(2D|w — DE,,,_[€(z; 6)?]

Test dist. variance Importance weight size

Remember: |h(z)|, — oo with decreasing overlap



Handling covariate shift: a simple algorithm

A proto-algorithm to handle covariate shift:

If we have unlabeled data from the test distribution,

1.Estimate the density piest (X) and pergin (X)

2.Reweight by h(x) = Pest(X)

Ptrain(X)

3.Fit a model by minimizing the loss h(x)£(x, y; 8) B e,

Improving predictive inference under covariate shift by
weighting the log-likelihood function

Hidetoshi Shimodaira *
The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan

Received 17 December 1998; received in revised form 21 January; accepted 25 February 2000




Using discriminators for the same task

Density estimation is very hard, and classification might be easier

An alternative algorithm: use a classifier that separates p;rqin aNd Diest

Ptrain(x)
Ptest(x) tPtrain(x)

1.Estimate a classifier f(x) =

2.Reweight by h(x) = % -1

3.Fit a model by minimizing the loss h(x)€(x, y; 0)

Discriminative Learning for Differing
Training and Test Distributions

Steffen Bickel
Michael Briickner

Tobias Scheffer

Max Planck Institute for Computer Science, Saarbriicken, Germany




Handling covariate shift: challenges
Inputs are often high-dim (hard to find overlap)

Mental model (low dim, high overlap) Reality (high dim, no overlap)
Dogs

mhes ) dogs

Z

Issues inherent to covariate shift

Tradeoff between high overlap, non-covariate shift and no overlap covariate shift



Handling label shift

If we have unlabeled data from the test distribution,

1.Estimate the density piess (V) and pirqin ()
. _ DPtest(y)
2.Reweight by h(y) = ——o

3.Fit a model by minimizing the loss h(y)£(x,y; 8)

Challenge: we don’t have the label distribution



A label distribution estimator

Basic idea: use a predicted labels y := f(x) to get a good estimate.

Confusion matrix
Ci,j = Perain(y =LY = J)

Notice that
ptest(y = ]) = Z ptest(y = ]ly = i)ptest(y = i)
= 2 ptrain(y = ]ly = i)ptest(y = i) Deest F|Y)

l = p(Flx)p(xly)
= Dtrain J|Y)

_ z Ci,jptest(y =1i)
Ptrain(y = 1)



Plug-in estimate for label bias correction

If we have unlabeled data from the test distribution,

1.Make an estimator f(x) on the training set
2.Compute the confusion matrix C on the training set
3.Estimate the density pses: (f(x)) On the test set
4.Reweight by h(y) = C™'prese (9)

5.Fit a model by minimizing the loss h(y)£(x, y; 8)

NOTE Ce i by Leo Breiman

Adjusting the Outputs of a Classifier to New a Priori
Probabilities: A Simple Procedure

Marco Saerens
saerens@ulb.ac.be

Intuition: confusion matrix remains fixed T A ——

and SmalS-MvM, Research Section, Brussels, Belgium

[Lipton 2018, Saerens 2002]



An alternative, EM based label shift estimator

What is the log-likelihood of observing x ~ pyegt?

Elog Y:0train(x|¥)Ptest (V)]

Idea: maximize the log-likelihood with respect to psest (V)
Algorithm: fortin0... T

t
1. E-step: qt(y|x) « 1)

; X
Derain(¥) Ptrain (yl )
2. M-step: q“*'(y) = E[q"(y|x)] o
Adjusting the Outputs of a Classifier to New a Priori
Probabilities: A Simple Procedure
(Clever trick here: we don’t need to instantiate pyqin (x|¥)) e s

Bruxelles, B-1050 Brussels, Belgium,
and SmalS-MvM, Research Section, Brussels, Belgit

[Saerens 2002]



ik
Summary: reweighting

1. Reweighting is a basic but widely applicable way of handling distribution shifts

[£(z; 0)]

pt st

ptest(Z) f( 0)]

Ptrain L? train(2)

2. Overlap is extremely important for the success of reweighting methods

L
»
u
x
g
U
R4
‘0
.

3. Key task: estimating the probability ratio. We covered 4 basic approaches.

Z

Covariate shift Label shift

Direct density estimate Discriminative Plug-in estimate EM/Likelihood



Beyond covariate and label shifts
What if a distribution is neither covariate or label shift?

o —©@

Grapefruit consumption Longewty’

Statins

Drest (longevity|grapefruit) # p;,qin (longevity|grapefruit)

Ptest (grapefFUit) = Ptrain(grapefruit)

Note: often a catch-all, and also very difficult to deal with



Concept shift and unobserved confounding

Concept shifts usually arise from unobserved features:

o —©

Grapefruit consumption Longewty"

Statins

p(longevity| grapefruit, statins) is fixed
p(longevity| grapefruit) is not fixed

In the sample selection bias case: we select on unmeasured features

In the environment change case: label y is affected by unmeasured features



Spurious correlations: getting the model involved

Thus far: statins are treated as unobserved.

o —©

Grapefruit consumption LongeVIty"

Statins

Next: What if our model doesn’t use the ‘right’ features?

If our learning algorithm ignores statins,
it doesn’t matter that its observed in the dataset



Spurious correlations

Definition (just for this class)

. . . . )
A learning algorithm L learns a spurious correlation for a
distribution shift if
Derain @Nd pregt Satisfy the covariate shift assumption
- L outputs different predictors on piqin and Peest )

Example: | og:

_—— i ) S e 2 - -

Important notes:
- No consensus definition in the field

“Outputs different predictors” is likely too strong
- Not always possible to avoid or mitigate



Examples of spurious correlation.

Watermarks Surgical markers Fishing boat identity

\ &

(a) Eye without mascara (b) Eye with mascara



Recap: covariate + label shifts

 Covariate and label shift definitions:
Covariate shift Label shift

Deest V%) = Derain(¥Ix) Deest (X|Y) = Derain(x|y)
* Reweighting (key part: estimating h)
pteSt(Z) f( 8)] pt t ‘g(z; 9)]

Ptrain lp tram(z)

» Spurious correlations and concept shift (hard to handle!)

Y o
__{;_O i OIS > RN, f ©




Lecture 3

DOMAIN DISTANCES AND H-DELTA-H

CS329D



Goals for today

Understand divergence based adaptation bounds

Be able to state H-delta-H guarantees and limitations

Know about transformation-based approaches to domain adaptation



Our setting: unsupervised domain adaptation
Task: identifying digits from images

Training data Test domains
MNIST USPS SVHN

4 % 2(IEZIN !

Bl
T P

BEHEE
[T s e




Another common scenario: sim to real transfer

Task: identifying cars in a video

Training data (GTA) Test data (real world)

-




Problem definition: unsupervised domain adaptation

Task: prediction problem x — y, model class 8 € H with loss #(x,y, 8)
Given: supervised data (x,y) ~ P¢rqin @and unlabeled data x” ~ piegt

Goal: Minimize the expected loss
Eptest [f(x’ Y 0)]

Assumption: Covariate shift
Pirain(V1X) = Prest (V]%)



S, P B P, L —S
Starting point: reweighting

Recall: reweighting the loss

High level idea: Dtest

N\

=
1. Estimateh = 2test ISY train

Ptrain "

2. Minimize h(x)¥(x,y,0) — E

RaJ

=




Starting point: Reweighting without overlap

Consider the following situation:

Ptest

Ptrain

p(x)

h(x)

Prest (X) _
—_— =00
Ptrain (x)

Reweighting estimators blow up without overlap



We should be able to learn without overlap

Is the situation hopeless? No! We need to go beyond reweighting

What if this is a classification problem?

Ptest

Ptrain

p(x)

? X

Non-overlapping part is at most € probability

Key observation: even if we have 100% error rate, this increases error by at most €

Our hope: Test error = Train error + €



Going beyond reweighting.

Reweighting

adjust pgrqin to match pioqr at all costs

IPMs (next up)

how bad do we do if we ignore the mismatch?

Note: we’re going to focus on classification for the rest of this lecture



Background material: integral probability measures

To state this clearly, we need to first go into some background.

Definition (IPM):

4 For two probability distributions p and g, the integral probability A

metric (IPM) for a family of functions F is defined as

de(p,q) = ?2313 |Eplf ()] — Eq[f ()] |

-

Intuition: F are ‘test functions’ that can distinguish p and g

If two have the same function value for all F, then they are similar



Important examples of IPMs

IPMs occur in many different areas of ML!

Class F

IPM

Bounded functionsin [0,1]

Lipschitz continuous functions

Reproducing kernel Hilbert spaces

Bounded and Lipschitz functions

Total variation

Wasserstein distances

Maximum mean discrepancy (MMD)

Dudly metric



Domain adaptation under small IPM

What we want What we have Domain distance

/
Eptest [{(X, Y 9)] = Eptrain [{(X, Y 9)] +4

From the trivial restatement

A= Eptest[f(x’ Y 0)] N Eptrain [f(x’ Y 8)]
This looks like an IPM! (if £(x,y,0) € F forall 6)

A= ?EJJB EpteSt [f(x’ y)] — Eptrain [f(x; Y)] = d}" (ptrainr ptest)

Takeaway: IPMs bound excess error under transfer



Key idea: distinguishability bound approximation error

Let’s apply this to unsupervised domain adaptation for classification.

Eptest [f(x’ Y 9)] = Eptrain [f(x’ Y 9)] +A

A= Ex"‘ptest [EY|X[£(-X! Y, 0)]] _ Ex"’ptrain [EY|x[£(x’ Y 0)]]

f(x)

Notice 0 < Ey[£(x,y,8)] < 1 for classification (zero-one loss).
If we pick F as the bounded functions..

A<dgf (ptrain,ptest) = ||ptrain (x) — ptest(x)lll



IPM based bound on target domain performance

We can now bound test performance in terms of IPMs

For0 < ¢(x,y,6) < 1 and under covariate shift,

Eptest [’e(x; }’, 9)] S Eptrain [1,0(.7(,', yr 9)] + | |ptrain (X) — ptest (X) | |1

Ptest
I I Ptrain
— — X

V

| |ptrain (x) — DPtest (x) | |

p(x)




Compare and contrast with reweighting based ideas

Reweighting IPM
Goals Correct train-test mismatch Estimate train-test mismatch
Assumptions Overlap Boundedness
Training Weighted/modified loss No change
Costs More samples (variance) Inaccurate models (bias)




Beyond IPMs : using the model class

@ T
0 s

The current story:
Cost of domain shift = L, distinguishability

L, is extremely pessimistic

HAH = 1.0

Idea:
Can we get bounds for our hypothesis class?

0oe
[V

Intuition:
Domains that ‘look similar’ to our classifier
should result in similar performance




From IPM to HAH

In the IPM case,

A= Ex"'ptest [EJ’|x [‘B(x’ Y 0)]] o Ex~ptrain [EY|x[£(x’ Y 8)]]
fx)
Interpreting: f(x) is the error at a point x

we can think of this as the ‘disagreement’ between our classifier 6
and the ground truth

What should our f(x) family look like for a hypothesis class H?

Answer: disagreement between any two elements h, h' € H



Defining HAH

For a hypothesis class H', the HAH set is defined as the symmetric difference

+ .
Symmetric

difference

+ >

h?
Definition (HAH): h
K

For a hypothesis class H, the symmetric difference set HAH is
defined as

HAH := {g: g(x) = XOR(h(x),h'(x)) and h, h’ € 3}
N W,




HAH as a divergence

Now we can treat HAH as a function class, and define a (pseudo) metric

Definition (HAH-divergence [Ben-David]):

For a hypothesis class H, the HAH-divergence is

dHAH(ptram» ptest) = 2 sup | Ptrain g(x)] Ptest g(x)]l
- J

Interpretation: g € HAH is the disagreement between a model h and h’

If a model h and h' agree on the training set, do they have to agree on the test set?



Examples of HAH @ Target data
[[J] Source data

Key example for intuition

h : blue classifier
h': red classifier

On Ptrain On Ptest

Perfect agreement 0% agreement

Eptrain [g(X)] =0 Eptest [g(X)] =1

1
EdHAH(ptrainr ptest) =1 (VaCUOUS!) Redko 2020



Some more intuition

@ Targetdata
[0 Source data

What is dy,y measuring?

- &
Two classifiers that agree on training set Y o
‘ /\\
Do they agree on the test set? %s*
of ’, )

Why is this a useful notion of domain similarity?

Compare with IPMs:
Lq: Disagreement over all possible classifiers
dyay: Disagreement over IPMs



More examples of HAH

Linear case

Nonlinear

HAH = 0.0

HAH = 1.0

°® [ )

@ Target data
O Source data

HAH = 0.0

HAH = 0.13

@ Target data
[ Source data

Redko 2020




HAH bounds error differences

We can now use dyay to bound our error. For any hypotheses h and h', define the

Disagreement:
ep(h,h') = E,[|h(x) — h'(x)]]

Disagreement gap:

1
|Eptrain (h’ h,) o Eptest (h’ h,)l = E dHAH (ptrainr ptest)

Interpretation: if h and h' perform similarly on the training set, they will
also perform similarly on the test set (up to an error of dyay (Perain, Prest) )



Basic H-delta-H domain adaptation bound

This (bounding the error gap) is enough to get full error bounds:

HAH-generalization (Adapted from [Ben-David]):
/For a classifier h € H and any covariate shift \

Eptest [f(x’ Y h)]

1
< EPtrain [£(x,y, )] + ) duan Perain Drest) + 4

\ where A = hlgjf[ ptrain(y i h(x)) + Drest (y # h(x)) /

Techinque: apply error difference bound on the optimal classifier h*



Let’s walk through the proof

Eprese €06 Y, D] < Ep o, [£06, 7, hO] + €y (B R

| |
Error relative to h* = Ep,,.. [1R(x) — h*(x)]]

dyan step

Triangle
inequality

= EptGSt [f(x’ Y h*)] + Eptrain(h’ h*) + |Eptest(h’ h*) — Eptrain(h’ h*)

1
S Eptest [f(x’ y’ h*)] + Eptrain(h’ h*) + EdHAH (ptrain' ptest)

1
|Eptmin (h,h") — Eppose (T h')l < ) duan (Perain Prest)

1
S Eptest ['e(xr y; h*)] + Eptr'ai‘n ['f(x, yr h*)] + Ept-,-ain [f(x, y; h )] + E dHAH (ptrain; ptest)
|

Y
EpirainlIN(x) = KOl < By, [IRF ) =yl + By, LRG0 =y



What are these terms?

Let’s walk through the main bound.

Eptest [‘B(x’ Y h)]

1
= Eptrain [£(x,y, )] + EdHAH (Dtrains Pest) + A
/ 7
Training domain error Domain distinguishability

Minimal error of a classifier on both domains

A= hlél}f[ ptrain(y + h(x)) + Drese (Y # h(x))

HAH claim: Low training domain error + low HAH divergence + rich
= good generalization to target domain



Recap: HAH and divergences

What we covered:
* IPMs and divergences: a way to characterize errors under shifts

* L, bounds: widely applicable but wildly pessimistic

* HAH-Divergence: classifier specific notion of domain similarity

Up next:
* Build intuition by studying each of the terms

* Alternatives to domain-divergence methods



L
What’s HAH good for?

There’s several things we might want to try..

Understand tradeoffs:
When we vary the hypothesis class and inputs what happens to each term?

Directly optimize the bound:
Can we perform model/feature selection to find models that generalize?

Quantify [ estimate model performance:
Can we estimate the performance of models by estimating HAH?

Spoiler: not all of these are possible



Accuracy-distinguishability tradeoffs

What are the components?

Training error: £, . [{(x,y, h)]
1
HAH: E dHAH (ptrainr ptest)

Optimal error: hlgjf[ ptrain(y * h(x)) + Prest(y # h(x))

What can we vary?

Model complexity (H)



Varying training domain accuracy

Training domain error: £, . [{(x,y,h)]

Error

____—~ (finite train data)

(assuming infinite training domain data)

Model complexity



Varying HAH

1
HAH: > Ayay (ptrainr ptest)

HAH
dyay is upper bounded by the L; distance

/ dyay increases monotonically with
model complexity. If H ¢ H',

0 dyang < Ay’ pn’
Model complexity




Controlling 1

Optimal error: hlélgf[ ptrain(y * h(x)) + Drest (y # h(x))

No good

models exist Effective domain adaptation possible

Error

Ais a goodness of fit measure
(behave similarly to train error)

----------------------------------- Bayes error

Typical assumption:
Model complexity A is small, on the order of train error




Can we use HAH to build better models?

To find the optimal tradeoff,

Upper Optimal complexity We must balance decreasing terms:

bound

Train Errorand 14

HAH Against the increasing term

Train Error HAH

Lambda

How can we measure HAH and A?

Model complexity



Estimating HAH

Key question: can we estimate HAH from samples?

dHAH(ptram» ptest) =2 sup | Ptrain g(x)] Ptest['g(x)]l
gEHAH

A natural finite sample estimator

dHAH (Dtrains Prest) = 2 sSup | Dntrain g ()] — pn test Lg ()] |
gEHAH
f f

True positive rate False positive rate

Estimated by max-accuracy classifier
= TPR — FPR = 2Accuracy — 1



Procedure for estimating dyay

Estimating this in practice? Similar to GAN type setups

1. Setup a mixed dataset with 50-50 split from p¢rqin and Peest
2. Train a classifier (with hypothesis class HAH!) to minimize error

3. Held-out error serves as a high-probability upper bound on dyay.

(Or use VC-dimension bounds)



Background: VC dimension bound

What we have: reduction of HAH and an estimator.

How good is our estimator with m samples:

VC-Dimension bound

/Let h € H be a classifier in a hypothesis space with VC dimension \
VC(H). Then for § € (0,1) with probability at least 1 — § in the m-
sample draw (x,y) ~ p and uniformly in h,

(y # h( ))<1i1 + |2 e 0g-2 1 10g
p y X — m & h(x,:)=yi m ( Og VC(:]_[) Og 6)
1=

o J




Main HAH result

Putting it all together: use VC dimension bound to make HAH observable.

HAH bound (Theorem 2 in Blitzer)

Let h € H be a classifier in a hypothesis space with VC dimension \
VC(H). Then for § € (0,1) with probability at least 1 — § in the

draw m-sample draw (x, y) ~ D¢rgin @aNd X ~ Doy and uniformly

in h,

1.
Eptest [f(x’ Y h) ] = Eptrain [‘B(X, Y, h)] + E dHAH (ptrainr ptest) +A+c

2VC(H)log(2m) + logé
c=4

N i )




Onward model selection: collapsing the input features

Our idea: use our HAH to transform our inputs to have a smaller dypy.

Now think about: domain adaptation + covariate shift, where piyqin (V) = Prest (V).

.. N
]
Large HAH

/ (due to no change in p(y))
- test

Xtest

Near zero HAH




Why does this fail?

‘Typical’ assumption:
A < Train error+HAH (otherwise domain adaptation is impossible)

What about our case?:

A= ﬁggf[ ptrain(y * h(x)) + Dtese (¥ # h(x))

Test domain error: hlg}f[ Prest V # h(f (x)))

Potentially very large if f (x) is not good on p;.q¢

Ignoring A leads to bounds that are far too optimistic



How can we avoid the problems from lambda?

LEARNING BOUNDS

REFERENCE TASK FRAMEWORK DIVERGENCE LINK NON-ESTIM.
[Ben-David et al., 2007] = . . . .
[Bize . 008] Binary ve o Al - Consider different settings (ensemblin
classification

[Ben-David et al., 2010a]

[Mansour et al., 2009a] oot Rademacher Discrepancy Add. + classifie rS) [ Mansour+ 2008 , 200 9]

[Kuroki et al., 2019] Classi ion Rad h (S-)Discrepancy Add. +

[Cortes et al., 2010]
[Cortes and Mohri, 2014] R ion Rads h
[Cortes et al., 2015]

e ey Clsieton - - I - Consider small amounts of target domain data

(Generalized)

Discrepancy Gl +

Regression
[Mansour et al., 2009b] Classification/ ol
[Hoffman et al., 2018] Regression - Rényi L -
Dhouib and Redko, 2018 Bty clas tication’ = L x® Mult. +
X

Similarity learning

T T R T T e - Consider broad function classes [Zhang+ 2013]

[Zhang et al., 2012] Cﬁzsgs‘:"';j:t’l‘l‘)’n enug;‘;fg:‘;ber IPM Add. -
[Redko, 2015] Reg ion Rad h IPM/MMD Add. +
[Redko et al., 2017] Regression - IPM/Wassertein Add. + .
BR— s Eae— . . - Assume overlap [Mansour and Schain 2014]
classification
[Dhouib et al., 2020b] Binzgc‘;’;:;:igé :lion - IPM/minimax Wasserstein ~ Add. +
[Johansson et al., 2019] Classification - IPM Add. + . . . .
[Shen tal, 2018 Clasifcaton - —— - Make stronger assumptions on the distribution
[Courty et al., 2017] Classification - ‘Wasserstein Add. + .
[Germain et al., 2013] Classification PAC-Bayes Domain disagreement Add. + S h Ift ( u p n eXt)
[Germain et al., 2016] Classification PAC-Bayes [-divergence Mult. +

Redko+ 2020



Recap: UDA with H-delta-H
- Divergence based bounds. For any bounded loss,
ptest[f(x y’ 0)] ptram [f(x y' 9)] + ||ptram(x) ptest(x)lll

- HAH (basic bound).
ptest [f(x Y h) ] Ptram [f(x Y, h)] + = dHAH (ptram» ptest) + A

- Understanding the 3 different terms.
- Source error: measurable on data, monotone decreasing with complexity
- HAH: measurable via VC-bound, monotone increasing
- A:not measurable, monotone decreasing with complexity.



Ideas beyond domain distances and reweighting

This is a bad situation for HAH and reweighting
- Zero overlap (different styles)

- Distinguishable by almost any modern CNN

Are things hopeless?



Feasibility of domain adaptation in this setting

Motivation: It should be possible to do well here
(so the bounds are incomplete)

Transform

If there exist simple transformations
between domains, can we say anything?



Translation: a naive proposal

Inputs
...... L ..".--'-""“'“---...___...
+ ++ Qt - [SX6)
(e]oXe]
- T+
+ ____________________________________
+ +
L
++++ . ++ Class 1
o % OO Class2
Cg o +b Samples x3
o & O} Samples xf
© — Classifier onx}

Mapping

After mapping

— Classifier on T, (x})




Interpretation via the HAH bound

Translated

Input

Q, oo
F+ t o

Source error Small Small
dyan Huge (= 1) Near-zero
A Small Possibly large

Note: 4 is small if translation ‘preserves’ the conditional



Preserving the conditional
Conditional-preserving translation:

Testdata Train data Label
Source error = Test error
"‘,f.:;l [\( : > 2

f(x) A ~ 2 Source error

Other translation

Testdata Train data Label :
‘ , No single model works well
- ' .

Ptrain ()’lx)

> 4
Ptest (V]x)

Test error >> Source error




Can we get guarantees for transformations?

When can we guarantee conditional preservation?
Only under strong conditions..

* Known family of transformations (e.g. PSD linear transforms)

* Explicit pairings / supervision given about the transformation

In practice..

Style transfer models and such are used.
Implicitly relies upon inductive bias of CNNs



Transformations and relations to reweighting

Reweighting _ 1
Change the frequency of points < V| pean
Ptest x
2
X
2 Ptrain
Transformation/Translation =
Change the location of points X

Ptest

Not uniquely identified

p(x)

Reweighting/Transformation: bias correction strategies.
IPM/HAH : measuring errors due to remaining bias



Recap: transformation based methods

Many domains admit simple transformations

Transform

—

A complementary bias-mitigation strategy to reweighting

p(x)

Ptrai

=2 Ptrain T
N
S .
.
X
Pt
Dtes
~
=
R
QU

ﬁ est

p(x)




Other paradigms for this setting

- Self-training [Habrard+ 2013], more modern work by [Wei+ 2020]

Model O

o0 000

Model 1

- Ensembling [Mansour 2008+] and others

For more: “A survey on domain adaptation theory” by Redko+ 2020
Or “A survey of unsupervised deep domain adaptation” by Wilson+ 2020



Theory to practice - where does this stuff appear?

DANN Unsupervised translation methods
(domain adversarial neural nets) (e.g. PixelDA, CycleGAN)

Adversarial + translation methods
(e.g., CyCADA)

More recently - combination of these methods + self-training



Overall summary

 Divergence, IPMs, and HAH

ptest[f(x y’ 0)] ptram [f(x y' 9)] + ||ptram(x) ptest(x)lll

 Limitations of HAH

ptest [£(x,y,h) | < ptmm [£Cx,y, )] + = dHAH (Ptrain, Prest) T 4

Translation as an alternative to reweighting

X
Dtest

p(x) p(x)
»
p(x)
e
=

p(x)

[ ]




Reminders:

* Nextdiscussion

Domain adaptation and translation papers
« Assighments

Remember to prepare/submit summaries!
* Project

Project outline due Oct 25



Lecture 4

NEURAL METHODS FOR DOMAIN ADAPTATION (|)

CS329D



Goals for today

Understand the basic DANN architecture + variations

Connect unsupervised mappings (CycleGAN) to domain adaptation

Know the conceptual / theory foundations of these methods



Domain adaptation in the wild (images)

Training data Test domains
MNIST USPS SVHN

aid 2(NIEZN !

Previous lectures:

Theory of unsupervised
domain adaptation

EMlo] T
Higl: .
HEEN
[l Emos e

This lecture:

Building systems that work
on ‘real’ problems

Test data (real world)

Notable features:
- Nooverlap
- High dimensions



Solving these more sophisticated problems

The big difference in this lecture:

Bounded VC dim (theory land) > Neural methods

We have to use neural methods to get decent performance

New challenges:

Distinguishability / HAH : Almost always vacuous

Translations / mappings : Underdetermined



Outline

We will cover two major families of methods
Domain invariance

Based on the Ben-David HAH style distinguishability bounds
Domain mapping

Based on the “Optimal Transport for Domain Adaptation” style direct mapping

There are other approaches (self-training, self-supervision) that we cover next lecture



Starting point: HAH style bounds.

HAH-generalization (Adapted from [Ben-David]):
/For a classifierh € H and any covariate shift \

Eptest [f(x’ Y h)]

1
< Eprain [£(x,y,h)] + 2 dupr Derains Prest) + A

\ where 1 = hlgjf[ ptrain(y F h(x)) + Drest (Y # h(x)) /

The dilemma:

Neural nets are needed to optimize £, . [£(x,y,h)] and A

1
Neural nets have vacuous gdHAH (Ptrain, Prest)



Key idea: measure invariance on representations

Consider invariance of representations

o
|
Large HAH

/’

(possibly) small HAH

Key point:
Neural networks (usually) have a linear layer at the end.
HAH can likely be made small on this last layer.



Domain invariance

Intuition from lecture 1:

Desaturate

Training
(blf@NIng 4
(blue)

Face
recognition
4

n

Testing @ #

(orange) £
Testing #
(orange%

Guiding principle: Encourage the model to learn ‘invariant’ representations



How can we optimize each term?

New setup: learn a hypothesis h and feature map T to minimize

Recall the bound: Notation: T#p is the pushforward of p

1
Eptest ['g(T(x)' yr h)] S Eptrain [’B(T(X), y; h)] + E dHAH (T#ptrain; T#ptest) + AT

How do we optimize? / / \

Training domain error Domain distinguishability Min joint error

Ignore it

Optimize normally m (pray it’s small)

A= inf Perain(y # h(0)) + Prese(y # h(x))



Minimizing HAH
Recall that HAH can be estimated as accuracy

Auyan (TH#Dtrain, THDtest) = 2 EEIA)HlEp"’tmi" [g(T(x))] — Epn,test lg (T(x))]l
g

Domain invariance objective (general form)

inf sup E, . [6(T(x),y, W]+ |Ep, .. [9(TCD] = Ep, .. [g(TCD]| + A7

T)hgeHAH

[ f f f

Training domain error Accuracy of distinguishing domains lgnore

This is a minimax optimization problem (generally bad news)



Background: adversarial neural methods

Domain invariance takes the form of an adversarial game

inf sup E, . [2(T(x),y, W]+ |Ep, 1ain 9T D] = Ep, oo [9(T )]

T)hgeHAH

T, h: ‘min’ player (goes first)
Tries to find low-train loss representations T that have
similar values g on train (source) and test (target)
g: ‘max’ player (goes second)

Tries to find a classifierin HAH that has high
accuracy identifying the domain of T (x)

These games are hard to solve: think of what happens when g is suboptimal



Background: simultaneous gradient descent

Provably solving two player games: hard
Current approach: useful heuristics that are hard-to-tune but can work.

Simultaneous gradient descent/ascent

Pseudocode: solving mein mq(;;lx f(6,9)

Attimet

1. 0t « 01 —aVyf(0,9t™ )

2. ¢t <« P+ aV,f(0t, ¢)
X

Players have different gradient signs

Inspired by no-regret strategies for two player games



Next steps: how do we operationalize the bound?

inf sup E, - [(T(x),y, D] + |Ep, 10in dT CN] = Ep, .. [g(TEN]| + 27

T\hgeHAH
Two (related) decisions:
What surrogate do we use to accuracy?: accuracy is not differentiable

What is HAH: We don’t have a easy way to write down or optimize this set

Answer: we will replace this term with a convenient IPM



Main decision: choice of distinguishability

We will cover the major variations of domain-invariant neural nets

Key decision: how do we measure distinguishability (g)?
1. Classification error of a neural net (HAH / L4)
2. Discrepancy under g selected from a RKHS (MMD)

3. Discrepancy under all Lipschitz continuous g (Wasserstein)



Choice #1: adversarial classification [Ganin 2015]

What if we use a neural network for g?

Domain predictor:
f(T(x)) = sigmoid(w T (x) + b)
Domain indicator:

z = 1l if asampleis from the source, 0 otherwise
Surrogate loss:

L(f(T(x)),z) = zlog .

f(T(x))

1
+(1—z)log1_f(T(x))

Overall domain penalty:

B L T@) ]+ By [T 60),0)

Hand-wavy claim: ‘this is like the error of classifier f(T(x))’



Full DANN objective (in sample form)

Going from the invariance objective to DANN

inf sup E, ... [£(T(x),y,h)] + |Epn'tml-n g (T (x))] - Epntest lg (T(x))]l

T\hgeHAH

I Accuracy = 1-Error
1
5 (Eptmin [L(f(T(x))' 1)] + Eppese [L(f(T(x))' O])

Full DANN objective

Epn,train [f(T(.’X.'), Y h)] o '8 (Epn,train [L(f(T(x))’ 1)] + Epn,test [L(f(T(x))' O])



The overall DANN architecture
Domain invariant useful features

aef " 89 Maximizes
B E{)mf)aﬁ} g I |¢>Idmabely } performance on
\/.\—Azs; .

label predictor G trainin g data
domain class1ﬁer Gal
@ Q"
feature extractor Ge(505) 4% &, %J Tnimi
) d d ) %@w%f |$ Q @ domain label d M INIMIZES
o 1 a» distinguishability
forwardprop  backprop (and produced derivatives) o0 d

This is simultaneous gradient descent on the DANN objective

II’I}’thl mjax Epn'train [f(T(x)' Y h)] o 'B(Epn,train [L(f(T(.’X.')), 1)] + Epn,test [L(f(T(X)), 0])



The gains from DANN

Labeled target
(oracle)

DANN
Subspace align

Source only

96.5

85.1

78.9

99.2

69.6

MNIST

'Method | MNIST->USPS | USPS->MNIST | SVHN->MNIST | MNIST->SVHN

99.5

73.6 35.7
59.3
59.2



Variations: constraining the classifier (reconstruction)

Major issue with DANN:
Unmeasured A term can collapse

Mitigation idea: classify images, not representations
1. Reconstruct source-like images from the representation
2. Use a GAN to identify real vs fake source images.

Training phase ‘ Test phase
Source/target images

-~ 36
F - Feature extraction network
Class Labels b
{12,..N¢} E
\ N closses
a0 e :

C s

N closses

Sankaranarayanan+ 2018, Generate To Adapt



Benefits and pitfalls of reconstruction methods

Training phase Test phase
Source/target images

Stream 1

F - Feature extraction network
c-
Class Labels G- network
{1.2,..N¢} D-
Nc classes
- 2
-

—

Nc dlosses

What does reconstruction do for us?
Prevents the collapse of latent representations (e.g. only the label)

What doesn’tit do?
Preserve the label distribution - the generator maymapa3toa6

(This is still a useful heuristic for controlling 1)



The gains from DANN

SVHN

i &l

JH P2
MNIST
'Method | MNIST->USPS | USPS->MNIST | SVHN->MNIST | MNIST->SVHN
Labeled target  96.5 99.2 99.5
(oracle)
GenToAdapt 92.8 90.8 92.4
DANN 85.1 73.6 35.7

Source only 78.9 69.6 59.2



Choice #2: Maximum mean discrepancy (MMD)

Practical issue:

All adversarial neural methods are horrible to optimize
Solution (?):

Pick a family of g that does not require adversarial optimization

Kernels embeddings!
() = Ex[k(, X)]

If we’re willing to define g as coming from a RKHS, g

(@) = Bylk(, V)]
N *— u
|§?£§1|Ep [9(0)] — Eglg()]| = | 1k (0) — i (@13 R‘ lk(P) = (@)l



Advantages of MMD - no adversarial optimization

inf sup FE
T)hgeHAH

Pn,train [f(T(X), Y h)] + | Pn,train [g (T(X))] pn test [g (T(x))] |

I If we pick HAH the unit norm ball in a RKHS..

lnf Epn train [£(T (x),y, h)] + |t (TH#Drain) — Ui (THDrese)|

Note: T#p is the pushforward of p under T

The price: performance in practice (Deep adaptation networks, Long+ 2016)

'Method | MNIST->USPS | USPS->MNIST | SVHN->MNIST | MNIST->SVHN

DANN 85.1 73.6 35.7
DAN (kernel) 81.1 71.1



L
Special case: (deep) CORAL

An important example of this class of methods is CORAL (Sun+ 2016)

Deep CORAL algorithm: T
Penalize the squared difference of covariances ‘%f&»ﬁ»
T 7|2 : ~
|Eptrain [TCOT() ] = Eptest [T Q)T Cx) ]|F 0 @ o et ®)

* source

This is a very lightweight domain adaptation algorithm

Interpretation as MMD:
Pick £ generated by the quadratic kernel k(x,y) = (xTy + 1)2
MMD for this H will ensure that two distributions have identical covariance.



Office dataset comparison:
(well-tuned) DANN methods do well

o ”“}“
N | ChEEEY i

Webcam

Wethod AW Jo>w W
(,\,0\ Gen to Adapt 89.5 97.9 99.8
66@6’0 DANN 67.3-73.0 94.0 - 96.4 93.7 - 99.2
DAN 68.5 96.0 99.0
e Deep CORAL  66.4 95.7 99.2

Source only 62.6 96.1 98.6



Choice #3: Optimal transport

Another choice with closed form maximization: Lipschitz continuous functions

gggﬂEp [g(x)] — E, [g(x)]| =Wi(p,q)

Step [0] Step [1] 5 Step [2] 5 Step [3]

This is the ‘optimal transport’ j ; I8 H::
we covered earlier in the course T . . S, W SN NS

Deep JDOT: Use optimal transport costs to get invariance
,ll,n,f Epn,train [£(T(x), y, V)] + Wo(T#P¢rains T#Dtest)

d(x,x") = |x —x"|; + B |ho(x) — ho(x")]



How are the models that you get from these choices?

Range of model performance:
Careful engineering and newer models tend to win

| Method | MNIST->USPS | USPS->MNIST | SVHN->MNIST

Labeled target
(oracle)

Deep JDOT
Gen. to. Adapt
DeepCORAL
DANN

DAN

Source only

96.5

95.7
92.8
89.3
85.1(95.7)
81.1(88.5)
78.9

99.2

96.4
90.8
91.5
(90.0)
73.5
69.6

99.5

96.7
92.4
59.6
73.6
71.1
59.2

Legend
Optimal transport methods

Adversarial classification methods
MMD methods

(from Damodaran+ 2018 and
Wilson and Cook 2020)



Notes and pitfalls

1. Adversarial methods are hard to tune.

Huge range in reported performance (85 to 95%)

2. Comparisons can depend on benchmark-specific trick and tuning

Tricks like image intensity normalization changing performance
from 37.5% — 97% on MNIST — SVHN

French+2018

3. Arange of engineering decisions we didn’t cover here

Separate weights for source vs target / stagewise training

See Wilson and Cook if interested.



High-level recap of domain invariance

Main conceptual distinction across methods: defining g

Adversarial classification: neural nets + adversarial training
MMD: functions from a kernel space + analytic maximization

Wasserstein: Lipschitz continuous functions + optimal transport

Effective method from each family, though Adversarial can be hard
to tune, and MMD can underperform



Domain mapping: reminder

Motivation: Most domain adaptation datasets
have direct mappings between source and target

Transform

Can explicit domain mappings improve
upon invariance?



Optimal transport for domain adaptation

Reminder: OTDA from 2 lectures ago:

Inputs

....... + ‘

+ + e

o + Oc00
+

- + ___________________________________
B
++

. 4+ Class 1
O %\ OO Class?2
".. +_O Samplesx

“Deep” OTDA

— Clasmﬁer on xf

Mapping

T’Yo ()

: +O SamplesT (f)

Calltech Amazon DSLR Webcam

: 1 A '
\ o 2
\ o 'vi s

v

NN

features

OTDA

After mapping

o Cla.551fier on T, (x3)

Cerod —Laow—Jomu w0

DANN
OTDA + NN
OTDA

Source only

67.3-73.0 94.0-96.4 93.7-99.2
84.5 94.1 91.3
37.0 81.0 84.0
62.6 %.1 98.6



From generic to pixel-level mappings

OTDA tradeoffs:
Mapping in deep feature space Mapping in pixel space
Assumption Good feature map Meaningful cost function
(similar assumption as invariance) (pixels distances are awful)

Can we learn useful pixel-level mappings?




Unsupervised domain mapping / translation

Unsupervised translation to the rescue!

Task
Input: given unpaired images (or text) from two domains
Output: return a function that can map from one domain to another

Summer {_ Winter

_Monet T Photos Zebras T Horses

Note: This is exactly the domain
mapping problem

Right: Example from one such
system (cycleGAN)

Van Gogh

Photograph



Background: cycle consistency losses

The OTDA idea:
Map from source to target (T#psrqin) €valuate d(TH#P¢rqin, Prest)

Cycle-consistency:
Additional constrainton T: ensure d(T 1 o TH#Pptrain Prrain)

Intuition: Domain maps should be invertible

L3 L3
Pictoral version: e s P
Source Domain Mappe& Back to
(Input Image) Target Domain , Source Domain

N s
N s
3 s
‘.’

Difference is
Minimized



Putting it together - cycleGAN

The example from before (cycleGAN) is exactly this idea
1. Similarity of mapped distribution on the target
2. Invertibility of the learned mapping

Cycle consistency

v

A

L2 Loss

Real Image in domain A Fake Image in domain B \ Reconstructed Image

Gga generates a reconstructed image of domain A.

(Adversarial) distribution matching

real or fake ? Ds

/

Discriminator for domain B

Real Image in domain B



Background: semantic consistency losses

Pitfalls of domain mapping: We might flip labels around

Domain mapping does not care
about our domain adaptation task!

Idea: constrain domain mapping to preserve labels (hard)

Actual implementation: train a classifier f on source, prefer mappings
fx) = T(f(x))
often with a penalty d(f(X), T(f(X)))

Very popular: in CyCADA, generate-to-adapt, etc.

Ground

Ground




Background: commutativity constraints

One last note: We can incorporate even more priors about the map

Observation:

rotate 180 » map T — rotate 180 <+—— map T
rotate 180 > map T «<—— mapT - rotate 180

Simple image transforms should commute with the map

Used in some fancier mapping algorithms (GcGAN)



Summary: unsupervised domain mappings

Ingredients:

* Mapping similarity (is T#D¢rqin = Prest?)
* Adversarial losses

* Problem-specific constraints
* Invertibility (Cycle consistency)
*  Commutativity (Geometry preservation)

» Conditional preservation (semantic consistency)

Not discussed: unsupervised machine translation



Domain map, then classify

How well does domain mapping alone work?

m MNIST->USPS | USPS->MNIST | SVHN->MNIST

Labeled 96.5 99.2 99.5
target

(oracle)

CycleGAN*™ 95.6 96.4 70.3
DANN 85.1 (95.7) (90.0) 73.6
Sourceonly  78.9 69.6 59.2

(From GcGAN)

A: very good for similar domains, less so for different ones



Variations to the map+classify approach

L3 o
Other variations
(unlabeled) (unlabeled)
source —>| CGOXI?I —> target
data . data
(unlabeled)
: target Target class
i Class. label
: data
(labeled) Cond. (labeled) Target class
source GAN target Cl label
data data s
(a) Method 1 (most common) - training (left), testing (right)
(unlabeled) (unlabeled)
target — %‘XII(\]I ——> source
data data ( )
unlabeled (unlabeled)
target  —| GG > source | — {Gutee —— Foo8
data data -
(labeled) Source class
source —>| —
G Class. label
a

(b) Method 2 - training (left), testing (right)

Source to target or target to source?

Most methods
(sim gan, dcgan) etc

Less common,
sometimes in ensemble



Reconstruction as mapping

Recall the generate-to-adapt method

Training phase

F - Feature extraction network

Stream 2 _/

This is a type of target-to-source mapping!

Test phase

Class Labels
3,6

Nc closses

More generally: reconstruction from invariant representation < domain map



Results of reconstruction-based methods

Adding some context:
reconstruction is a middle ground between mapping and invariance

m MNIST->USPS | USPS->MNIST | SVHN->MNIST

Labeled 96.5 99.2 99.5
target

(oracle)

CycleGAN* 95.6 96.4 70.3
Gen. to. 92.8 90.8 92.4
Adapt

DSN 91.3 82.7
DANN 85.1 (95.7) (90.0) 73.6

Sourceonly  78.9 69.6 59.2



Bringing together adversaries and mappings

Invariance and mapping have complementary strengths

Can we combine all of the ideas today?

 Mapping
* Cycle consistency
* Semantic consistency

* Invariance
 Adversarial prediction of domain identity

The result: CyCADA



CyCADA

Invariance, translation and the kitchen sink:
DANN (+ target map)

. S Label
onstructed Source Image CycleG AN IOSS ource Labe

Ay
———— D

- o
s Semantic
- »{ Consistency
L EE S loss

I
‘ \
' f \
1
| ‘g

~

N ——-

\

Source Image Source Image Stylized as Target Target Image

Consistency loss



One final slide of MNIST SVHN

Upshot: dramatic improvements in more distant domains

m MNIST->USPS | USPS->MNIST | SVHN->MNIST

Labeled 96.5 99.2 99.5
target

(oracle)

CyCADA 95.6 96.5 96.7
CycleGAN* 95.6 96.4 70.3
DANN 85.1(95.7) (90.0) 73.6
Sourceonly  78.9 69.6 59.2

Works on more challenging GTA — Cityscapes data as well



Invariance vs domain mapping

Invariance

“There exists a shared, useful representation for both domains”

Can handle very different domains (by discarding information)

Domain mapping
“There is a direct correspondence between two domains”

Much stronger assumption. Fails under large domain shifts (MNIST-SVHN)

Combining the two
In theory: still need a domain mapping to work

In practice: the invariance part can account for inexact domain maps



Preserving the conditional

In both cases:

Learning a valid invariance / mapping is not the hard part

Learning a label-preserving invariance / mapping is hard

Tricks we learned:

* Reconstruction penalties / losses for invariance
» Enforcing consistency to a pre-trained classifier
* Using unsupervised mapping / translation methods



A huge diversity of methods e e e o m

Weights
Distance Diff. Cycle Sem. Task Feature Pixel

|CAN[ 114) DIN CCD v not BN
French et al.[68] EnN sq. diff. v EMA
. ICo-DA[124]" DLEnNTD L1 v v v optional
) - IVADA([220)* DLTD v v v
This lecture covers only a few well-known L N TR , 2
IcyCADA[96) DLDM VAR Ra v v v
methods e — - —
[simNet[157] DI prototypes v
IMADA[153] DLEn v v v
IMCD([206] DLEnTD v v v v
IGAGL[250] DILTD v v v v v
[SBADA-GAN[201)° DM v v v v
IMCA[278) DI MCA v v
, ICCN**[101] DI clusters v v
1 M-ADDA[127] DI clusters v v
* There’s a huge zoo of methods, with e = e g e
. . . . . XGAN[197] DM 7 7 7 7z some
minor variations in loss and architecture AN ow 7 7 7
[PixelDA[21] DM A v v v
AutoDIAL[27) N.TD v not BN
AdaBN[145] N not BN
JAN-A[151] DI JMMD v v v
[LogCORAL[249) DI logCOR, mean v v
ILog D-CORAL[172) DI logDCOR v v
IVRADA[159] DI v v v
M M ATT([204 En v v v
* Invariance (blue) and mapping (red) have e Eraewn
. . . JADDA[241] DI v v
been the majority of adaptation methods CoeleGAN v 7 AR
[RegCGAN[160] DM 7z 7 v v
[Sener et al.[214] DI k-NN v
IDSN[22] DI VA v v some
IDRCN[76) DI v v v
[CoGAN[143] DM v v v some.
IDeep CORAL[226]) DI CORAL v v
IDANN(1, 72, 73] DI v v v
IDAN[147] DI MK-MMD v low
[Tzeng et al.[240]" DI v v '

(Wilson and cook 2020)



e
What’s left?

We’ll leave two major additional ideas for a future lecture
Self-training: using source domain predictions to label unlabeled data

0000 — X
0000
0000 ..

. . . — W

Self-supervision: using target domain data to regularize the model

Maximize agreement

h; +— Representation —» h;




s
Summary for today

Two major families of methods:

Invariance : key decision - measuring invariance
Domain classification (DANN)
MMD (Coral / DAN)
Optimal transport (DeepJDOT)

Mapping: key decision - constraining the mapping
Cycle consistency (CycleGAN)
Geometry / Commutativity (GcGAN)

Combinations:

Reconstruction methods (Generate to Adapt)
Map+invariance (CyCADA)



