
Lecture 2

CS329D

COVAR IATE AND L ABEL SH I F TS



Goals for today

Define covariate shifts + label shift

Understand importance-weighting estimators

Know how covariate shifts relate to spurious correlations



Motivating example
(Recap): Medical example of surgical skin markers

Training data: image with markings Test data: image without markings

Key point: the removal of features (marker) leads to performance loss



Another example
New example: Is it malaria?

Training data: from the north pole Test data: from the amazon

Key point: disease prevalence change results in different predictions

Chills

ColdMalaria

Nausea



One final example

Grapefruit consumption Longevity?

Statins

Training data: no statins Test data: statins

Key point: correlations between features and labels differ



Taxonomy of distribution shifts (non-exhaustive)

Concept drift 
• The prediction function changes from train to test, the inputs do not.
• Litmus test: is the optimal predictor different?

Covariate shift
• The input distribution changes, labels given inputs does not.
• Litmus test: Is there a single predictor that does well on train and test?

Label (prior probability ) shift 
• The only change is to the label frequency.
• Litmus test: Is the optimal predictor the same up to label frequency?

Grapefruit consumption Longevity?

Statins

Chills

ColdMalaria

Nausea



Definition: covariate shift

Recall our example:

Representing this shift:

Image

Marker

Cancer?

Removed marker, rest remains the same



Defining covariate shift

Representing this shift: Image

Marker

Cancer?

Definition:

𝑝!"#! 𝑐𝑎𝑛𝑐𝑒𝑟, 𝑖𝑚𝑎𝑔𝑒,𝑚𝑎𝑟𝑘𝑒𝑟 =
𝑝!$%&' 𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑚𝑎𝑔𝑒,𝑚𝑎𝑟𝑘𝑒𝑟 𝑝!"#!(𝑖𝑚𝑎𝑔𝑒,𝑚𝑎𝑟𝑘𝑒𝑟)

A prediction problem 𝑥 → 𝑦 is called a covariate shift whenever the 
training distribution 𝑝!$%&' and test distribution 𝑝!"#! follows

𝑝!"#! 𝑦 𝑥 = 𝑝!$%&' 𝑦 𝑥 𝑝!"#! 𝑥 ≠ 𝑝!$%&'(𝑥)

(some texts also require that 𝑥 → 𝑦 be the true data generating distribution)



Covariate shifts in machine learning
Why is covariate shift so important?

1. Prediction problems fit well with covariate shift.

2. Annotator-driven data collection

Supervised learning: estimate 𝑝 𝑦 𝑥
Covariate shift: 𝑝 𝑦 𝑥 remains fixed

Input data Labels

DOG
𝑝(𝑦|𝑥) – defined by annotators 

Fixed annotators → covariate shift



Bayes optimal predictor remains identical

Bayes optimal predictor depends only on 𝑝(𝑦|𝑥), which doesn’t change

This is not true under misspecification (i.e., when you model cant be Bayes optimal)

Storkey 2009



More examples of covariate shift in ML

Covariate shift due to human annotators

Video captioning Language identification

Other covariate shifts

Tumor detection (marker)

Object detection

The economy could be still better. 
Premise:

Hypothesis:

The economy has been betternever

Entailment Style changes



Definition: label shift

Recall the example:

𝑝!"#! 𝑚𝑎𝑙𝑎𝑟𝑖𝑎, 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠 =
𝑝!$%&' 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠 𝑚𝑎𝑙𝑎𝑟𝑖𝑎 𝑝!"#!(𝑚𝑎𝑙𝑎𝑟𝑖𝑎)

Definition:

A prediction problem 𝑥 → 𝑦 is called a label shift whenever the 
training distribution 𝑝!$%&' and test distribution 𝑝!"#! follows

𝑝!"#! 𝑥 𝑦 = 𝑝!$%&' 𝑥 𝑦 𝑝!"#! 𝑦 ≠ 𝑝!$%&'(𝑦)

(some texts also require that y → 𝑥 be the true data generating distribution)

(also called prior probability shift)

Chills

ColdMalaria

Nausea



Label shifts in machine learning and examples

Medical diagnostics Label-driven-data collection

Labels
(flickr tag)

DOG

Image

Diseases (𝑦) cause symptoms (𝑥) Labels (𝑦) are under selection bias

Label shifts for ‘deterministic’ predictions problems are also covariate shifts.

Chills

ColdMalaria

Nausea



Sometimes label shifts are also covariate shifts

Labels
(flickr tag)

DOG

Image

Covariate shift because..

𝑝!"#! 𝑦 𝑥 = 𝑝!$%&' 𝑦 𝑥

From a deterministic labeling map

Label shift shift because..

𝑝!"#! 𝑥 𝑦 = 𝑝!$%&' 𝑥 𝑦

From selection on the tags

In these cases we can pick the easier type of shift (often label)



Covariate + label shift: summary

1. Covariate and label shifts are defined by what stays fixed

2. Misspecification is key to covariate shift

3. These categories are flexible – some distributions can be both covariate + label shift

Covariate shift

𝑝!"#! 𝑦 𝑥 = 𝑝!$%&' 𝑦 𝑥
Label shift

𝑝!"#! 𝑥 𝑦 = 𝑝!$%&' 𝑥 𝑦

Labels
(flickr tag)

DOG

Image



Reweighting: setup

How do we deal with covariate / label shifts?

What we want

𝐸(!"#$%[ℓ 𝑧; 𝜃 ]

𝐸(!&'![ℓ 𝑧; 𝜃 ]

What we can compute

The loss function ℓ computed on examples 𝑧 ≔ (𝑥, 𝑦)
and model 𝜃 where z comes from 𝑝!$%&'



Reweighting

What we want

𝐸(!"#$%[ℓ 𝑧; 𝜃 ] 𝐸(!&'![ℓ 𝑧; 𝜃 ]

What we have

Most basic approach: reweight the loss

𝐸(!"#$%
(!&'! )
(!"#$% )

ℓ 𝑧; 𝜃 = 𝐸(!&'! [ℓ 𝑧; 𝜃 ]

Weighted loss over the 
training distribution

(also possible: resample the dataset)

How do we deal with covariate / label shifts?



On the importance of overlap
High level idea:

1. Compute h = !!"#!
!!$%&'

2. Reweight the loss.

ℎ(
𝑧)

𝑧

𝑝!$%&'

𝑝!"#!

𝑧

𝑝(
𝑧)

What can go wrong?

𝑧
Reweighting requires substantial overlap



Variance bounds
Variance bounds show this formally.

Let ℎ 𝑧 = (!&'! )
(!"#$%())

𝑉𝑎𝑟 ℎ 𝑧 ℓ 𝑧; 𝜃 = 𝑉𝑎𝑟 ℓ 𝑧; 𝜃 + 𝐸(!&'![ ℎ 𝑧 − 1 ℓ 𝑧; 𝜃 ,]

≤ 𝑉𝑎𝑟 ℓ 𝑧; 𝜃 + ( ℎ 𝑧 - − 1)𝐸(!&'![ℓ 𝑧; 𝜃
,]

By Holder’s inequality

Note: 𝐸(!"#! ℎ 𝑧 > 1

Test dist. variance Importance weight size

Remember: ℎ 𝑧 - → ∞with decreasing overlap



Handling covariate shift: a simple algorithm

A proto-algorithm to handle covariate shift:

If we have unlabeled data from the test distribution,

1.Estimate the density 𝑝!"#!(𝑥) and 𝑝!$%&'(𝑥)

2.Reweight by ℎ 𝑥 = (!&'! .
(!"#$%(.)

3.Fit a model by minimizing the loss ℎ 𝑥 ℓ(𝑥, 𝑦; 𝜃)



Using discriminators for the same task
Density estimation is very hard, and classification might be easier

1.Estimate a classifier 𝑓 𝑥 ≈ (!"#$% .
(!&'! ( /(!"#$% .

2.Reweight by ℎ 𝑥 = 0
1(.)

− 1

3.Fit a model by minimizing the loss ℎ 𝑥 ℓ(𝑥, 𝑦; 𝜃)

An alternative algorithm: use a classifier that separates 𝑝!$%&' and 𝑝!"#!



Handling covariate shift: challenges
Inputs are often high-dim (hard to find overlap)

Tradeoff between high overlap, non-covariate shift and no overlap covariate shift

𝑧

Dogs
Sketches of dogs

Mental model (low dim, high overlap) Reality (high dim, no overlap)

Issues inherent to covariate shift



Handling label shift

If we have unlabeled data from the test distribution,

1.Estimate the density 𝒑𝒕𝒆𝒔𝒕(𝒚) and 𝒑𝒕𝒓𝒂𝒊𝒏(𝒚)

2.Reweight by ℎ 𝑦 = (!&'! 9
(!"#$%(9)

3.Fit a model by minimizing the loss ℎ 𝑦 ℓ(𝑥, 𝑦; 𝜃)

Challenge: we don’t have the label distribution 



A label distribution estimator
Basic idea: use a predicted labels )𝑦 ≔ 𝑓(𝑥) to get a good estimate.

Confusion matrix 
𝐶&,; ≔ 𝑝!$%&'(𝑦 = 𝑖, M𝑦 = 𝑗)

Notice that

𝑝!"#! M𝑦 = 𝑗 =O𝑝!"#! M𝑦 = 𝑗 𝑦 = 𝑖 𝑝!"#!(𝑦 = 𝑖)

=O𝑝!$%&' M𝑦 = 𝑗 𝑦 = 𝑖 𝑝!"#! 𝑦 = 𝑖

=O
𝐶&,;𝑝!"#! 𝑦 = 𝑖
𝑝!$%&'(𝑦 = 𝑖)

𝑝"#$" )𝑦 𝑦
= 𝑝 )𝑦 𝑥 𝑝 𝑥 𝑦
= 𝑝"%&'( ( )𝑦|𝑦)



Plug-in estimate for label bias correction

Intuition: confusion matrix remains fixed
[Lipton 2018, Saerens 2002]

If we have unlabeled data from the test distribution,

1.Make an estimator 𝑓(𝑥) on the training set

2.Compute the confusion matrix C on the training set

3.Estimate the density 𝒑𝒕𝒆𝒔𝒕(𝒇(𝒙)) on the test set

4.Reweight by ℎ 𝑦 = 𝐶<0𝑝!"#!( M𝑦)

5.Fit a model by minimizing the loss ℎ 𝑦 ℓ(𝑥, 𝑦; 𝜃)



An alternative, EM based label shift estimator

What is the log-likelihood of observing 𝑥 ∼ 𝑝"#$"?

𝐸 log∑𝑝"%&'( 𝑥 𝑦 𝑝"#$"(𝑦)

Idea: maximize the log-likelihood with respect to 𝑝"#$"(𝑦)
Algorithm: for t in 0… T

1. E-step: 𝑞" 𝑦 𝑥 ∝ )! *
!!$%&' *

𝑝"%&'((𝑦|𝑥)

2. M-step: 𝑞"+, 𝑦 = 𝐸[𝑞" 𝑦 𝑥 ]

(Clever trick here: we don’t need to instantiate 𝑝"%&'((𝑥|𝑦))

[Saerens 2002]



Summary: reweighting
1. Reweighting is a basic but widely applicable way of handling distribution shifts

2. Overlap is extremely important for the success of reweighting methods

3. Key task: estimating the probability ratio. We covered 4 basic approaches.

𝐸(!"#$%
(!&'! )
(!"#$% )

ℓ 𝑧; 𝜃 = 𝐸(!&'! [ℓ 𝑧; 𝜃 ]

𝑧

Direct density estimate Discriminative

Covariate shift

Plug-in estimate EM/Likelihood

Label shift



Beyond covariate and label shifts

What if a distribution is neither covariate or label shift?

Grapefruit consumption Longevity?

Statins

𝑝!"#! longevity grapefruit ≠ 𝑝!$%&' longevity grapefruit

𝑝!"#! grapefruit = 𝑝!$%&'(grapefruit)

Note: often a catch-all, and also very difficult to deal with



Concept shift and unobserved confounding
Concept shifts usually arise from unobserved features:

Grapefruit consumption Longevity?

Statins

𝑝 longevity grapefruit, statins) is fixed
𝑝 longevity grapefruit) is not fixed

In the sample selection bias case: we select on unmeasured features

In the environment change case: label y is affected by unmeasured features



Spurious correlations: getting the model involved
Thus far: statins are treated as unobserved.

Grapefruit consumption Longevity?

Statins

Next: What if our model doesn’t use the ‘right’ features? 

If our learning algorithm ignores statins, 
it doesn’t matter that its observed in the dataset



Spurious correlations
Definition (just for this class)

A learning algorithm 𝐿 learns a spurious correlation for a 
distribution shift if 
- 𝑝!$%&' and 𝑝!"#! satisfy the covariate shift assumption
- 𝐿 outputs different predictors on 𝑝!$%&' and 𝑝!"#!

Important notes:
- No consensus definition in the field
- “Outputs different predictors” is likely too strong
- Not always possible to avoid or mitigate 

Example:



Examples of spurious correlation.

Surgical markersWatermarks Fishing boat identity

Image backgrounds Mascara



Recap: covariate + label shifts

• Covariate and label shift definitions:

• Reweighting (key part: estimating ℎ)

• Spurious correlations and concept shift (hard to handle!)

Covariate shift

𝑝!"#! 𝑦 𝑥 = 𝑝!$%&' 𝑦 𝑥
Label shift

𝑝!"#! 𝑥 𝑦 = 𝑝!$%&' 𝑥 𝑦

𝐸(!"#$%
(!&'! )
(!"#$% )

ℓ 𝑧; 𝜃 = 𝐸(!&'! [ℓ 𝑧; 𝜃 ]



Lecture 3

CS329D

DOMAIN D I STANCES AND H -DELTA -H



Goals for today

Understand divergence based adaptation bounds

Be able to state H-delta-H guarantees and limitations

Know about transformation-based approaches to domain adaptation



Our setting: unsupervised domain adaptation

Training data Test domains

Task: identifying digits from images



Another common scenario: sim to real transfer
Task: identifying cars in a video

Training data (GTA) Test data (real world)



Problem definition: unsupervised domain adaptation
Task: prediction problem 𝑥 → 𝑦 , model class 𝜃 ∈ ℋ with loss ℓ(𝑥, 𝑦, 𝜃)

Given: supervised data 𝑥, 𝑦 ∼ 𝑝!"#$% and unlabeled data 𝑥& ∼ 𝑝!'(!

Goal: Minimize the expected loss
𝐸)!"#![ℓ 𝑥, 𝑦, 𝜃 ]

Assumption: Covariate shift
𝑝!"#$% 𝑦 𝑥 = 𝑝!'(!(𝑦|𝑥)



Starting point: reweighting 
Recall: reweighting the loss

ℎ(
𝑥)

𝑥

𝑝!"#$%

𝑝!&'!

𝑥
𝑝(
𝑥)

High level idea:

1. Estimate h = )!"#!
)!$%&'

2. Minimize ℎ 𝑥 ℓ(𝑥, 𝑦, 𝜃)



Starting point: Reweighting without overlap
Consider the following situation:

ℎ(
𝑥)

𝑥

𝑝!"#$%

𝑝!&'!

𝑥

𝑝(
𝑥)

𝑝!&'! 𝑥
𝑝!"#$%(𝑥)

= ∞

Reweighting estimators blow up without overlap



We should be able to learn without overlap
Is the situation hopeless? No! We need to go beyond reweighting

What if this is a classification problem? 

𝑥

𝑝!"#$%

𝑝!&'!
𝑝(
𝑥)

Non-overlapping part is at most 𝜖 probability

Key observation: even if we have 100% error rate, this increases error by at most 𝜖

Our hope: Test error = Train error + 𝜖



Going beyond reweighting.

Reweighting
adjust 𝑝!"#$% to match 𝑝!'(! at all costs

IPMs (next up)
how bad do we do if we ignore the mismatch?

Note: we’re going to focus on classification for the rest of this lecture



Background material: integral probability measures

To state this clearly, we need to first go into some background.

Definition (IPM):

For two probability distributions 𝑝 and 𝑞, the integral probability 
metric (IPM) for a family of functions ℱ is defined as 

𝑑ℱ 𝑝, 𝑞 = sup
)∈ℱ

|𝐸+ 𝑓 𝑥 − 𝐸,[𝑓 𝑥 ] |

Intuition: ℱ are ‘test functions’ that can distinguish 𝑝 and 𝑞

If two have the same function value for all ℱ, then they are similar



Important examples of IPMs
IPMs occur in many different areas of ML!

Class ℱ IPM

Total variationBounded functions in [0,1]

Lipschitz continuous functions Wasserstein distances

Reproducing kernel Hilbert spaces Maximum mean discrepancy (MMD)

Bounded and Lipschitz functions Dudly metric



Domain adaptation under small IPM

𝐸+!"#! ℓ 𝑥, 𝑦, 𝜃 = 𝐸+!$%&' ℓ 𝑥, 𝑦, 𝜃 + Δ

Δ = 𝐸+!"#! ℓ 𝑥, 𝑦, 𝜃 − 𝐸+!$%&' ℓ 𝑥, 𝑦, 𝜃

What we want What we have Domain distance

From the trivial restatement

Δ ≤ sup
)∈ℱ

𝐸+!"#! 𝑓 𝑥, 𝑦 − 𝐸+!$%&' 𝑓 𝑥, 𝑦 = 𝑑ℱ(𝑝!"#$%, 𝑝!&'!)

This looks like an IPM! (if ℓ 𝑥, 𝑦, 𝜃 ∈ ℱ for all 𝜃)

Takeaway: IPMs bound excess error under transfer



Key idea: distinguishability bound approximation error

Let’s apply this to unsupervised domain adaptation for classification.

𝐸+!"#! ℓ 𝑥, 𝑦, 𝜃 = 𝐸+!$%&' ℓ 𝑥, 𝑦, 𝜃 + Δ

Δ ≔ 𝐸-∼+!"#! 𝐸/|-[ℓ 𝑥, 𝑦, 𝜃 ] − 𝐸-~+!$%&' 𝐸/|-[ℓ 𝑥, 𝑦, 𝜃 ]

Notice  0 ≤ 𝐸/|- ℓ 𝑥, 𝑦, 𝜃 ≤ 1 for classification (zero-one loss). 
If we pick ℱ as the bounded functions..  

𝑓 𝑥

Δ ≤ dℱ 𝑝!"#$%,𝑝!&'! = 𝑝!"#$%(𝑥) − 𝑝!&'!(𝑥) 3



IPM based bound on target domain performance

For 0 ≤ ℓ 𝑥, 𝑦, 𝜃 ≤ 1 and under covariate shift,

𝐸+!"#! ℓ 𝑥, 𝑦, 𝜃 ≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, 𝜃 + 𝑝!"#$%(𝑥) − 𝑝!&'!(𝑥) 3

We can now bound test performance in terms of IPMs

𝑥

𝑝()*+,

𝑝(-.(

𝑝(
𝑥)

𝑝!"#$%(𝑥) − 𝑝!&'!(𝑥)



Compare and contrast with reweighting based ideas

Reweighting IPM

BoundednessOverlap

Weighted/modified loss No change

More samples (variance) Inaccurate models (bias)

Assumptions

Training 

Goals Correct train-test mismatch Estimate train-test mismatch

Costs



Beyond IPMs : using the model class

The current story: 
Cost of domain shift  = 𝐿3 distinguishability

Intuition:
Domains that ‘look similar’ to our classifier 
should result in similar performance

Idea:
Can we get bounds for our hypothesis class?

𝐿* is extremely pessimistic



From IPM to HΔH
In the IPM case, 

Δ ≔ 𝐸-∼+!"#! 𝐸/|-[ℓ 𝑥, 𝑦, 𝜃 ] − 𝐸-~+!$%&' 𝐸/|-[ℓ 𝑥, 𝑦, 𝜃 ]

𝑓 𝑥

Interpreting: 𝑓(𝑥) is the error at a point x
we can think of this as the ‘disagreement’ between our classifier 𝜃
and the ground truth

What should our f(x) family look like for a hypothesis class ℋ?

Answer: disagreement between any two elements ℎ, ℎ′ ∈ ℋ



Defining HΔH 
For a hypothesis class ℋ, the HΔH set is defined as the symmetric difference

Definition (HΔH):

For a hypothesis class ℋ, the symmetric difference set 𝐻Δ𝐻 is 
defined as  

HΔH ≔ {𝑔: 𝑔 𝑥 = XOR ℎ 𝑥 , ℎ4 𝑥 and ℎ, ℎ4 ∈ ℋ}

+

+
-

-

h

h’

Symmetric 
difference

+

+

-
-



HΔH as a divergence
Now we can treat HΔH as a function class, and define a (pseudo) metric

Definition (HΔH-divergence [Ben-David]):

For a hypothesis class ℋ, the HΔH-divergence is 

𝑑565 𝑝!"#$%, 𝑝!&'! = 2 sup
7∈565

𝐸+!$%&' 𝑔 𝑥 − 𝐸+!"#! 𝑔 𝑥

Interpretation: g ∈ 𝐻Δ𝐻 is the disagreement between a model ℎ and ℎ′

If a model ℎ and ℎ& agree on the training set, do they have to agree on the test set?



Examples of HΔH

Redko 2020

Key example for intuition

ℎ : blue classifier
ℎ′: red classifier

Perfect agreement

On 𝒑𝒕𝒓𝒂𝒊𝒏 On 𝒑𝒕𝒆𝒔𝒕

𝐸+!$%&' 𝑔 𝑥 = 0

0% agreement

𝐸+!"#! 𝑔 𝑥 = 1

3
?
𝑑565 𝑝!"#$%, 𝑝!&'! = 1 (Vacuous!)



Some more intuition

What is 𝒅𝑯𝚫𝑯 measuring?

Why is this a useful notion of domain similarity?

Two classifiers that agree on training set

Do they agree on the test set?

Compare with IPMs:
𝑳𝟏: Disagreement over all possible classifiers
𝒅𝑯𝚫𝑯: Disagreement over IPMs



More examples of HΔH

Redko 2020

Linear case

Nonlinear



HΔH bounds error differences
We can now use 𝑑+,+ to bound our error. For any hypotheses ℎ and ℎ&, define the

𝜖+ ℎ, ℎ4 = 𝐸+[ ℎ 𝑥 − ℎ4 𝑥 ]

Disagreement:

Disagreement gap:

𝜖+!$%&' ℎ, ℎ
4 − 𝜖+!"#! ℎ, ℎ

4 ≤
1
2𝑑565 𝑝!"#$%, 𝑝!&'!

Interpretation: if ℎ and ℎ′ perform similarly on the training set, they will 
also perform similarly on the test set (up to an error of 𝑑565 𝑝!"#$%, 𝑝!&'! )



Basic H-delta-H domain adaptation bound

This (bounding the error gap) is enough to get full error bounds:

H𝚫H-generalization (Adapted from [Ben-David]):

𝐸+!"#! ℓ 𝑥, 𝑦, ℎ

≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ +
1
2
𝑑565 𝑝!"#$%, 𝑝!&'! + 𝜆

For a classifier h ∈ ℋ and any covariate shift

where 𝜆 = inf
C∈ℋ

𝑝!"#$% 𝑦 ≠ ℎ 𝑥 + 𝑝!&'!(𝑦 ≠ ℎ 𝑥 )

Techinque: apply error difference bound on the optimal classifier ℎ∗



Let’s walk through the proof
𝐸)!"#! ℓ 𝑥, 𝑦, ℎ ≤ 𝐸)!"#! ℓ 𝑥, 𝑦, ℎ

∗ + 𝜖)!"#! ℎ, ℎ
∗

= 𝐸)!"#![ ℎ 𝑥 − ℎ∗ 𝑥 ]

≤ 𝐸)!"#! ℓ 𝑥, 𝑦, ℎ
∗ + 𝜖)!$%&' ℎ, ℎ

∗ + 𝜖)!"#! ℎ, ℎ
∗ − 𝜖)!$%&' ℎ, ℎ

∗

≤ 𝐸)!"#! ℓ 𝑥, 𝑦, ℎ
∗ + 𝜖)!$%&' ℎ, ℎ

∗ +
1
2
𝑑+,+ 𝑝!"#$%, 𝑝!'(!

𝜖!!"#$% ℎ, ℎ
" − 𝜖!!&'! ℎ, ℎ

" ≤
1
2
𝑑#$# 𝑝%&'(), 𝑝%*+%

≤ 𝐸(,-., ℓ 𝑥, 𝑦, ℎ
∗ + 𝐸(,/012 ℓ 𝑥, 𝑦, ℎ

∗ + 𝐸(,/012 ℓ 𝑥, 𝑦, ℎ +
1
2
𝑑*+* 𝑝,-./0 , 𝑝,12,

𝐸)!$%&' ℎ 𝑥 − ℎ∗ 𝑥 ≤ 𝐸)!$%&' ℎ∗ 𝑥 − 𝑦 + 𝐸)!$%&' ℎ 𝑥 − 𝑦

𝒅𝑯𝚫𝑯 step

Error relative to 𝒉∗

Triangle
inequality



What are these terms?

𝐸+!"#! ℓ 𝑥, 𝑦, ℎ

≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ +
1
2𝑑565 𝑝!"#$%, 𝑝!&'! + 𝜆

Training domain error Domain distinguishability

𝜆 = inf
C∈ℋ

𝑝!"#$% 𝑦 ≠ ℎ 𝑥 + 𝑝!&'!(𝑦 ≠ ℎ 𝑥 )

Minimal error of a classifier on both domains

H𝚫H claim: Low training domain error + low 𝐻Δ𝐻 divergence + rich ℋ
= good generalization to target domain

Let’s walk through the main bound.



Recap: 𝐻Δ𝐻 and divergences
What we covered:
• IPMs and divergences: a way to characterize errors under shifts

• 𝐿* bounds: widely applicable but wildly pessimistic

• 𝐻Δ𝐻-Divergence: classifier specific notion of domain similarity

Up next:

• Build intuition by studying each of the terms

• Alternatives to domain-divergence methods



What’s 𝐻Δ𝐻 good for?
There’s several things we might want to try..

Understand tradeoffs: 
When we vary the hypothesis class and inputs what happens to each term?

Directly optimize the bound: 
Can we perform model/feature selection to find models that generalize?

Quantify / estimate model performance:
Can we estimate the performance of models by estimating HΔH?

Spoiler: not all of these are possible



Accuracy-distinguishability tradeoffs

What are the components?

Training error: 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ

Optimal error: inf
C∈ℋ

𝑝!"#$% 𝑦 ≠ ℎ 𝑥 + 𝑝!&'!(𝑦 ≠ ℎ 𝑥 )

H𝚫H: 3
?
𝑑565 𝑝!"#$%, 𝑝!&'!

What can we vary?

Model complexity (ℋ)



Varying training domain accuracy

(finite train data)

Training domain error: 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ

Model complexity

Error

(assuming infinite training domain data)



Varying H𝚫H

Model complexity

H𝚫H: 3
?
𝑑565 𝑝!"#$%, 𝑝!&'!

HΔH

0

1

𝐿3

𝑑565 increases monotonically with 
model complexity. If 𝐻 ⊂ 𝐻′,

𝑑565 ≤ 𝑑536F3

𝑑565 is upper bounded by the 𝐿3 distance



Controlling 𝜆

Optimal error: inf
C∈ℋ

𝑝!"#$% 𝑦 ≠ ℎ 𝑥 + 𝑝!&'!(𝑦 ≠ ℎ 𝑥 )

Model complexity

Bayes error

Error

𝜆 is a goodness of fit measure
(behave similarly to train error)

Typical assumption:
𝜆 is small, on the order of train error

Effective domain adaptation possible

No good 
models exist



Can we use HΔH to build better models?

We must balance decreasing terms:

Train Error and 𝜆

Against the increasing term 

HΔH

Model complexity

Upper 
bound

𝐻Δ𝐻

Train Error

Lambda

Optimal complexity

To find the optimal tradeoff,

How can we measure 𝐻Δ𝐻 and 𝜆? 



Estimating HΔH 

Key question: can we estimate HΔH from samples?

A natural finite sample estimator

𝑑565 𝑝!"#$%, 𝑝!&'! = 2 sup
7∈565

𝐸+!$%&' 𝑔 𝑥 − 𝐸+!"#! 𝑔 𝑥

_𝑑565 𝑝!"#$%, 𝑝!&'! = 2 sup
7∈565

𝐸+',!$%&' 𝑔 𝑥 − 𝐸+',!"#! 𝑔 𝑥

True positive rate False positive rate

= TPR − FPR = 2Accuracy − 1
Estimated by max-accuracy classifier



Procedure for estimating 𝑑efe

Estimating this in practice? Similar to GAN type setups

1. Set up a mixed dataset with 50-50 split from 𝑝!"#$% and 𝑝!'(!

2. Train a classifier (with hypothesis class 𝑯𝚫𝑯!) to minimize error

3. Held-out error serves as a high-probability upper bound on 𝑑+,+.

(Or use VC-dimension bounds)



Background: VC dimension bound
What we have: reduction of HΔH and an estimator.

How good is our estimator with m samples: 

VC-Dimension bound

Let ℎ ∈ ℋ be a classifier in a hypothesis space with VC dimension   
VC ℋ . Then for 𝛿 ∈ (0,1)with probability at least 1 − 𝛿 in the 𝑚-
sample draw 𝑥, 𝑦 ∼ 𝑝 and uniformly in ℎ,

𝑝 𝑦 ≠ ℎ 𝑥 ≤
1
𝑚
k
$G3

H

1C -& G/& +
4
𝑚

𝑉𝐶(ℋ log
2𝑒𝑚
𝑉𝐶(ℋ)

+ log
4
𝛿
)



Main HΔH result
Putting it all together: use VC dimension bound to make HΔH observable.

H𝚫H bound (Theorem 2 in Blitzer)

Let ℎ ∈ ℋ be a classifier in a hypothesis space with VC dimension   
VC ℋ . Then for 𝛿 ∈ (0,1)with probability at least 1 − 𝛿 in the 
draw 𝑚-sample draw 𝑥, 𝑦 ∼ 𝑝!"#$% and 𝑥 ∼ 𝑝!&'! and uniformly 
in ℎ,

𝐸+!"#! ℓ 𝑥, 𝑦, ℎ ≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ +
1
2
r𝑑565 𝑝!"#$%, 𝑝!&'! + 𝜆 + 𝑐

𝑐 = 4
2 𝑉𝐶 ℋ log 2𝑚 + log 2𝛿

𝑚



Onward model selection: collapsing the input features

Our idea: use our HΔH to transform our inputs to have a smaller 𝑑+,+.

Now think about: domain adaptation + covariate shift, where 𝑝!"#$% 𝑦 = 𝑝!'(!(𝑦).

𝑥!"#$%
𝑓(𝑥!"#$%)

𝑓(𝑥!&'!)𝑥!&'!

Large HΔH Near zero HΔH 
(due to no change in 𝑝(𝑦))



Why does this fail?
‘Typical’ assumption: 

𝜆 ≪ Train error+HΔH (otherwise domain adaptation is impossible)

What about our case?:

𝜆 = inf
C∈ℋ

𝑝!"#$% 𝑦 ≠ ℎ 𝑥 + 𝑝!&'!(𝑦 ≠ ℎ 𝑥 )

inf
C∈ℋ

𝑝!&'!(𝑦 ≠ ℎ 𝑓(𝑥) )Test domain error:

Potentially very large if 𝑓(𝑥) is not good on 𝑝!&'!

Ignoring 𝝀 leads to bounds that are far too optimistic



How can we avoid the problems from lambda?

- Consider different settings (ensembling
classifiers) [Mansour+ 2008,2009]

- Consider small amounts of target domain data

- Consider broad function classes [Zhang+ 2013]

- Assume overlap [Mansour and Schain 2014]

- Make stronger assumptions on the distribution 
shift (up next)

Redko+ 2020



Recap: UDA with H-delta-H

- Divergence based bounds. For any bounded loss,

- H𝚫H (basic bound).

- Understanding the 3 different terms.
- Source error: measurable on data, monotone decreasing with complexity
- H𝚫H: measurable via VC-bound, monotone increasing
- 𝝀: notmeasurable, monotone decreasing with complexity.

𝐸+!"#! ℓ 𝑥, 𝑦, 𝜃 ≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, 𝜃 + 𝑝!"#$%(𝑥) − 𝑝!&'!(𝑥) 3

𝐸+!"#! ℓ 𝑥, 𝑦, ℎ ≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ +
1
2𝑑565 𝑝!"#$%, 𝑝!&'! + 𝜆



Ideas beyond domain distances and reweighting

This is a bad situation for H𝚫H and reweighting
- Zero overlap (different styles)
- Distinguishable by almost any modern CNN

Are things hopeless?



Feasibility of domain adaptation in this setting

Transform

Motivation: It should be possible to do well here 
(so the bounds are incomplete)

If there exist simple transformations 
between domains, can we say anything?



Translation: a naïve proposal

MappingInputs After mapping



Interpretation via the HΔH bound

Input Translated

Source error

𝑑565

𝜆

Small

Huge (≈ 1)

Small

Small

Near-zero

Possibly large

Note: 𝜆 is small if translation ‘preserves’ the conditional



Preserving the conditional
Conditional-preserving translation:

Train dataTest data

2
Label

𝜆 ≈ 2 Source error𝑓(𝑥)

Other translation

Train dataTest data

2
Label

𝑝!"#$%(𝑦|𝑥)

Source error ≈ Test error

𝑝!&'!(𝑦|𝑥)
4

Test error ≫ Source error

No single model works well



Can we get guarantees for transformations?
When can we guarantee conditional preservation?

Only under strong conditions..

• Known family of transformations (e.g. PSD linear transforms)

• Explicit pairings / supervision given about the transformation

In practice..

Style transfer models and such are used.
Implicitly relies upon inductive bias of CNNs



Transformations and relations to reweighting
Reweighting

Change the frequency of points

Transformation/Translation
Change the location of points

𝑥

𝑝%&'()𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝%*+%

𝑥

𝑝%&'()

𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝%*+%

𝑥

𝑝%&'()

𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝%*+%

Not uniquely identified

Reweighting/Transformation: bias correction strategies.
IPM/H𝚫H : measuring errors due to remaining bias



Recap: transformation based methods

• Many domains admit simple transformations 

• A complementary bias-mitigation strategy to reweighting

Transform

𝑥

𝑝!"#$%

𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝!&'!

𝑥

𝑝!"#$%𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝!&'!



Other paradigms for this setting

- Self-training [Habrard+ 2013], more modern work by [Wei+ 2020]

- Ensembling [Mansour 2008+] and others

For more: “A survey on domain adaptation theory” by Redko+ 2020 
Or “A survey of unsupervised deep domain adaptation” by Wilson+ 2020



Theory to practice – where does this stuff appear?

HΔH Translation

DANN 
(domain adversarial neural nets)

Adversarial + translation methods
(e.g., CyCADA)

Unsupervised translation methods
(e.g. PixelDA, CycleGAN)

More recently – combination of these methods + self-training  



Overall summary 
• Divergence, IPMs, and H𝚫H

• Limitations of H𝚫H

• Translation as an alternative to reweighting

𝐸+!"#! ℓ 𝑥, 𝑦, 𝜃 ≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, 𝜃 + 𝑝!"#$%(𝑥) − 𝑝!&'!(𝑥) 3

𝐸+!"#! ℓ 𝑥, 𝑦, ℎ ≤ 𝐸+!$%&' ℓ 𝑥, 𝑦, ℎ +
1
2𝑑565 𝑝!"#$%, 𝑝!&'! + 𝜆

𝑥

𝑝!"#$%

𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝!&'!

𝑥

𝑝!"#$%𝑝(
𝑥)

𝑥

𝑝(
𝑥)

𝑝!&'!



Reminders:
• Next discussion

Domain adaptation and translation papers

• Assignments

Remember to prepare/submit summaries!

• Project

Project outline due Oct 25



Lecture 4

CS329D

N EURAL METHODS FOR DOMAIN ADAPTAT ION ( I )



Goals for today

Understand the basic DANN architecture + variations

Connect unsupervised mappings (CycleGAN) to domain adaptation

Know the conceptual / theory foundations of these methods



Domain adaptation in the wild (images)

Previous lectures:
Theory of unsupervised 

domain adaptation

This lecture:
Building systems that work 

on ‘real’ problems

Notable features:
- No overlap
- High dimensions

Training data Test domains

Training data (GTA) Test data (real world)



Solving these more sophisticated problems
The big difference in this lecture:

Neural methodsBounded VC dim (theory land)

New challenges:

Distinguishability / 𝐻Δ𝐻 : Almost always vacuous

Translations / mappings : Underdetermined

We have to use neural methods to get decent performance



Outline
We will cover two major families of methods

Domain invariance

Based on the Ben-David 𝐻Δ𝐻 style distinguishability bounds

Domain mapping

Based on the “Optimal Transport for Domain Adaptation” style direct mapping

There are other approaches (self-training, self-supervision) that we cover next lecture



Starting point: 𝐻Δ𝐻 style bounds.

H𝚫H-generalization (Adapted from [Ben-David]):

𝐸!!"#! ℓ 𝑥, 𝑦, ℎ

≤ 𝐸!!$%&' ℓ 𝑥, 𝑦, ℎ +
1
2𝑑"#" 𝑝$%&'(, 𝑝$)*$ + 𝜆

For a classifier h ∈ ℋ and any covariate shift

where 𝜆 = inf
+∈ℋ

𝑝$%&'( 𝑦 ≠ ℎ 𝑥 + 𝑝$)*$(𝑦 ≠ ℎ 𝑥 )

The dilemma: 

Neural nets are needed to optimize 𝐸!!$%&' ℓ 𝑥, 𝑦, ℎ and 𝜆
Neural nets have vacuous .

/
𝑑"#" 𝑝$%&'(, 𝑝$)*$



Key idea: measure invariance on representations
Consider invariance of representations

𝑥$%&'(
𝑓(𝑥$%&'()

𝑓(𝑥$)*$)
𝑥$)*$

Large HΔH (possibly) small HΔH 

Key point:
Neural networks (usually) have a linear layer at the end. 
𝐻Δ𝐻 can likely be made small on this last layer.



Domain invariance

Testing
(orange)

Training
(blue)

Face recognition

Desaturate

Testing
(orange)

Training
(blue)

Face 
recognition

Desaturate

Domain distance

Intuition from lecture 1:

Guiding principle: Encourage the model to learn ‘invariant’ representations



How can we optimize each term?

𝐸!!"#! ℓ 𝑇(𝑥), 𝑦, ℎ ≤ 𝐸!!$%&' ℓ 𝑇 𝑥 , 𝑦, ℎ +
1
2𝑑"#" 𝑇#𝑝$%&'(, 𝑇#𝑝$)*$ + 𝜆0

Training domain error Domain distinguishability

𝜆 = inf
!∈ℋ

𝑝$%&'( 𝑦 ≠ ℎ 𝑥 + 𝑝$)*$(𝑦 ≠ ℎ 𝑥 )

Min joint error

Recall the bound:

Optimize normally

How do we optimize?

Ignore it 
(pray it’s small)???

New setup: learn a hypothesis ℎ and feature map 𝑇 to minimize

Notation: 𝑇#𝑝 is the pushforward of p



Minimizing 𝐻Δ𝐻

>𝑑"#" 𝑇#𝑝$%&'(, 𝑇#𝑝$)*$ = 2 sup
1∈"#"

𝐸!',!$%&' 𝑔 𝑇(𝑥) − 𝐸!',!"#! 𝑔 𝑇(𝑥)

Recall that 𝐻Δ𝐻 can be estimated as accuracy

Domain invariance objective (general form)

inf
0,+

sup
1∈"#"

𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ + 𝐸!',!$%&' 𝑔 𝑇(𝑥) − 𝐸!',!"#! 𝑔 𝑇(𝑥) + 𝜆0

Training domain error Accuracy of distinguishing domains Ignore

This is a minimax optimization problem (generally bad news)



Background: adversarial neural methods
Domain invariance takes the form of an adversarial game

inf
0,+

sup
1∈"#"

𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ + 𝐸!',!$%&' 𝑔 𝑇(𝑥) − 𝐸!',!"#! 𝑔 𝑇(𝑥)

T, h: ‘min’ player (goes first)

g: ‘max’ player (goes second)

Tries to find low-train loss representations 𝑇 that have 
similar values 𝑔 on train (source) and test (target) 

Tries to find a classifier in 𝐻Δ𝐻 that has high 
accuracy identifying the domain of 𝑇(𝑥)

These games are hard to solve: think of what happens when 𝑔 is suboptimal



Background: simultaneous gradient descent
Provably solving two player games: hard
Current approach: useful heuristics that are hard-to-tune but can work. 

Simultaneous gradient descent/ascent

Pseudocode: solving min
3
max
4

𝑓(𝜃, 𝜙)

At time 𝑡
1. 𝜃$ ← 𝜃$5. − 𝛼∇3𝑓(𝜃, 𝜙$5.)
2. 𝜙$ ← 𝜙$5. + 𝛼∇4𝑓(𝜃$5., 𝜙)

Players have different gradient signs

Inspired by no-regret strategies for two player games



Next steps: how do we operationalize the bound?

inf
0,+

sup
1∈"#"

𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ + 𝐸!',!$%&' 𝑔 𝑇(𝑥) − 𝐸!',!"#! 𝑔 𝑇(𝑥) + 𝜆0

Two (related) decisions:

What is 𝑯𝚫𝑯: We don’t have a easy way to write down or optimize this set 

What surrogate do we use to accuracy?: accuracy is not differentiable

Answer: we will replace this term with a convenient IPM



Main decision: choice of distinguishability
We will cover the major variations of domain-invariant neural nets

Key decision: how do we measure distinguishability (𝑔)?

1. Classification error of a neural net (𝐻Δ𝐻 / 𝐿1)

2. Discrepancy under 𝑔 selected from a RKHS (MMD)

3. Discrepancy under all Lipschitz continuous 𝑔 (Wasserstein)



Choice #1: adversarial classification [Ganin 2015]
What if we use a neural network for 𝑔?

Domain predictor: 
𝑓 𝑇 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤2𝑇 𝑥 + 𝑏)

Domain indicator: 
𝑧 = 1 if a sample is from the source, 0 otherwise

Surrogate loss: 

ℒ 𝑓 𝑇 𝑥 , 𝑧 = 𝑧 log
1

𝑓(𝑇 𝑥 )
+ (1 − 𝑧) log

1
1 − 𝑓(𝑇 𝑥 )

−
1
2 (𝐸!!$%&' ℒ 𝑓 𝑇 𝑥 , 1 + 𝐸!!"#! ℒ 𝑓 𝑇 𝑥 , 0

Overall domain penalty: 

Hand-wavy claim: ‘this is like the error of classifier f(T(x))’



Full DANN objective (in sample form)

𝐸3!,#$%&! ℓ 𝑇(𝑥), 𝑦, ℎ − 𝛽 𝐸3!,#$%&! ℒ 𝑓 𝑇 𝑥 , 1 + 𝐸3!,#'(#[ℒ(𝑓 𝑇 𝑥 , 0]

inf
0,+

sup
1∈"#"

𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ + 𝐸!',!$%&' 𝑔 𝑇(𝑥) − 𝐸!',!"#! 𝑔 𝑇(𝑥)

−
1
2 (𝐸!!$%&' ℒ 𝑓 𝑇 𝑥 , 1 + 𝐸!!"#! ℒ 𝑓 𝑇 𝑥 , 0

Accuracy = 1-Error

Going from the invariance objective to DANN

Full DANN objective



The overall DANN architecture

Maximizes 
performance on 

training data

Minimizes 
distinguishability

Domain invariant, useful features

This is simultaneous gradient descent on the DANN objective

min
4,6

max
7

𝐸3!,#$%&! ℓ 𝑇(𝑥), 𝑦, ℎ − 𝛽 𝐸3!,#$%&! ℒ 𝑓 𝑇 𝑥 , 1 + 𝐸3!,#'(#[ℒ(𝑓 𝑇 𝑥 , 0]



The gains from DANN

Method MNIST->USPS USPS->MNIST SVHN->MNIST MNIST->SVHN
Labeled target 
(oracle)

96.5 99.2 99.5

DANN 85.1 73.6 35.7

Subspace align 59.3

Source only 78.9 69.6 59.2



Variations: constraining the classifier (reconstruction)
Major issue with DANN:

Unmeasured 𝜆 term can collapse

Mitigation idea: classify images, not representations
1. Reconstruct  source-like images from the representation
2. Use a GAN to identify real vs fake source images.

Sankaranarayanan+ 2018, Generate To Adapt



Benefits and pitfalls of reconstruction methods

What does reconstruction do for us?
Prevents the collapse of latent representations (e.g. only the label)

What doesn’t it do?
Preserve the label distribution – the generator may map a 3 to a 6

(This is still a useful heuristic for controlling 𝜆)



The gains from DANN

Method MNIST->USPS USPS->MNIST SVHN->MNIST MNIST->SVHN
Labeled target 
(oracle)

96.5 99.2 99.5

GenToAdapt 92.8 90.8 92.4

DANN 85.1 73.6 35.7

Source only 78.9 69.6 59.2



Choice #2: Maximum mean discrepancy (MMD) 

Practical issue: 

All adversarial neural methods are horrible to optimize

Solution (?):

Pick a family of 𝑔 that does not require adversarial optimization

Kernels embeddings!

max
|1|ℋ7.

𝐸! 𝑔 𝑥 − 𝐸8 𝑔 𝑥 = 𝜇9 𝑝 − 𝜇9 𝑞 ℋ

If we’re willing to define 𝑔 as coming from a RKHS,



Advantages of MMD – no adversarial optimization

inf
0,+

sup
1∈"#"

𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ + 𝐸!',!$%&' 𝑔 𝑇(𝑥) − 𝐸!',!"#! 𝑔 𝑇(𝑥)

If we pick 𝐻Δ𝐻 the unit norm ball in a RKHS..

inf
0,+
𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ + 𝜇9 𝑇#𝑝$%&'( − 𝜇9 𝑇#𝑝$)*$

Note: 𝑇#𝑝 is the pushforward of p under T

The price: performance in practice (Deep adaptation networks, Long+ 2016)

Method MNIST->USPS USPS->MNIST SVHN->MNIST MNIST->SVHN
DANN 85.1 73.6 35.7

DAN (kernel) 81.1 71.1



Special case: (deep) CORAL
An important example of this class of methods is CORAL (Sun+ 2016)  

Deep CORAL algorithm:
Penalize the squared difference of covariances

𝐸3#$%&! 𝑇 𝑥 𝑇 𝑥 2 − 𝐸3#'(# 𝑇 𝑥 𝑇 𝑥 2
8
9

This is a very lightweight domain adaptation algorithm

Interpretation as MMD:
Pick ℋ generated by the quadratic kernel 𝑘 𝑥, 𝑦 = 𝑥2𝑦 + 1 9

MMD for this ℋ will ensure that two distributions have identical covariance.



How does CORAL / MMD / DANN do?

Office dataset comparison:
(well-tuned) DANN methods do well

Method A->W D->W W->D
Gen to Adapt 89.5 97.9 99.8

DANN 67.3 – 73.0 94.0 – 96.4 93.7 – 99.2

DAN 68.5 96.0 99.0

Deep CORAL 66.4 95.7 99.2

Source only 62.6 96.1 98.6

adversarial

MMD



Choice #3: Optimal transport
Another choice with closed form maximization: Lipschitz continuous functions

max
1∈ℱ*

𝐸! 𝑔 𝑥 − 𝐸8 𝑔 𝑥 = 𝑊.(𝑝, 𝑞)

This is the ‘optimal transport’  
we covered earlier in the course

Deep JDOT: 

inf
0,+
𝐸!',!$%&' ℓ 𝑇(𝑥), 𝑦, ℎ +𝑊/(𝑇#𝑝$%&'(, 𝑇#𝑝$)*$)

Use optimal transport costs to get invariance 

𝑑 𝑥, 𝑥; = 𝑥 − 𝑥; / + 𝛽 |ℎ< 𝑥 − ℎ< 𝑥; |



How are the models that you get from these choices?

Optimal transport methods
Adversarial classification methods
MMD methods

Method MNIST->USPS USPS->MNIST SVHN->MNIST

Labeled target 
(oracle)

96.5 99.2 99.5

Deep JDOT 95.7 96.4 96.7

Gen. to. Adapt 92.8 90.8 92.4

DeepCORAL 89.3 91.5 59.6

DANN 85.1 (95.7) (90.0) 73.6

DAN 81.1 (88.5) 73.5 71.1

Source only 78.9 69.6 59.2

Legend
:

(from Damodaran+ 2018 and 
Wilson and Cook 2020)  

Range of model performance:
Careful engineering and newer models tend to win



Notes and pitfalls
1. Adversarial methods are hard to tune.

2. Comparisons can depend on benchmark-specific trick and tuning

3. A range of engineering decisions we didn’t cover here 

Huge range in reported performance (85 to 95%)

Tricks like image intensity normalization changing performance 
from 37.5% → 97% on MNIST → SVHN

French+ 2018

Separate weights for source vs target / stagewise training

See Wilson and Cook if interested.



High-level recap of domain invariance

Main conceptual distinction across methods: defining 𝑔

Adversarial classification: neural nets + adversarial training

MMD: functions from a kernel space + analytic maximization

Wasserstein: Lipschitz continuous functions + optimal transport

Effective method from each family, though Adversarial can be hard 
to tune, and MMD can underperform



Domain mapping: reminder

Transform

Motivation: Most domain adaptation datasets 
have direct mappings between source and target

Can explicit domain mappings improve 
upon invariance?



Optimal transport for domain adaptation

MappingInputs After mapping

Reminder: OTDA from 2 lectures ago:

“Deep” OTDA

NN
features OTDA

Method A->W D->W W->D

DANN 67.3 – 73.0 94.0 – 96.4 93.7 – 99.2

OTDA + NN 84.5 94.1 91.3

OTDA 37.0 81.0 84.0

Source only 62.6 96.1 98.6



From generic to pixel-level mappings
OTDA tradeoffs: 

Mapping in deep feature space Mapping in pixel space

Assumption Good feature map
(similar assumption as invariance)

Meaningful cost function
(pixels distances are awful)

Can we learn useful pixel-level mappings?



Unsupervised domain mapping / translation
Unsupervised translation to the rescue!

Task
Input: given unpaired images (or text) from two domains
Output: return a function that can map from one domain to another

Note: This is exactly the domain
mapping problem

Right: Example from one such 
system (cycleGAN)



Background: cycle consistency losses
The OTDA idea:

Map from source to target (𝑇#𝑝:;<=>) evaluate 𝑑(𝑇#𝑝:;<=>, 𝑝:?@:)

Pictoral version:

Intuition: Domain maps should be invertible

Cycle-consistency:
Additional constraint on T: ensure 𝑑(𝑇5. ∘ 𝑇#𝑝!$%&'(, 𝑝$%&'()



Putting it together - cycleGAN
The example from before (cycleGAN) is exactly this idea
1. Similarity of mapped distribution on the target
2. Invertibility of the learned mapping

Cycle consistency

(Adversarial) distribution matching



Background: semantic consistency losses
Pitfalls of domain mapping: We might flip labels around

Idea: constrain domain mapping to preserve labels (hard)

Actual implementation: train a classifier 𝑓 on source, prefer mappings

Domain mapping does not care 
about our domain adaptation task!

𝑓 𝑥 ≈ 𝑇(𝑓 𝑥 )

often with a penalty 𝑑(𝑓 𝑋 , 𝑇 𝑓 𝑋 )

Very popular: in CyCADA, generate-to-adapt, etc.



Background: commutativity constraints
One last note: We can incorporate even more priors about the map

Observation: 

rotate 180 → map 𝑇 → rotate 180 map 𝑇
=

rotate 180 → map 𝑇 map 𝑇 → rotate 180

Simple image transforms should commute with the map

Used in some fancier mapping algorithms (GcGAN)



Summary: unsupervised domain mappings
Ingredients:

• Mapping similarity (is 𝑇#𝑝:;<=> ≈ 𝑝:?@:?)

• Adversarial losses

• Problem-specific constraints

• Invertibility (Cycle consistency)
• Commutativity (Geometry preservation)

• Conditional preservation (semantic consistency)

Not discussed: unsupervised machine translation



Domain map, then classify
How well does domain mapping alone work?

(From GcGAN)

Method MNIST->USPS USPS->MNIST SVHN->MNIST

Labeled 
target 
(oracle)

96.5 99.2 99.5

CycleGAN* 95.6 96.4 70.3

DANN 85.1 (95.7) (90.0) 73.6

Source only 78.9 69.6 59.2

A: very good for similar domains, less so for different ones



Variations to the map+classify approach
Other variations

Source to target or target to source?

Most methods 
(sim gan, dcgan) etc

Less common,
sometimes in ensemble



Reconstruction as mapping
Recall the generate-to-adapt method

This is a type of target-to-source mapping!

More generally: reconstruction from invariant representation ↔ domain map



Results of reconstruction-based methods
Adding some context: 

reconstruction is a middle ground between mapping and invariance

Method MNIST->USPS USPS->MNIST SVHN->MNIST

Labeled 
target 
(oracle)

96.5 99.2 99.5

CycleGAN* 95.6 96.4 70.3

Gen. to. 
Adapt

92.8 90.8 92.4

DSN 91.3 82.7

DANN 85.1 (95.7) (90.0) 73.6

Source only 78.9 69.6 59.2



Bringing together adversaries and mappings
Invariance and mapping have complementary strengths

Can we combine all of the ideas today?

• Mapping

• Cycle consistency
• Semantic consistency

• Invariance
• Adversarial prediction of domain identity

The result: CyCADA



CyCADA
Invariance, translation and the kitchen sink:

CycleGAN loss

Consistency loss

DANN (+ target map)



One final slide of MNIST SVHN
Upshot: dramatic improvements in more distant domains

Method MNIST->USPS USPS->MNIST SVHN->MNIST

Labeled 
target 
(oracle)

96.5 99.2 99.5

CyCADA 95.6 96.5 96.7

CycleGAN* 95.6 96.4 70.3

DANN 85.1 (95.7) (90.0) 73.6

Source only 78.9 69.6 59.2

Works on more challenging GTA → Cityscapes data as well



Invariance vs domain mapping

Invariance

Domain mapping

Combining the two

“There exists a shared, useful representation for both domains”

Can handle very different domains (by discarding information)

“There is a direct correspondence between two domains”

Much stronger assumption. Fails under large domain shifts (MNIST-SVHN)

In theory: still need a domain mapping to work 

In practice: the invariance part can account for inexact domain maps



Preserving the conditional
In both cases:

Learning a valid invariance / mapping is not the hard part

Learning a label-preserving invariance / mapping is hard

Tricks we learned:

• Reconstruction penalties / losses for invariance
• Enforcing consistency to a pre-trained classifier 
• Using unsupervised mapping / translation methods



A huge diversity of methods

• This lecture covers only a few well-known 
methods

• There’s a huge zoo of methods, with 
minor variations in loss and architecture

• Invariance (blue) and mapping (red) have 
been the majority of adaptation methods

(Wilson and cook 2020)



What’s left?
We’ll leave two major additional ideas for a future lecture
Self-training: using source domain predictions to label unlabeled data

Self-supervision:  using target domain data to regularize the model



Summary for today
Two major families of methods:

Invariance : key decision – measuring invariance
Domain classification (DANN)
MMD (Coral / DAN)
Optimal transport (DeepJDOT)

Mapping: key decision – constraining the mapping
Cycle consistency (CycleGAN)
Geometry / Commutativity (GcGAN)

Combinations:
Reconstruction methods (Generate to Adapt)
Map+invariance (CyCADA)


