Lecture 6

EMPIRICAL PHENOMENA IN ROBUST GENERALIZATION

CS329D




Goals for today

3 major themes

From domain adaptation to generalization

How should we measure robustness to distribution shifts?

What kinds of robustness interventions seem to work well?



Roadmap

Intro to Generalization
Representation Learning
Evaluating Generalization
Measuring Robustness
o Absolute, effective, and relative robustness
e Robustness Interventions
o Model architectures, more/better data, adversarial robustness, pre-
training, self-supervised learning
e Zero-shot Learning
O Motivation
o CLIP
o NLP (through ChatGPT)



Our setting until now: Unsupervised Domain Adaptation

Task setup: Training data Test domains
labeled source data + MNIST USPS SVHN

i

unlabeled target data

Key structure:

we have information about the
target in the form of unlabeled
data



The dream: generalization to unknown test distributions

Humanlike robustness: more general, doesn’t need specific target domain data

Input: a diverse range of input examples (possibly from many environments)
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Test distributions: a range of related, but not identical tasks
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Domain generalization examples

« Zero shot [ transfer: Imagenet to Imagenet-sketch
* Causal: Generalizing to an intervention (e.g. deleting a gene from an organism)

*  Multi-environment: We observe multiple domains and generalize to a new one
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* Known family of targets: - adversarial examples

Shared in all these cases: no explicit data from the target



Focus today: zero-shot generalization

Zero shot generalization:

Training: train on some i.i.d data
from perqin (€.8. Imagenet)

Test: generalize to ‘reasonable’ tasks ObjectNet g
in the same modality

ImageNet
Sketch

What is ‘reasonable’? Who knows!



Representation Learning

Learning transformations of the data that make it Task A Task B Task C
easier to extract useful information for output
performing a wide range of downstream tasks

In deep learning, usually:

>representation = last layer before classifier shared

subsets of

factors
Desirable traits:

Compression
Distributed

Clustered
Invariant Bengio et al. (2013)

input



Representation Learning
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Learning Robust Representations

Domain Adversarial Neural Networks
Goal: P(ylf, X~Xsource) = P(ylf’ XNXtest)

Knowledge of domain does not give information about label &= same optimal classifier
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(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water:

forwardprop  backprop (and produced derivatives)
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors:
0.98, Mammal: 0.98 0.97, Seashore: 0.97

Beery 2018 Ganin 2015



Evaluating Generalization

There are different types of distribution shifts that we can face in deployment, including;:

Synthetic Natural

Gaussian Noise Shot Noise Impulse Noise

Train Test (OOD)

d = Location2 d = Location 246

African Bush | Wild Horse
Elephant

Brightness Contrast Elastic

Cow Great Curassow

ImageNet-C

Adversarial




Robustness to Spurious Correlations

Common training examples Test examples
y: waterbird y: landbird y: waterbird
a: water a: land a: land
Waterbirds Packground background background

y: blond hair y: dark hair - y: blond hair

a: female a: male a: male
CelebA
y: contradiction y: entailment y: entailment
a: has negation a: no negation a: has negation
. (P) The economy (P) Read for Slate's take (P) There was silence
MultiNLI could be still better. on Jackson's findings. for a moment.
(H) The economy has (H) Slate had an opinion (H) There was a short period
never been better. on Jackson's findings. of time where no one spoke.

Sagawa 2020
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More data always helps! But are we really gaining “robustness”
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Analyzing absolute vs effective robustness

Absolute: OOD performance

Effective: OOD
performance beyond what
can be predicted by ID
performance

Relative: OOD performance

gained by applying
robustness intervention

Imagnet-Sketch

Equal in-vs-out
. gomain performance

-, Effective robustness loss

v

o Absolute robustness gain

More imagenet data

Imagenet accuracy

-Adding data may increase absolute robustness but decrease effective robustness
-Robustness intervention may increase effective robustness but decrease absolute

robustness



Arguments for studying effective and relative robustness

In this lecture we will study relative / effective robustness

Why study absolute robustness?

Why study effective and relative robustness?



Arguments for studying effective and relative robustness

In this lecture we will study relative / effective robustness

Why study absolute robustness?
- Thisis what we care about (performance out of domain)

Why study effective and relative robustness?

- Decouple robustness from general performance research (just combine them!)
- Helps identify promising directions to push on

- Differential treatment (fairness)

In many cases: effective and relative robustness isolate effects of robustness interventions
and build intuition to improve absolute robustness



Quick poll
Which of these models has the highest effective robustness?

1. Neural nets + pretraining
2. Neural nets

3. Random forest

4. Linear models

5. No differences in effective robustness



Existing high level observations about relative robustness

Answer: no real difference.

CINIC-10

o 7 m | inear Fit
é 90 1 ® Neural Network
2 ® ImageNet Pretrained Network
£ 70 - ® Random Features
- ® Random Forest

50
S. ® KNN
O 301 o SvM
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@) ©® AdaBoost
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L

What we see: most progress has been on in-domain accuracy!

[Accuracy On The Line, Miller+2020]



Building some intuition about effective robustness

Effective robustness trends hold across different hyperparams, training iterations
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Some caveats with effective and relative robustness

Before we divein...

* Notall relative robustness gains lead to absolute
robustness gains.

Examples: adversarial robustness, zero-shot learning

* Baselines are difficult to assess - random interpolation
can give robustness gains!

Goal (Roughly): Get on a better effective robustness
trend with reasonable interventions, then higher ID
accuracy will lift all boats

Imagnet-Sketch
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ImageNet fine-tuning
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Also, not all datasets cleanly fit the line

We’ll mostly cover cases where the fit is good, but that’s not always the case..

ImageNet fine-tuning
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lwildcam 2.0

—— Linear Fit (Slope: 0.33, R?: 0.38)
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ID macro F1

lwildcam 1.0



An overview of different robustness phenomena

Does... help?

» Different model architectures?
* More data? Better data?

* Adversarial robustness?

* Pre-training?

* Zero-shot learning?



Model architectures: the premise

Is the latest and greatest image classifier more robust than AlexNet?
(Current iteration of this is visual transformers)

40.58 —e— Vanilla RN50
= BiT (m)

38.00
L)

34.32 33.78

31.77 31.
30.4.

Vision Transformers are Robust Learners - 272
o 248
g
Sayak Paul* Pin-Yu Chen* a
PyImageSearch IBM Research
s.paul@pyimagesearch.com pin-yu.chen@ibm.com

r50x1 B-16 r50x3 B-32 r101x1 L-16 r101x3 L-32 r152x4 N.A

Figure 3: Top-1 accuracy scores
(%) on ImageNet-R dataset [14].



Vision Transformers

-Splitimage into patches,
flatten, project

-Encode with transformers

>just like
text/BERT

-—

Patch + Position

* Extra learnable
[class] embedding
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Vision Transformers

Hypothesis: CNN’s use local context; ViT
uses global context, so more robust

Mean attention distance (pixels)
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Figure 11: Grad-CAM results for the images where both

BiT and ViT give correct predictions.
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Training from scratch

1 == Linear Fit (Slope: 0.49, R?: 0.77)

It’s hard to get off the effective robustness line

Answer: No - example from iWildCam-WILDS from scratch (left) or pretrained (right)

ImageNet fine-tuning

1 == Linear Fit (Slope: 1.19, R?: 0.97)
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7

10 20 30 40 50
ID macro F1
@® alexnet A mobilenet_ v2 <«

V densenetl2l p pnasnetSlarge W

10 20 30 40 50 60 70
ID macro F1

@ shufflenet_v2_ x0 5 ¥ vggll

se_resnextl01_32x4d & squeezenetl 1 $8 xception

*ViT included in Shi 2023 follow-up study*



Does more data help?

Obviously more data helps for absolute robustness
Does getting data help for effective robustness?

Cifar 10.2
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Collecting data that’s i.i.d doesn’t help
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Conclusion: more in-domain data does not improve effective robustness




Quantity doesn’t help. Does quality?

* In practice we may have more than
one data source

* Maybe we can mix up multiple
sources of data to build a more
robust model

* How does data composition (p)
and size (n) affect performance?

Synthetic
data

Crowdsourced
data

Adversarial
stress test

Learning
algorithm

User
performance




Optimizing data collection mixtures

Picking the right ‘mix’ of data sources can lead to substantial improvements.

CIFAR~4 air/land prediction
| [

0'15-§ Bl animal
B vehicle
w 0.10 %
Z v4/= 0.1
=
o R
0.05 - R
0.00 =4 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
a: frac animal in training set [Rolf+2021]

Takeaways: If we want similar performance across groups, not having any
animals/vehicles = catastrophic. Want > 50% animals.



Using better data gives robustness gains

Using scaling laws to predict ‘optimal’ data collection can improve robustness

Task: predicting book review ratings from good reads
Train vs test: history vs fantasy proportions
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Figure 2: Pilot sample experiment. Panels show the result of the three allocations & € [&} i maxs 7> (1/2,1/2)]
for different sizes of the new training sets compared with an oy, baseline that minimizes the maximum
group loss over a grid of resolution 0.01, averaged over the random trials. Purple circles indicate average
maximum error over groups and grey diamonds indicate average population error. Ranges denote standard

errors taken over the 10 trials.

[Rolf+2021]



Does adversarial robustness help?

One major class of robustness interventions:
Adversarial robustness to perturbations

3

B(x)
q' — «Stop ”»
x ﬁ
Perturb
Stickers

@ ’ “Speed Limit 45”

ﬁ

[Eykholt+2018]



Why might adversarial examples help?

Adversarially robust models have more ‘humanlike’ loss gradients

L-trained Standard Original

£>-trained

(a) MNIST

bird airplane frog

Original

1-trained Standard

£,-trained

(b) CIFAR-10

insect dog primate

Sample )

Natural

N

L.-trained

£>-trained

(c) Restricted ImageNet

(Shown: gradients of examples taken with respect to input)

[Tsipras+2019]



How does adversarial robustness affect performance?

On adversarial attacks: dramatic (50%!) error decrease
On standard error: decrease in performance of 3x.

Robust error Standard
error

Standard training
Adversarial training [Madry et al. 2018] 56
TRADES [zhang et al. 2019] 47
Adyv training ++ [Rice et al. 2020] 46
Fast adv training [zhang et al. 2019] 55
MART[Wang et al. 2019] 45




This leads to substantial effective
robustness gains

* Dropinstandard accuracy shifts
points to the left

* Increase in robust accuracy shift
points off the line

Adversarial examples improve effective
(but not absolute) robustness.

Relative robustness gains

Distribution Shift Plot (Logit Scaling)
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Recap So Far...

Q: Does .... help with effective robustness?
* Model architectures: Not really (even neural vs not neural)
« Data: Not fori.i.d, a little for non-i.i.d. (i.e. smart collection strategies)

* Adversarial robustness: Yes, but at a great cost



Does pre-training help?

We know that self-supervision with unlabeled target data can help (UDA-SS, TAPT etc)

\

3 B ml S
going to work

E = 5 4 & H %
S SIERES

efz::‘reer " e Language model
I
Target s L P

| : | | <M> going <M> work

/ L Self-Supervised Tasks )

vY

y

Can this help even without target domain data?



Pre-training

Imagenet pre-training is one of the basic building
blocks of modern image classifiers.

For robustness, we know it can improve several
things..

 Adversarial robustness
* Resistance to label noise

 Performance to label shift

Let’s look at each of these in turn..

Predicted
ImageNet label

Awesome CNN

ImageNet data

Output layer for
target task

(Pre-trained)
awesome CNN

Target task data




Robustness to adversaries

Adversarial robustness against (weak) adversaries improve.

Table 1. Adversarial accuracies of models trained from scratch, with adversarial training, and with adversarial training with pre-training.
All values are percentages. The pre-trained models have comparable clean accuracy to adversarially trained models from scratch, as
implied by He et al. (2018), but pre-training can markedly improve adversarial accuracy.

CIFAR-10 CIFAR-100
Clean Adversarial Clean Adversarial
Normal Training 96.0 0.0 81.0 0.0
Adversarial Training 87.3 45.8 59.1 243
Adv. Pre-Training and Tuning  87.1 57.4 59.2 83.5

Hendrycks 2019



Improvements in performance under label noise

As label noise increases: both normal and pre-training performance degrades, but pre-

trained model performance degrades less

CIFAR-100, No Correction

100

Test Error (%)

20 - - . :
00 02 04 06 0.8

The increase in red-blue gap is a form of ‘effective robustness’

80 1

60 1

40-

== Normal
=@= Pre-Training

Corruption Strength

1:0



Robustness under label shift

Right to left increases imbalance ratio.

Table 3. Experimental results on the imbalanced CIFAR-10 and CIFAR-100 datasets.

Diiset W 0.2 0.4 0.6 Q.8 . 1.0 1.5 2.0
Method Total Test Error Rate / Minority Test Error Rate (%)
& Normal Training 23.7/260 21.8/26.5 21.1/25.8 20.3/24.7 20.0/24.5 18.3/23.1 15.8/20.2
Z Cost Sensitive 22.6/249 21.8/262 21.1/25.7 20.2/243 20.2/24.6 18.1/229 16.0/20.1
< Oversampling 21.0/23.1 194/23.6 19.0/232 18.2/222 18.3/224 17.3/222 15.3/19.8
% SMOTE 19.7/21.7 19.7/24.0 19.2/234 19.2/234 18.1/22.1 17.2/22.1 15.7/20.4
Pre-Training 8.0/8.8 79795 7.6/9.2 8.0/9.7 7.4/9.1 7.4/9.5 7.2/9.4

Relevant comparison is top row (normal) and bottom row (pre-trained)



Does pre-training help relative robustness?

Pre-training seems great, but is this all absolute robustness?

95 1

801

60 1
30

10+

s this just like getting more data, or are we getting ‘effective robustness’?

Training set size variation
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Pre-trained models and effective robustness

Of course, not all pre-training is complex. Fine-tuning alone sometimes isn’t enough.
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Sometimes this can help

But for some datasets, fine-tuning can have fairly dramatic effects
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Roadmap

Intro to Generalization
Representation Learning
Evaluating Generalization
Measuring Robustness

o Absolute, effective, and relative robustness
e Robustness Interventions

o Model architectures, more/better data, adversarial robustness, pre-
training

o self-supervised learning
e Zero-shot Learning

o Motivation

o CLIP

o NLP (through ChatGPT)



Self-Supervised Vision Learning

Take a (massive) unlabeled dataset and create a supervised learning problem

SimCLR VIT-MAE
Contrastive learning - predict whether  Masked auto encoder - predict missing
views are derived from same image pixels
Maximize agreement | B
Z; = > Zj ] [ |
B8 : =
0] o0 m Em
h; <— Representation — h; = - =
m encoder - decoder &
X CEE .
f0) = al B
- H H
R | 0
[l |
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Self-Supervised Learning - SimCLR

1.

1.

For eachimagein a
batch, create positive
example from
augmented view

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

Treat all otherimages
in the batch as
negative examples

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Ca IC u late contrastive Name | Negative loss function | Gradient w.r.t. u
IOSS NT-Xent uTvt /1 108 ¢ o+ -y XP(uT/T) | (1- ﬂ%&)/nﬁ -3 ﬂ%/rv‘
NT-Logistic logo(u”v™ /1) +logo(—uTv™ /7) (o(—uTvt /1)) /vt — o(uTv™ /7) /0
Margin Triplet —max(ufv™ —uTvt +m,0) vi —v T ifulvt —uTv™ <melse 0

Backpropogate,

re peat etC etc Table 2. Negative loss functions and their gradients. All input vectors, i.e. u,v", v, are £2 normalized. NT-Xent is an abbreviation for
) " : “Normalized Temperature-scaled Cross Entropy”. Different loss functions i different weightings of positive and negati 1
y”. Different loss functions impose different weightings of positive and negative examples.



Self-Supervised Learning - SimCLR

SimCLR/SSL give well-separated classes without any labels!

> Avoid (bad) shortcut learning

(@ h (b) z = g(h)

Figure B.4. t-SNE visualizations of hidden vectors of images from
a randomly selected 10 classes in the validation set.

¥Supervised #SimCLR (4x)
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Q eoPIRL-c2x
< AMDIM
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g
E A eRotation
oS e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.



Emerging trends: zero-shot and multitasking

Next up: emerging modern trends in generalization

Common theme: using language as a ‘glue’ to bridge tasks

» Zero-shot learning: We are inherently robust if we don’t use any training data

* Multitasking: train on so many tasks that we don’t pick up biases from any task

e Examples: CLIP, GPT-3 variants



Logic behind few-shot robustness

Q: why do we have better in-domain than out-of-domain
accuracy?



Logic behind few-shot robustness

Q: why do we have better in-domain than out-of-domain accuracy?
A: because we learned non-generalizable predictors from in-domain data.

What if we don’t use training data..?

No data » no ability to learn spurious in-domain correlations.

Very little data » harder to learn spurious correlations (?)

cross-domain loss

L) o)l 100, )]

».p@nl 10, 1)]

INn-domain loss

O(/(1(6,1))

information used

From adapting a bound by Xu and Raginsky 2017




Image classification via zero-shot learning (CLIP)

Say we can jointly embed images and text into the same space..
Then we can perform object detection by checking if “A photo of a dog” is a valid caption

(2) Create dataset classifier from label text

plane
car
) +| A photo of Text

Y

dog 7] a {object}. Encoder
bird
(8) Use for zero-shot prediction \4 \ 4 A 4
T, T, | T TN
-_> EI'r:‘(:)%eer I LTy | Ty | T L [Ty
A photo of

a dog.




I
How does CLIP work? (1)

How is this thing trained?

Scrape caption data from the internet
e (image, text pairs filtered)
e 400,000,000!!!

Encoders

e Image: ResNet, ViT
e Text: Transformer

Train ‘contrastively’
e large batches (32K)
e positive example: paired
caption
e negative example: all other
captions

(1) Contrastive pre-training

Pepper the
aussie pup >

-

ol I Ty

— LTy | Ty [T I'Ty
—>» b LT | Ty | T3 I, Ty
> I LTy | 3T, | I3T3 I3 Ty
—> In INTy | INT2 | INT3 INTN




How does CLIP work (2)?

=
#
#
#
#
#
#

image_encoder - ResNet or Vision Transformer
text_encoder - CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images
T[n, 1] - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] learned proj of text to embed
t - learned temperature parameter

xtract feature representations of each modality
image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

— H

e
F
_if
oint multimodal embedding [n, d_e]

12_normalize(np.dot(I_f, W_i), axis=1)
12_normalize(np.dot(T_f, W_t), axis=1)

# 3
I_e
T_e

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.



Average on 7 natural distribution shift datasets (top-1, %)

Observations from a zero-shot model (CLIP)

100

95
90 -
85
80 1
75 1
70 1
65
60 -
55 1
50 1
45
40 -
35 1
30 1
25 A
20

Ideal robust model (y = x)
Zero-Shot CLIP -7
Standard ImageNet training -
Exisiting robustness techniques ’,’

65

80 85 90 95
Average on class subsampled ImageNet (top-1, %)

10

ImageNet Zero-Shot

Dt Examples ResNet101  CLIP A Score

ImageNet 76.2 76.2 0%
ImageNetV2 64.3 70.1 +5.8%
ImageNet-R 37.7 88.9  +51.2%
ObjectNet 32.6 723  +39.7%
'masglg;':r: 252 602 +350%
774 +74.4%

ImageNet-A [} H !




More robustness observations

Fine-tuning on imagenet data kills these robustness gains (red line)

80 1

75 1

70 A

Average on 7 natural distribution shift datasets (top-1, %)

Ideal robust model (y = x)
Adaptive Zero-Shot CLIP
ImageNet Zero-Shot CLIP
Logistic Regression CLIP

Robustness intervention

®
@
[ ]
® Standard ImageNet training
@
[ ]

Trained with more data

75 80 85 90 95
Average on class subsampled ImageNet (top-1, %)

Adapt to ImageNet

ImageNet

ImageNetV2

ImageNet Vid
ImageNet-A
ImageNet Sketch
ObjectNet
ImageNet-R

-10 -5 0 5 10 15 20 25 30
Change from zero-shot ImageNet classifier accuracy (%)

Adapt to class shift

Youtube-BB
ImageNet Vid
ObjectNet
ImageNet Sketch|0
ImageNet-R|0
ImageNet-A|0
ImageNetV2|0
ImageNet|0

-10 -5 0 5 10 15 20 25 30
Change from zero-shot ImageNet classifier accuracy (%)

+26.9
+8.3

+2.3

Problems are not a lack of data!



Few shot robustness

15

Few-shot performance also shows similar
trends.

70 A
65 A
60
55 4

50 1

As we add data (1-shot to 128-shot to all)
- absolute robustness increases.
- relative robustness decreases.

45

40 1

354

Ideal robust model (y = x)
® Few-Shot CLIP (best model)
® Zero-Shot CLIP (best model)
® Standard ImageNet training
[ J
@

30 A °

25

Average on 7 natural distribution shift datasets (top-1, %)

Robustness intervention
Trained with more data

20

‘Zero shot and few shot models are 65 70 75 8 85 % %
. , Average on class subsampled ImageNet (top-1, %)
inherently robust

Figure 15. Few-shot CLIP also increases effective robustness
compared to existing ImageNet models but is less robust than
zero-shot CLIP. Minimizing the amount of ImageNet training
data used for adaption increases effective robustness at the cost of
decreasing relative robustness. 16-shot logistic regression CLIP
matches zero-shot CLIP on ImageNet, as previously reported in
Figure 7, but is less robust.



Visual Classification via Description from LLM

By only using the category name, FSL w/ CLIP neglects to use rich context information
available via language

e Gives no intermediate understanding of why a category is chosen
e Provides no mechanism for adjusting the criteria used towards this decision.

Menon & Vondrick (2022) use class descriptions from LLMs classify based on descriptive

features
Our top prediction: Hen CLIP’s top prediction: Dalmatian
and we say that because... but we don't say that because...
Average Average

—= two legs

—= red, brown, or white feathers
—= a small body

—= a small head

—= two wings

—= a tail

—= a beak

= a chicken

black or liver-colored spots
erect ears

long legs

short, stiff hair

a long, tapering tail

a long, slender muzzle




Visual Classification via Description from LLM

Our top prediction: Airliner

and we say that because...

Average
|= alivery or paint scheme
[—= engines mounted on the wings ...
(= landing gear with wheels and tires
(= large, metal aircraft
= a fuselage with a pointed nose ...
—= wings and tail fin

Our top prediction: Rapeseed
and we say that because...

Average

petals arranged in a cross-shape
(—= yellow or greenish-yellow flower
(—= stem with small, sharp thorns

(—= hairy leaves

'—=small, round seedpod

Our top prediction: Valley

and we say that because...

Average
flanked by mountains or hills
{—= a river or stream running through it
(—=a depression in the earth's surface
(—= lush vegetation
L often with a V-shaped profile

Our top prediction: Goldfish
and we say that because...

Average

(= a long, flowing tail

[—= scales that shimmer in the light
(= a fish with a bright orange color
(= small, black eyes

' a small mouth

Our top prediction: Cloak

and we say that because...

Average
has a hood
typically black or dark in color
a piece of clothing
often worn by wizards ...
fastens at the neck
often made of wool ...

CLIP’s top prediction: Albatross
but we don't say that because...
Average

|-= slow, powerful flight

= long, hooked bill

= long, narrow wings

= black wingtips

|—= large, long-winged bird

[—= white or grey plumage

= webbed feet

CLIP’s top prediction: Bee
but we don't say that because...
Average

|-=black and yellow striped body
= two pairs of wings

(= mouthparts for chewing

= hairy body

t—= small, flying insect

= compound eyes

L« antennae

CLIP’s top prediction: Alpine ibex
but we don't say that because...
Average

[—= four-limbed mammal

= long, curved horns

[—= hooves

= black, grey, or brown fur
—= short tail

CLIP’s top prediction: Ibizan hound
but we don't say that because...
Average

|-= long, thin legs

= a lean, athletic build

(= a short, smooth coat ...
= a long, narrow head

= large, pointy ears

= a medium-sized dog

= brown or hazel eyes

CLIP’s top prediction: Southern Black Widow
but we don't say that because...
Average

|-=a small head

= black with a red hourglass
[—=long, black legs

L a round, bulbous abdomen




Visual Classification via Description from LLM

Richer class descriptions can help mitigate bias!

Subgroup Descriptors
Wedding
I:: a groom wearing a tuxedo

OR
I: a groom wearing a dashiki

OR
I: a groom wearing a kimono

Sub-group Ours CLIP
Western African  100% 40%
Chinese 100% 20%
Japanese 100% 0%
North Indian 100% 60%

Figure 6: (left) CLIP only compares to the word ‘wedding’, yielding biased results — it only correctly
recognizes the first row. The descriptor-based approach provides a way to address the bias, by
expanding the initial set of descriptors (only the top) to be more inclusive with prior knowledge.
(right) Modifying the descriptors to be more inclusive causes accuracy to significant improve on

sub-groups.



Robustness in Modern NLP

Up until now, we have focused on robustness in modern computer
vision
>What about Natural Language Processing?

Modern NLP is focused on zero-shot and few-shot generalization via a
paradigm called In-Context Learning applied to large language
models

>popularized by GPT-3 (Brown 2021)

>language model can perform arbitrary tasks!



Language Modeling

Objective: Predict most likely word conditioned on some input string

n
p(x) — Hp(snlsla §%i8 ) Sn—l)
=1

Generative language
models are trained on
massive corpora to predict
the next word

Language is generated
left-to-right, one word at a
time

across the road <EOS>
} \ } 3
Decoder-Only Architecture
/[ Decoder Block ?
[ Decoder Block ]
d Feed Forward Neural Network E
\:[ Masked Self-Attention ]/

[ Token and Positional Embedding ]

the chicken walked




The three settings we explore for in-context learning

In Context Learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Predictions are generated by
conditioning on a task-relevant S, S
prompt cheese => prompt

task description

Prompt components: One-shot
° ta S k d eSC I’i pti O n In addition to the task description, the model sees a single

example of the task. No gradient updates are performed.
e examples

e query

Translate English to French: task description

sea otter => loutre de mer example
cheese => prompt
“Learn” the task being performed
from in-context examples —_—

e Relevant context

e Labelspace

e Answer format

e Input-output
correspondence?

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
N2
N2
peppermint => menthe poivrée example #2
N2
\Z
v
plush giraffe => girafe peluche example #N
cheese => prompt



Instruction Tuning

CLIP: Zero-shot across different object classes via language embedding.

Instruction Tuning: Zero-shot across different tasks via language.

Fmetune on many tasks (“mstructlon-tunmg”)

~)
MWM  Input (Translation)
Here is a goal: Get a cool sleep on Translate this sentence to Inference on unseen task type
epibalsihs Dpasl; ' Input (Natural Language Inference)
How would you accomplish this goal? = The new office building Premise: At m ;
sk : y age you will probably
KOPTIONS: \ was tt:'.unlt in less than three Raveloanl crallaasar
-Keep stack of pillow cases in fridge.] | MONINS. - .
> = = —4 Hypothesis: It's not certain how many
-Keep stack of pillow cases in oven. | Target ' lessons you'll learn by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
keep stack of pillow cases in fridge - se construyé en tres meses. OPTIONS:
= o= d -yes | [-itis not possible to tell | [ -no |
~ Sentiment analysis tasks
’ . FLAN R n
 Coreference resolution tasks | } _
/ { , It is not possible to tell )
‘ LN : \
\_ ) d J




How does this relate to robustness?

CLIP: zero-shot learning to avoid dataset biases
Instruction-tuning: zero-shot learning to avoid task biases

Define a task with a set of datasets, split into train and test tasks

(Natural lan inference | (c \(S.en:lman:\rlzananhna;s.ewr - \(M\(Imﬂmﬂ\
(7 datasets) (4 datasets) (4 datasets) (4 datasets) (3 datasets) (4 datasets) (8 datasets)
(ANLI(R1-R3))( RTE  )[{(_ CoPA )|[(_ IMDB J[f(" MRPC )||(ARC easyichal))||(CommonGen) || (Paracrawl ENDE)
(cB ) SN J|[(HellaSwag )|[(_ Sent140 J[f qQaP )|/ NQ )||(_ DART )||(Paracrawl ENES)
(_WNLE ) WNLE ) PieA I sST-2 [ Paws || TQA  )||(CE2ENLG )| |(Paracrawl ENFR)
) @StowCloze)) & Yelp )) L | é WEBNLG )j (WMT-16 EN/CS )
f ) (MM\  Coreference |  Mise. [ ) (WMT-16 EN/FI )
(5 datasets) (3 datasets) (7 datasets) (11 datasets)

((Boola )(OBQA)|| (2datasets) DPR  Co@A )(TREC )| | (_AESLC ) (Muiti-News ) (_SamSum )

- (QUAC )(CoLA )l | C_AG News ) (_Newsroom ) (Wiki Lingua EN) | | ( WMT-16 EN/RU )
( DROP )(SQUAD) (CosmOSQA) (W|nogrande) ( WIC )CMath) C CNN-DM )(Opin-Abs:iDebate>( XSum )
y k( ReCoRD )) & WSC273 )J ((Fix Puncuaton .6))| | (_ Gigaword ) (Opin-Abs: Movie ) U )




Instruction Tuning

These zero shot models
are inherently robust.
The key is to make them
perform well

Finetune on many tasks (“instruction-tuning”)

(7 )
Input (Commonsense Reasoning) = Input (Translation)
Here is a goal: Get a cool sleep on Translate this sentence to
summer days. Spanish:
How would you accomplish this goal? | The new office building
OPTIONS: was built in less than three
(-Keep stack of pillow cases in fridge.) | months.
(-Keep stack of pillow cases in oven. | Target
Target El nuevo edificio de oficinas
keep stack of pillow cases in fridge se construy6 en tres meses.
NS S
( Sentiment analysis tasks )
C Coreference resolution tasks)
. ( ) )

Inference on unseen task type
(1 Input (Natural | Inf l\
Premise: At my age you will probably
have learnt one lesson.

Hypothesis: It's not certain how many
lessons you'll learn by your thirties.

Does the premise entail the hypothesis?

OPTIONS:
(-itis not possible to tell |

ELAN Response
It is not possible to tell

\ 4

.~ GPT-3 175B zero shot [l GPT-3 175B few-shot [l FLAN 137B zero-shot

Performance
on unseen
task types

Natural language inference  Reading Comprehension Closed-Book QA



Benefits of massive multitasking + zero-shot learning

Remarkably good zero-shot performance now achievable: within 10% of supervised.

READING COMPREHENSION CLOSED-BOOK QA
BoolQ MultiRC OBQA ARC-e ARC-c NQ TQA
acc. F1 acCcC. acCcC. acCcC. EM EM
Supervised model 91.2¢ 88.2¢ 85.42 92.6% 81.1¢ 83667 60.5¢
Base LM 137B zero-shot 81.0 60.0 41.8 76.4 42.0 3.2 21.9
- few-shot 79.7 59.6 50.6 80.9 49.4 22.1 63.3
GPT-3 175B zero-shot 60.5 72.9 57.6 68.8 51.4 14.6 64.3
- few-shot 71.5 74.8 65.4 70.1 51.5 29.9 T2
FLAN 137B zero-shot
- average template 80.2427 745124 T7.4a120 79.5a86 61.7a102 18.6140 66.5122
std=3.1 std=3.7 std=1.3 std=0.8 std=1.4 std=2.7 std=2.6
- best dev template 829454 77.5a27 78.44130 79.6a87 63.1a116 20.716.1 68.1138

Table 2: Results on reading comprehension and closed-book question answering. For FLAN, we
report both the average of up to ten templates, as well as the best dev template. The triangle a indicates
improvement over few-shot GPT-3. The up-arrow + indicates improvement only over zero-shot GPT-3.
*T5-11B.



Key commonalities between CLIP and instruction-tuning

Key takeaways
* Zero-shot models are inherently robust.

* One path to building effective robust models is to build effective zero-shot
ones

- Language is a common interface across tasks
» Progress in large language models is causing an explosion in zero-
shot learning progress across vision, robotics, etc.



Chain Of Thought Prompting

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models - Wei et al. (2022)

Standard Prompting Chain-of-Thought Prompting
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11. A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples

J do they have?
\—

A: The answer is 27. x '

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

A

answer is 9. g/




Reinforcement Learning From Human Feedback

Instruction tuning relies
on typical NLP datasets
to generate ICL
examples

Under RLHF, collect
prompts and desired
outputs from humans

> Align with human
preferences

Is RL necessary?

Ouyang 2022

Step 1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

x
e}

Va

Some people went
to the moon...

\J

SFT
| % ]
e o o

>4

Y
BEE

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

v

PPO

o

/

Once upon a time...




Big recap slide

So.. what helps for transfer?

* Model architectures: Not really (even neural vs not neural)
 Data: Not fori.i.d, a little for non-iid

* Pre-training: Yes, both finetuning and more generally

* Adversarial robustness: Yes, but at a great cost

o Zero-shot/multitask: Yes



Direction 1: get more similar environments

How else can we make progress on generalization to new domains?

& e 9 e es
@\ re.m» e »\
¥

N
® ®X

&

@@

In the multitask approaches: observe many tasks (environments), embed them into a common
space, learn a single predictor

A related, causal view: observe many environments (for a single task), learn a predictor that
works well across all environments.



Direction 2: constraining the target distribution

Today - we operated on zero knowledge of the target. What if we know a bit more?

test loss worst-case loss

g ((«: 0)] <EWBIE,. [((x:6)

Upper bound holds whenever P contains p

Cannot be computed because the

test distribution is unknown. test

If we can identify the target distribution up to a ‘neighborhood’ we can use worst-case
optimization to ensure good performance.

This lets us incorporate our knowledge of the test distribution without data.



Conclusion and reminders

Empirical (effective) robustness
» Things that (surprisingly) don’t help: better models, more (iid) data
* Things you might do for robustness: better data, pre-training

* Emerging idea: zero-shot learning for robustness

Reminder

Project proposal due next Monday!



