Experiment 2: Fine-grained recognition

» Task: classify image of dog to breed (120 classes)

e Kernel features

No underrepresentation:
same number of images per class
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ERM error rate

=
o

o
O
1

o
oo
1

o
~
]

©
o
1

—
Ul
1

o
S
]

o
w
]

BIG gap in performance even
when no underrepresentation

40 60 80 100
classes

120




standard deviation of class-wise error

Variation in error over 120 class
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30 seconds demo of Wasserstein DRO

MNIST SVHN MNIST-M USPS
SVHN MNIST — M SYN USPS
0.40 L 0.65 0.50 0.85
> 0.35 l 1 i 0.60 'l nhd 1 0.45 .4 LT J 080
5 | | n " LI
S 030 , 1 055 § 0.40 |& 0.75
0.25 [ ‘ 0.50 I 0.35 0.70
ED123456 ED123456 ED123456 ED123456
K K K K
E = ERM with L2 regularization B,(6) W)

— 5“1? £ 0087 Y, NG =) B9 (2

D = Dropout regularization

K = number of Wasserstein DRO gradient ascent steps

Trained using lambda = 1.0, and an adaptive cost function
defined on last hidden layer outputs of the neural network



Distributional Robustness in Statistical Learning:
A Few Vignettes
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Motivation
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Goal

We want machine-learned systems to
perform reliably when deployed in the real world
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Goal

We want machine-learned systems to
perform reliably when deployed in the real world

= Uniformly good performance against distributional
shifts
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Problem 0: Uncertainty in data
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Problem 0: Uncertainty in data

» Want to be robust to small perturbations in ﬁn
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Problem 1: Tail performance

Number of Queries

number of queries

200

0!

0 5000 10000 15000 20000 25000 30000 35000

MSR Learning to Rank
» Long-tailed data distribution
» At Google, a constant percentage of queries are new each day

» Rare queries determine quality of service
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Problem 1: Tail performance

ResNet on CIFAR100

accuracy
© o o o o
- w (=] ~ -]

o
w

o
N

0 20 40 C‘8559560 80 100
class-wise test accuracy
» Same number of training examples for each class
» Average accuracy is around 60 — 70%

» Low performance on certain classes
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Problem 2: Changes in environment

Driving in California
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Problem 2: Changes in environment

o
BARK:8 RIDE
RMINA

Driving in California Not driving in California
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Problem 3: Fairness

» Data collection almost always contains demographic, geographic,
behavioral, temporal biases

> Pre-existing biases in language
» Bias in word representations (word2vec) [Bolukbasi et al (2016)]
man — woman & computer programmer — homemaker
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Problem 3: Fairness

Data collection almost always contains demographic, geographic,
behavioral, temporal biases

v

v

Pre-existing biases in language
» Bias in word representations (word2vec) [Bolukbasi et al (2016)]
man — woman & computer programmer — homemaker

» Representation disparity for minority groups
= disparate performance over different demographic groups

> e.g. race, gender, age

v

Speech recognition, facial recognition, automatic video captioning,
language identification, academic recommender systems etc
[Amodei et al (2016), Grother et al (2010), Hovy et al (2015), Blodgett et al (2016),
Sapiezynski et al (2017), Tatman (2017)]
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Problem 3: Fairness

Criminal Justice System

» Predict if defendant should receive bail (crime recidivism)

» Higher false positive for African Americans

Table: ProPublica Analysis of COMPAS

Caucasian  African American
False High-Risk ~ 23.5% 44.9%
False Low-Risk 47.7% 28.0%

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
» More likely to wrongly deny African Americans bail!
» Used state-wide in New York, Wisconsin.
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https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Problem 4: Adversaries

“panda” "gibbon”

57.7% confidence 99.3% confidence

[Goodfellow et al. 15]
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Problem 4: Adversaries

“panda” "gibbon”

57.7% confidence 99.3% confidence
[Goodfellow et al. 15]

Paraphrased Quote:

We could put a transparent film on a stop sign, essentially imperceptible
to a human, and a computer would see the stop sign as air (Dan Boneh)
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Risk-averseness

» Distributional Robustness = Risk-averseness (coherent risk measures)
[Shapiro et al (2009)]

» Risk-averse decision making is standard in OR, economics, finance

» Optimizing average-case performance is still common in stats/ML

» empirical risk minimization (ERM), maximum likelihood estimation
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Risk-averseness

» Distributional Robustness = Risk-averseness (coherent risk measures)
[Shapiro et al (2009)]

» Risk-averse decision making is standard in OR, economics, finance

» Optimizing average-case performance is still common in stats/ML

» empirical risk minimization (ERM), maximum likelihood estimation

Can we be risk-averse in statistics and machine learning?
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Small perturbations to data

Small perturbations to data
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Small perturbations to data

Stochastic optimization problems

Data X and parameters 6 to learn, with loss ¢(6, X)

Minimize the population expected loss

0cO

minimize {R(H) = B[00, X)] = / K(G,x)dPg(:L‘)}

. . iid
given an i.i.d. sample X1,..., X, ~ Py
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Small perturbations to data

Empirical Risk Minimization

Standard approach: Solve

Hongseok Namkoong Distributionally Robust Optimization June 2018 14 / 76



Small perturbations to data

Empirical Risk Minimization

Standard approach: Solve

n

~ ~ 1
0™ € argmin R, (0) := = Y €(6; X;) ~ Ep, [£(6; X))
0eo n-4

Goal: Can we hedge against uncertainty in data?
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Small perturbations to data

Empirical Risk Minimization

Standard approach: Solve

n

~ ~ 1

6™ € argmin R, (0) := — Y £(6; X;)~ B, [£(6; X)).
06 ni- —

Hopefully!

Goal: Can we hedge against uncertainty in data?
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Small perturbations to data

Point of departure: bias/variance tradeoff
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Small perturbations to data

Point of departure: bias/variance tradeoff

» Any learning algorithm has bias (approximation error) and variance
(estimation error)
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Small perturbations to data

Point of departure: bias/variance tradeoff

» Any learning algorithm has bias (approximation error) and variance
(estimation error)

» From empirical Bernstein's inequality, with probability 1 — ¢

R(e) = IEPo [€(97X)] < En(g) +
——

bias

2Varp (£(6; X)) n Clog%
n n

variance
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Small perturbations to data

Point of departure: bias/variance tradeoff

» Any learning algorithm has bias (approximation error) and variance
(estimation error)

» From empirical Bernstein's inequality, with probability 1 — ¢

R(e) = IEPo [€(97X)] < En(g) +
——

bias

2Varp (£(6; X)) n Clog%
n n

variance

» Can be made uniform in § € © [Maurer & Pontil 09]
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Small perturbations to data

Point of departure: bias/variance tradeoff

» Any learning algorithm has bias (approximation error) and variance
(estimation error)

» From empirical Bernstein's inequality, with probability 1 — ¢

\/ 2Varp, (£6:X)) _ Clog}

R(0) = Ep, [£(6; X)] < Rn(0) +
~—— n n

bias

variance

» Can be made uniform in § € © [Maurer & Pontil 09]
Goal: Trade between these automatically and optimally by solving
v _ \/ 2Varp (£(0; X))

€ argmin { R, (0) +
0€o n
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Small perturbations to data

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Hongseok Namkoong Distributionally Robust Optimization June 2018 16 / 76



Small perturbations to data

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!
Minor issue: variance is wildly non-convex

1.8 T T T T T T T

Figure: Variance of |6 — X|
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Distributionally Robust Optimization

Goal:

migiergize R(0) = Ep,[£(0; X)]

Hongseok Namkoong Distributionally Robust Optimization June 2018 17 / 76



Distributionally Robust Optimization

Goal:

migiergize R(0) = Ep,[£(0; X)]

Solve empirical risk minimization problem

n
1
inimi E —0(0; X;
minimize 2 (0; X;)
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Distributionally Robust Optimization

Goal:

migiergize R(0) = Ep,[£(0; X)]

Solve empirical risk minimization problem

n
1
inimi E —0(0; X;
Mheo —n (6: %)
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Small perturbations to data

Distributionally Robust Optimization

Goal:

migiergize R(0) = Ep,[£(0; X)]

Instead, solve distributionally robust optimization (RO) problem

n
minimize su 2(0; X;
6cO pE’P}i,; Zzlpl ( ’ l)

where P, , is some appropriately chosen set of vectors
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Distributionally Robust Optimization

Goal:
minimize R(6) = Ep,[¢(0; X)]

0cO

Instead, solve distributionally robust optimization (RO) problem

n
minimize su 2(0; X;
6cO pE’P}i,; ;pl ( ’ l)

where P, , is some appropriately chosen set of vectors

[Scarf 58, Dupacova 87, Yue et al. 06, Popescu 07, Delage & Ye 10, Ben-Tal et
al. 13, Bertsimas et al. 17, and many others]

Hongseok Namkoong Distributionally Robust Optimization June 2018 17 / 76



Empirical likelihood

Idea: Instead of using empirical distribution ﬁn on sample X1, ..., X,,
look at all distributions “near” it.
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Empirical likelihood

Idea: Instead of using empirical distribution 13n on sample X7, ...

look at all distributions “near” it.

» The f-divergence between distributions P and @ is

D;(PIQ) = [ 1 (fg) aQ

where f is some convex function with f(1) = 0.
(w.l.o.g. can take f/(1) = 0 too)
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Empirical likelihood

Idea: Instead of using empirical distribution 13n on sample X1, ..., X,,
look at all distributions “near” it.

» The f-divergence between distributions P and @ is

dP
D;(P1Q) = [ £(%5) 4@
where f is some convex function with f(1) = 0.
(w.l.o.g. can take f/(1) = 0 too)
> Measures of closeness we use: f(t) = 1(t— 1)

X)) — X 2
D2 (P|Q) = % 3 (”)q(q()) Chi-square

: z)

(Owen (1990): original empirical likelihood f(t) = —logt)
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Empirical likelihood

B = { Ym0 Gl < £

then independently of distribution on Z € R¥
P(E[Z] € En(p)) — P(xi < p)-

[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]
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Empirical likelihood

B = { om0 Gl < £

then independently of distribution on Z € RF
P(E[Z] € Eu(p)) = P(xi < p)-
[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]
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Empirical likelihood
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Idea: Leverage this in stochastic optimization
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Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

Prp = {Distributions P such that D,» (P”ﬁn) < B}
n

for some p > 0.
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Small perturbations to data

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

Prp = {Distributions P such that D,» (P”ﬁn) < B}
n

for some p > 0.

Define (and optimize) empirical likelihood upper confidence bound

R, (0,Pp,) = max Eplt(0; X)) = max pil(0; X;)
g P:D o (P|Pn)<2 p:D, 2 (P|Pn)< Z

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 16]
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Small perturbations to data

Visualization of worst-case

0.15 ;
—Losses
01. —worstp ||
0.05 |
0 L
0.05 |
0.1}
-0.15 ‘ : ‘ ‘
10 20 30 40 50
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Small perturbations to data

Optimization
Solve
6™ := argmin R, (0,Pn,) = max Ep[t(0; X)]
00 P:D o(P|Pn)<£
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Small perturbations to data

Optimization
Solve

6™ := argmin R, (0,Pn,) = max Ep[t(0; X)]
0€0 P:D o(P|Pn)<£

Nice properties:

» Convex optimization problem.

» Solve dual reformulation using
interior point methods [Ben-Tal
et al. 13]

> For large n and d, efficient
solution methods as fast as
stochastic gradient descent
[N. & Duchi, 16]
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Small perturbations to data

Play a two-player stochastic game [N. & Duchi 16]

mln max Zpl
0€© pEPn, 2

Adversary P

Sample

—

Reweight

Easy

0(0; X;)

Player

Run SGD
et—i—l —

0t — Ve, X,)
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Small perturbations to data

Robust Optimization ~ Variance Regularization

Theorem (Duchi, Glynn & N. 2016)

For general f-divergences,

2pVarp (£(6; X))

n

m@mﬁ-&@+¢ + Rem, ().

> If 0%(0) < oo, then \/nRem,(0) 2> 0
> If {£(6;-) : 0 € O} is Py-Donsker, then \/nsupycq Rem,,(6) 5o
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Small perturbations to data

Robust Optimization ~ Variance Regularization

Theorem (Duchi, Glynn & N. 2016)

For general f-divergences,

2pVarp (£(6; X))

n

m@mﬁ-&@+¢ + Rem, ().

> If 0%(0) < oo, then \/nRem,(0) 2> 0
> If {£(6;-) : 0 € O} is Py-Donsker, then \/nsupycq Rem,,(6) 5o
> [Lam (2013), Gotoh et al (2015), Lam and Zhao (2017)]
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Small perturbations to data

Robust Optimization ~ Variance Regularization

Theorem (Duchi & N. 2016)
Assume that £(0; X) < M. Let 0(f) := Var(£(0; X)).

Rn(HQPn,p) = Rn(g) + + Remn(ﬁ).

~ 2pVarp (£(6; X))
n
> Rem,(§) < Y12M

» Rem,(0) = 0 with probability at least 1 — exp(—g‘gj\ff@)
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Small perturbations to data

Robust Optimization ~ Variance Regularization

Theorem (Duchi & N. 2016)
Assume that £(0; X) < M. Let 0(f) := Var(£(0; X)).

Rp(0;Pn.,) = Rp(6) + \/ 2pVarp, n(ﬁ(e;X))

+ Rem,,(0).

> Rem,(§) < Y12M

» Rem,(0) = 0 with probability at least 1 — exp(—g‘gj\ff?)

» Let N(F,T,|||;) be the T-covering number with respect to the
supremum norm.

P (Rem,, () = 0 for all § € © s.t. o?(0) > 72)
2

nTtT
>1—cN(F,, ||'HL°°)eXp(_W)‘
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Small perturbations to data

Robust Optimization ~ Variance Regularization

With high probability,

2pVarp (£(6; X))

n

R (0;Ppp) = Ra(6) + \/
~————

Robust

VarReg
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Small perturbations to data

Robust Optimization ~ Variance Regularization

With high probability,

2pVarp (£(6; X))

n

—_————

Robust

VarReg

» Robust is empirical likelihood UCB and VarReg is normal UCB
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Small perturbations to data

Robust Optimization ~ Variance Regularization

With high probability,

2pVarp (£(6; X))

n

—_————

Robust

VarReg

» Robust is empirical likelihood UCB and VarReg is normal UCB

» Robust is convex, VarReg is non-convex
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Small perturbations to data

Robust Optimization ~ Variance Regularization

With high probability,

2pVarp (£(6; X))

n

—_————

Robust

VarReg

» Robust is empirical likelihood UCB and VarReg is normal UCB
» Robust is convex, VarReg is non-convex

» Robust only penalizes upward (bad) deviations in the loss whereas
VarReg penalizes downward (good) deviations along with the upward
(bad) deviations
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Small perturbations to data

Robust Optimization ~ Variance Regularization

With high probability,

2pVarp (£(6; X))

n

—_————

Robust

VarReg

v

Robust is empirical likelihood UCB and VarReg is normal UCB

Robust is convex, VarReg is non-convex

v

v

Robust only penalizes upward (bad) deviations in the loss whereas
VarReg penalizes downward (good) deviations along with the upward
(bad) deviations

Robust is a coherent risk measure (i.e. it is a sensible negative utility)

\4
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Small perturbations to data

Empirical likehood for stochastic optimization

Solve

6™’ := argmin R, (0,Pn,) = max Ep[t(0; X)] .
0€O P:D o (P|Py)<2
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Empirical likehood for stochastic optimization
Solve

6™ .= argmin R, (0,Pn,) = max Ep[t(0; X)] ¢ .
0€O P:D o (P|Py)<2

Assume that {£(60;-) : 0 € ©} is Py-Donsker

e.g. © C R? compact and ¢(-; X) is M (X)-Lipschitz with EM (X)? < oc.
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Empirical likehood for stochastic optimization

Solve

6™ .= argmin R, (0,Pn,) = max Ep[t(0; X)] ¢ .
0€O P:D o (P|Py)<2

Assume that {£(60;-) : 0 € ©} is Py-Donsker
e.g. © C R? compact and ¢(-; X) is M (X)-Lipschitz with EM (X)? < oc.

Theorem (Duchi, Glynn & N. 16 @)
If 0* := argmingcg R(0) is unique, then

. . rob _ _
Tim P (52(5 R(0) < R (0 ,PW,)) =P (N(o, 1) > \/2p) .

Can be extended to Harris recurrent Markov chains that mix suitably fast
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Small perturbations to data

Optimal bias variance tradeoff

Solve

6™ := argmin R, (0,Pn,) = max. Ep[t(0; X)] ¢ .
0€0 P:D 5(P|Py)<£
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Small perturbations to data

Optimal bias variance tradeoff

Solve

6™ := argmin R, (0,Pn,) = max. Ep[t(0; X)] ¢ .
0€0 P:D 5(P|Py)<£

Let 4(; X) is M-Lipschitz and diam(©) = r
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Optimal bias variance tradeoff

Solve

6™ := argmin R, (0,Pn,) = max. Ep[t(0; X)] ¢ .
0€0 P:D 5(P|Py)<£

Let 4(; X) is M-Lipschitz and diam(©) = r

Theorem (Duchi & N. 2016)
Let p = log % + dlogn. Then with probability at least 1 — 9,

crM
n

R(’g\rob) < Rn(grob7pn7p) + P
—_———

optimality certificate

< min {R(e) +2 QPVar@(@,&))} LM

0o n n

p

optimal tradeoff
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Small perturbations to data

Fast rates from optimal tradeoff

> Let p~ Comp,,(0). If £(6; X) € |0, M], then with high prob,
p Pn g

0cO

R(E*) < min {R(O) oy 2N0E) } +

optimal tradeoff
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Small perturbations to data

Fast rates from optimal tradeoff

> Let p~ Comp,,(0). If £(6; X) € |0, M], then with high prob,
p Pn g

0cO

R(E*) < min {R(O) oy 2N0E) } +

optimal tradeoff
» ERM: For R(6*) = infyco R(6), with high probability,

20MR(6*)  CM
4 2PMEOY)  CMp
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Small perturbations to data

Fast rates from optimal tradeoff

> Let p~ Comp,,(0). If £(6; X) € |0, M], then with high prob,
p Pn g

0cO

R(E*) < min {R(o) oy 2N0E) } +

optimal tradeoff
» ERM: For R(6*) = infyco R(6), with high probability,

20MR(6*) CM
R ( )Jr P
n n

» If Var(4(60*; X)) < MR(6), first bound is tighter

R(é\erm) < R(@*)

» See paper for an explicit example where

~ C ~ C
rob < * 1 ermy -, * 2
R(E) RO+ but  RO™) = R(6") + 7
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Small perturbations to data

Experiment: Coverage Rates

» Portfolio optimization (0;X)=0"X
» Conditional Value-at-Risk £(6; X) = 2 (X — 0), +0
» Newsvendor problem 00;X)=b"(0—X), +s' (X—0),.

Hongseok Namkoong Distributionally Robust Optimization June 2018 31/ 76



Small perturbations to data

Experiment: Coverage Rates

» Portfolio optimization (0;X)=0"X
» Conditional Value-at-Risk £(6; X) = 2 (X — 0), +0
» Newsvendor problem 00;X)=b"(0—X), +s' (X—0),.

Figure: Coverage Rates (nominal = 95%)

% Portfolio CVaR Newsvendor
sample size EL Normal EL Normal EL Normal
20 75.16  89.2  30.1 91.38 91.78 95.02

200 9296 93.68 86.73 95.27 94.64 95.26
2000 9548 95.25 93.73 9525 9492 05.04
10000 96.43 9551 9471 9485 9443 94.43
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Small perturbations to data

Experiment: Regression

Problem: Predict crime rate Y, given feature vector describing community

0.144 == LN
—+= L2(n)
—}— Elastic Net(r)
0.12{ =—4= Robust(p)
—}— L2(.05)+Robust(p)
0.10 1
s
@
= 0.081
0.06
0.04 4

por—r

Median test loss £(0; (W,Y)) = |§TW — Y|
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Small perturbations to data

Experiment: Regression

Problem: Predict crime rate, given feature vector on community

- L1(n
0751 =4 120
—4— Elastic Net(r)

0.70 4 = Robust(p)
—}— L2(.05)+Robust(p)

0.65
0.60 4

0.55 é_é

0.50 1

11 error

AN\

0.45 4

T T T

por—r

Maximal test loss £(6; (X,Y)) = |87 X — Y|
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Problem: Classify documents as a subset of the 4 categories:

{Corporate, Economics, Government, Markets}

» Data: pairs z € R? represents document, y € {—1,1}* where y; =1
indicating = belongs j-th category.

> Logistic loss, with © = {¢ € R?: [|¢]|, < 1000}
> d = 47,236, n = 804,414. 10-fold cross-validation.
» Use precision and recall to evaluate performance
Precision # Correct Recall # Correct
ISI _= =
# Guessed Positive # Actually Positive
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Table: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Figure: Recall on common category (Corporate)

0.935 T

0.930

0.925

0.920 -

0.915F

Recall

0.910

0.905

0.900 -

0.895

F- train
F test

ERM
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Figure: Recall on rare category (Economics)

0.82 T

0.80
0.78

076}

Recall
o
~
£
;

0.72

0.70

0.68

F- train
- test

ERM
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10° 101 10°

p
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Do well almost all the time intead of just on average!

10 ;
I ERM
R t
90 [ Robus |
>
(@)
© 80
35
(@)
Q
<
2 70f
@
60
50 — —
Precision Recall Precision Recall
Total Economics
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Perturbations to population distribution

Perturbations to population distribution J
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Perturbations to population distribution

Distributionally robust optimization

Idea: Replace data-generating distribution Py with “uncertainty” set P of
possible distributions around P,

inimize Ep, [((6, X
minimize Ep, [£(6, X)]

Hongseok Namkoong Distributionally Robust Optimization June 2018 40 / 76



Perturbations to population distribution

Distributionally robust optimization

Idea: Replace data-generating distribution Py with “uncertainty” set P of
possible distributions around P,

minimize {R(H;Po) = sup EP[Z(H,X)]}
90 Pep

Intuition: We want P to contain “hard” subpopulations, minority groups,
domain changes, and even adversarial shifts.
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Divergence-based uncertainty sets

The f-divergence between distributions P and (@ is

Dy (Pl@) = [ 1 (%) 1Q

where f is some convex function with f(1) = 0.
Use non-parametric uncertainty region

P:={P: Dy (P|Py) < p}
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Perturbations to population distribution

Curvature of f

» Curvature of ¢ — f(t) around 1 determines size of uncertainty region
» Cressie-Read family [Cressie and Read (1998)] for k € (1, 00)

Filt) = Ty Kt + k= D),

where Py := { P : Dy, (PIP) = [ fi () dPo < p}
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Perturbations to population distribution

Curvature of f

» Curvature of ¢ — f(t) around 1 determines size of uncertainty region
» Cressie-Read family [Cressie and Read (1998)] for k € (1, 00)

Fult) = k(kl_l)(tk k4 k1),

where Py := { P : Dy, (PIP) = [ fi () dPo < p}

124 k=12

. — k=2.0

» Curvature k controls size of Py. 10] — k=50
» As k — 1, Z:
» Dy (P|Py) grows smaller 04
» Uncertain set Pj, grows larger 021

» DRO is more risk-averse ooy T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Perturbations to population distribution

Distributionally robust optimization

Formulation: For divergence given by f(t) oc t* — 1, solve

minimize {Rkw; o) i=sup ({16, X)) : Dy, (PIF) < p}}
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Perturbations to population distribution

Distributionally robust optimization

Formulation: For divergence given by f(t) oc t* — 1, solve

minimize {Rkw; o) i=sup ({16, X)) : Dy, (PIF) < p}}

Empirical plug-in: For the empirical measure ﬁn solve the plug-in
minimize {Rk(Q,ﬁn) = sup {EP[K(G,X)] : Dy, (P||]3n> < p}}
0cO P

Contrast to previous formulation with shrinking robustness p/n.
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Perturbations to population distribution

Minimax bounds for mingece Ry (0; Fp)

Recall Ry (6; o) :=supp {Ep[((0,X)] : Dy, (P|F) < p}
Theorem (Duchi & N. 2018)
For k, k. = £ € (1,00), and £(0; X) € [-M, M]

inf supEp, Rk(é\; Py) — inf Ri(0; Py) | ~ n‘ﬁ
é\ Py 0O

where infimum is over all measurable functions 6 € o(X1,...,X,), and
supremum is over all distributions.
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Perturbations to population distribution

Minimax bounds for mingece Ry (0; Fp)

Recall Ry (6; o) :=supp {Ep[((0,X)] : Dy, (P|F) < p}
Theorem (Duchi & N. 2018)
For k, k. = £ € (1,00), and £(0; X) € [-M, M]

1

inf supEp, Rk(é\, Py) — inf Ri(0; Py)| =~n *V2)
é\ Py 0O

where infimum is over all measurable functions 6 € o(X1,...,X,), and
supremum is over all distributions.

» Upper bound attained by plug-in estimator
» Lower bound shows fudamental statistical cost of robustness
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Upper bound

Recall k, k. = %7 € (1,00), and the plug-in
O = argmin {Rk(e,ﬁn) = sup {EP[E(Q,X)] . Dy, <P”13n> < p}}
) P
Theorem (Duchi & N. 2018)
Let 0 — £(0;x) be L-Lipschitz, D := supy gcg |0 — 0'|| < 00, and
infgpce €(0; X) = 0. Then, w.p. > 1—2exp (—t + dlog (1 + %))

-~ 1
Ry (Okn; Po) < ein(f) Ri(0; Py) + 20y ,DL\tn~ ®v2)
€

for a constant Cy, , > 0 that depends only on k and p.
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Perturbations to population distribution

Lower bound

Theorem (Duchi & N. 2018)

Let £(0; X) = 60X with§ € © = [—-M,M] and € [-1,1]. Then, for a
constant cy, , that only depends on k and p

inf supEp, | Ry (6 Po) — inf Ry(6; Po)| > ey, Mn 07
0 Py 0co ’

where infimum is over o (X1, ..., X, )-measurable mappings, and
supremum is over all probability distributions.
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Perturbations to population distribution

Lower bound

Theorem (Duchi & N. 2018)

Let £(0; X) = 60X with§ € © = [—-M,M] and € [-1,1]. Then, for a
constant cy, , that only depends on k and p

inf supEp, | Ry (6 Po) — inf Ry(6; Po)| > ey, Mn 07
0 Py 0co ’

where infimum is over o (X1, ..., X, )-measurable mappings, and
supremum is over all probability distributions.

» Worst than parametric rate for k € (1,2) and k., = k/(k—1) € (2,00)
» Statistical cost of distributional robustness

> Lower bound applies to any f-divergence f(t) oc t*¥ — 1.
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Perturbations to population distribution

Remarks

v

Our upper and lower bounds are tight up to dimension dependent
constants

v

Lower bound can be loose in high dimensions

v

Central limit theorem: under suitable conditions,
V(B — %) <5 N(0, A)
where §k,n is empirical plug-in, and A can be fully-specified.

» Worst-case rate different from asymptotic rate
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Experiment: SVM sanity check

Test on distributions with adversarially shifted true classifier

51— em e
— k=4 7
—_— k=2 s

4] — k=15 -

perturbations

00; (w,y)) = (1 - wa0)+
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Perturbations to population distribution

Experiment: Domain Generalization

Problem: Given an hand-written or type-written digit, classify it

» Majority group: hand-written, minority group: type-written

» Data: MNIST hand-written training dataset comprising of

Nerain = 60, 000 digits with {0, 6, 10, 60, 100,600} images per digit

replaced with a type-written dataset (with the same label).

» Multiclass logistic loss

2

Type-written data

Hongseok Namkoong
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2

Hand-written data
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Perturbations to population distribution

Experiment: Domain Generalization

Performance on minority group

0.1754

0.150

0.1254

0.100

error

0.075 1

0.050

0.025 4

0.000 -

S

T ODDDO

- o
o
=

°
I
U
S o

0.0

Test error on type-written all digits
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Perturbations to population distribution

Experiment: Domain Generalization

Performance on “hard” digit in minority group

o

0.30 4

o
=

0.25 4

-

DT VDDV
I

U

S o

0.20

0.15 4

error

0.10 4

0.05

0.00

0.0 1 17 1.0 1.67 10.0
% of typewritten digits

Test error on type-written digit 9
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Perturbations to population distribution

Experiment: Domain Generalization

Performance on “easy” digit in minority group

o

0.07 4

o
=

0.06

-

DT VDDV
I

U

S o

0.05 4

0.04

error

0.03 4

0.02 4

0.014
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% of typewritten digits

Test error on type-written digit 3
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Perturbations to population distribution

Experiment: fine-grained recognition

» 120 distinct classes (all dog breeds) [Khosla et al. 11]

F

i e
) AN
,?hu:-?‘#m

Cairn Border
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Perturbations to population distribution

Experiment: fine-grained recognition

—o— train
0161 —o— test
0.14 1
c
2
F=]
o]
>
]
o
T 0.124
]
°
c
8
@
0.10 1
0.08 1
T T T T T T
0 .01 1 1 10 100
o

Variation of top-5 accuracy across 120 classes
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Perturbations to population distribution

Experiment: fine-grained recognition

0.40 A

0.354

o

w

S
!

0.251

0.20 1

tail-averaged top-5 accuracy

0.154 p=0
p=.01

0.10 1 p=.1
p=1

0.05 1 p=10

— p=100
0.00 T T T T T
20 40 60 80 100 120

worst x classes for each model

Test top-5 accuracy evaluated on worst x classes for each model
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Perturbations to population distribution

Experiment: fine-grained recognition

0.6

s
wn
L

o
IS
L

tail-averaged top-5 accuracy
o =}
N w
N |

o
s
L

0.0 1

T T T T
20 40 60 80 100 120
worst x classes for ERM (p =0)

Test top-5 accuracy evaluated on worst x classes for empirical risk
minimization
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Representation Disparity Amplification

Problem: Users may drop out of service if low performance

Evaluate user satisfaction and retention on Mechanical Turk

v

v

Corpora (tweets) from two demographic groups: Caucasians (SAE),
African Americans (AAE)

» Task: autocomplete 10 tweets

» Use satisfaction survey to estimate user retention, repeat with
changed demographic proportions

v

See [Hashimoto, Srivastava, N., Liang 18] for details
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Perturbations to population distribution

Representation Disparity Amplification

4.0
S b Ag:
5394 'y
ey r
o bl L] TCIY T AN (N [V M PN N
s
s 3.81 —— ERM (AAE)
o —— DRO (AAE)
374 ---- ERM (SAE)
+ DRO (SAE)
T T T T T T
0 10 20 30 40 50
Time

Green: ERM, Blue: DRO, real-line: AAE (minority), dotted-line: SAE
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Perturbations to population distribution

Representation Disparity Amplification

0.90 - |H bl | |.|..1-.|..|
o 0.85 1
o La re
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Perturbations to population distribution EAWEESIEETINEe IS I

Revisiting choice of uncertainty region

Distributionally robust formulations depend heavily on uncertainty region

inimi Epl¢(0,X
minimize Isjlelg p[e(0, X)]
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Perturbations to population distribution Wasserstein robustness

Revisiting choice of uncertainty region

Distributionally robust formulations depend heavily on uncertainty region

inimi Epl¢(0,X
minimize Isjlelg p[e(0, X)]

Q: Are there better choices of uncertainty sets P, especially for
over-parameterized models such as deep nets?
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e T
Why changing support is important

» Deep networks are not robust

Athalye et al. (2017)
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Perturbations to population distribution EAWEESIEETINEe IS I

Wasserstein-based robustness sets

Define Wasserstein distance from a (convex) transportation cost function ¢

Wo(P.@) = max{ [ i) le) )] d | h(o) — i) < el |
Use uncertainty region

P, :={P: W.(P,Fy) < p}
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Perturbations to population distribution EAWEESIEETINEe IS I

Wasserstein robustness

Look at distributionally robust risk

. Eoe | P
mlgleglzesgp{ plt(6; 2)] | P € P}
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Perturbations to population distribution EAWEESIEETINEe IS I

Wasserstein robustness

Look at distributionally robust risk defined for p > 0

R(O,p) := 51113p {Ep[l(0; 2)] s.t. We(P, Py) < p}
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Perturbations to population distribution Wasserstein robustness

Wasserstein robustness

Look at distributionally robust risk defined for p > 0
R(O,p) := 51113p {Ep[l(0; 2)] s.t. We(P, Py) < p}

» Allows changing support to harder distributions
[Shaﬁeezadeh—Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet
et al 16]
Example (Linear models): If loss £(6, z,y) = ¢(0Txzy) for some ¢, then
> if ¢(x,2) = ||z — 2’|, yields data-dependent ¢;-regularization

> if ¢(x,2") = ||z — 2’|, yields data-dependent ¢2-regularization
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Perturbations to population distribution Wasserstein robustness

Wasserstein robustness

Look at distributionally robust risk defined for p > 0
R(O,p) := 51113p {Ep[l(0; 2)] s.t. We(P, Py) < p}

» Allows changing support to harder distributions
[Shaﬁeezadeh—Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet
et al 16]
Example (Linear models): If loss £(6, z,y) = ¢(0Txzy) for some ¢, then
> if ¢(x,2) = ||z — 2’|, yields data-dependent ¢;-regularization
> if ¢(x,2") = ||z — 2’|, yields data-dependent ¢2-regularization

Minor issue: Often NP-hard when not simple linear model
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Perturbations to population distribution EAWEESIEETINEe IS I

Duality and robustness

Theorem (Blanchet and Murthy (2016))

Let Py be any distribution on Z and ¢ : Z x Z — R be any function.
Then

sup  Ep[l(6; Z)] = inf {/sup {00;2") = Xe(2', 2) } dPo(2) + )\p}
We(P,Po)<p A>0 2!

— inf {Ep, [62(6:2)] + M}
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Perturbations to population distribution Wasserstein robustness

Duality and robustness

Theorem (Blanchet and Murthy (2016))

Let Py be any distribution on Z and ¢ : Z x Z — R be any function.
Then

sup  Ep[l(6; Z)] = inf {/sup {00;2") = Xe(2', 2) } dPo(2) + )\p}
We(P,Po)<p A>0 2!

— inf {Ep, [62(6:2)] + M}

Computational Idea: Pick a large enough A, and “solve”
minigmize Ep, [x(0; Z)]
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Duality for Wasserstein robustness
A first idea

(Simple) insight: If £(0, z) is smooth in € and z, then life gets a bit easier
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Perturbations to population distribution Duality for Wasserstein robustness
A first idea

(Simple) insight: If £(0, z) is smooth in € and z, then life gets a bit easier

The function

A
6052 = sup {t0:2+ 2) - 3 12 )
A

is efficient to compute (and differentiable, etc.) for large enough A
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Duality for Wasserstein robustness
Stochastic gradient algorithm

mini@mize Ep, [¢x(0; Z)] = Ep, [sup {K(H;Z +A) - % HA‘@H
A

Repeat:

1. Draw Z, ¥ P

2. Compute (approximate) maximizer
~ A 9
Zy, =~ argmax < ((0; z) — 5 lz — Zk||5
z

3. For a stepsize oy, update

Opr1 == Ok — axVol(Or; Zy)
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Duality for Wasserstein robustness
Stochastic gradient algorithm

mini@mize Ep, [¢x(0; Z)] = Ep, [sup {K(H;Z +A) - % HA‘@H
A

Repeat:

1. Draw Z, ¥ P

2. Compute (approximate) maximizer
~ by 9
Zy, ~ argmax < (0; z) — 5 lz — Zk||5
z
3. For a stepsize oy, update
Ok 1 = Ok — . Vol(Ok; Zy)

Theorem(ish): This converges with all the typical convergence properties
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Perturbations to population distribution Duality for Wasserstein robustness

Simple Visualization

y = sign(||z], - v2)
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Perturbations to population distribution Duality for Wasserstein robustness

Experimental results: adversarial classification

» MNIST dataset with 3 convolutional layers, fully connected softmax
top layer

ERM
IFGM
FGM

D> pPaM
B WRM

0 0.05 0.1 0.15 0.2 0.25
6(m!z'/cv2
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Perturbations to population distribution Duality for Wasserstein robustness

Experimental results: adversarial classification

» MNIST dataset with 3 convolutional layers, fully connected softmax
top layer

0 0.05 0.1 0.15 0.2
€adv/coo
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Perturbations to population distribution Duality for Wasserstein robustness

Reading tea leaves

Original FGM

Hongseok Namkoong Distributionally Robust Optimization June 2018 70 / 76




Perturbations to population distribution Domain adaptation

Generate examples for new domains

Train: Highway Train: New york — like City [WERM M Ours
Test: NY — like city

30.0 Test: Highway

.

=3
=3

=3
o

>

o

= 300 1d

g Test: 0ld European Town Test: 0ld European Town
20.0
10.0
0.0

Dawn Night Spring Winter Dawn Night Spring Winter

[Volpi*, N.*, Sener, Duchi, Murino, Savarese 18]
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Perturbations to population distribution Conclusions

Conclusion

1. Statistical consequences of distributional robustness important

2. Duality provides both certificates and allows efficient methods
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Perturbations to population distribution Conclusions

Conclusion

1. Statistical consequences of distributional robustness important

2. Duality provides both certificates and allows efficient methods

Future work:

1. More work to do on how to choose robustness sets! (f, ¢, p)
2. When should we use divergence- vs. distance-based?

3. Distributional robustness and temporal shifts
4

. Causal connections: correspondence between uncertainty regions vs.
interventions and confounding variables

Principled view on adversarial training

Risk-averse decision-making (reinforcement learning)
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Appendix
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|
Empirical likelihood

The empirical likelihood confidence region is
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|
Empirical likelihood

The empirical likelihood confidence region is

En(p) = {ZpiZi : Dy2 (p1/n) < z} .
=1

[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]
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-
Empirical likelihood

The empirical likelihood confidence region is

3

En(p) = {sz‘Zz‘ : Dy (p[1/n) <
i=1

o <

= i i — i_12< T1=1,p>
{;p =D (i —1)?< —p 7p_0}

)
n

i=1
:lzn:Z-—F zn:u~Z-'HuH2<£uT1:0 u>—1
n 4 7 : 14q - 2_n2a =T
i=1 i=1
1

by letting u; = p; — -
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-
Empirical likelihood

The empirical likelihood confidence region is

Bulp)i= { Yoniss Dy ol /) < 2}
=1

= iZi— 1)< EpT1=1,p>
{Zp =D (i —1)?< —p 7p_0}

=1 =1
zlzn:z-+{ Zuz 'HuH2<puT1:0u>—1}
n = T e oo
——

Ellipse from data

by letting u; = p; — %
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Robust Optimization ~ Variance Regularization

Proof Sketch Let z; = ¢(6; X;), u; = p; — % and denote by z and s2 the
sample mean and variance respectively.
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Robust Optimization ~ Variance Regularization

Proof Sketch Let z; = ¢(6; X;), u; = p; — % and denote by z and s2 the
sample mean and variance respectively.

3™

Rn(ea Pn,p) = m;)ix{ <p7 Z> : DX2 (p”l/n) <
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Robust Optimization ~ Variance Regularization

Proof Sketch Let z; = ¢(6; X;), u; = p; — % and denote by z and s2 the
sample mean and variance respectively.

. _ BEN 2P Tq_
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Robust Optimization ~ Variance Regularization

Proof Sketch Let z; = ¢(6; X;), u; = p; — % and denote by z and s2 the

sample mean and variance respectively.

3

1 - p
R,(0: P, ,) = — 1—1 < —,p T1=1 >0
(0;Prn,p) = mﬁx{ gnp - P }

_ ~ 2
:z+m3x{(u,z—z> : HuH2§ﬁ u
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Robust Optimization ~ Variance Regularization

Proof Sketch Let z; = ¢(6; X;), u; = p; — % and denote by z and s2 the
sample mean and variance respectively.

n

. _ 1 2P Ty _
Fa(0:Pag) =m0 ot =17 < g1 = Lp 20

1
_ _ 2 T

=ZzZ+ ,Z— Z) <=5,u 1=0u>——
z mqia,x{ (u,z = 2) « [Jull; < U u n}

2 2
<z4 Q lz— 2|, =2+ —ps% by Cauchy-Schwarz
n n
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Robust Optimization ~ Variance Regularization

Proof Sketch Let z; = ¢(6; X;), u; = p; — % and denote by z and s2 the
sample mean and variance respectively.

1 n
Fa(0:Pag) = macp (2) 5 Sotom =17 < 91 = 1p 20
P

1
—Q,uT1:0,u2 —}
n n

V2 2
7+ vap |z — 2|, =2+ \/TS% by Cauchy-Schwartz
n n

Last inequality is tight if for all ¢

:z+max{<u,z—z> ull <
u

IN

1 [2p 1
R _F)y >
Ui n ns%(zl 2z n
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Extensions and issues

Issue: What if 6 € R? is not unique?
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Extensions and issues

Issue: What if 6 € R? is not unique?
Let S = argming.g R(#) and

r* = min max ||6 — %],
0*eS 0esS

Then [Duchi, Glynn & N. 16]

P ( inf R(0) < R, (6", P,
(ot 70) < RGP )

> P (N(0,1) +/p = r*/pVar(l(@* ) (d + 1)) + O(n ).
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Extensions and issues

Issue: What if 6 € R? is not unique?
Let S = argming.g R(#) and

r* = min max ||6 — %],
0*eS 0esS

Then [Duchi, Glynn & N. 16]

P ( inf R(0) < R, (6", P,
(ot 70) < RGP )

> P (N(o, 1)+ /5 > r*\/pVar(€(a*; €))(d + 1)) +O(n"3).

» If r* large, then lose confidence, if ¥* small, good shape
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