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6.1 Wasserstein Distance

The f -divergence takes value∞ whenever a perturbed distribution Q has support outside of that of P . This
may be limiting when there is a natural geometry in the data space. In this case, instead of reweighting data,
we may consider directly perturbing data values according to this geometry. For example, this is appropriate
for adversarial attacks that perturb pixels of images by an amount imperceptible to humans.

Wasserstein distances uses the geometry of the underlying space to define a notion of closeness between
distributions. Let Z ⊂ Rm, and let (Z,A, P ) be a probability space. Let the transportation cost c :
Z ×Z → [0,∞) be nonnegative, lower semi-continuous, and satisfy c(z, z) = 0. For probability measures P
and Q supported on Z, let Π(P,Q) denote their couplings, meaning measures π on Z2 with π(A,Z) = P (A)
and π(Z, A) = Q(A) for all A ⊂ Z. The Wasserstein distance between P and Q is

Wc(Q,P ) := inf
π∈Π(P,Q)

Eπ[c(Z,Z ′)].

This infimization problem is known as the optimal transport problem, where we wish to transport mass away
from P to Q, where c(z, z′) represents the unit cost of transporting mass from z to z′.

6.2 Wasserstein Distributionaly Robust Optimization

We can perform distributionally robust optimization (DRO) w.r.t. the Wasserstein distance. For ρ ≥ 0 and
distribution P0, we let Q = {Q : Wc(Q,P ) ≤ ρ}, the Wasserstein DRO problem is given by

minimize
θ∈Θ

{
Rc(θ;P ) := sup

Q
{EQ[`(θ;Z)] : Wc(Q,P ) ≤ ρ}

}
. (6.1)

In particular, the Wasserstein ball allows for distributions Q that have a different support to P , so long as
the cost of transporting mass from P to Q is not too high.

The following proposition gives a duality result for Wasserstein DRO (6.1). We assume EP [`(θ;Z)] < ∞
throughout.

Proposition 1. Fix any θ ∈ Θ. Let z 7→ `(θ; z) be upper semi-continuous. Let φλ(θ; z0) = supz∈Z {`(θ; z)− λc(z, z0)}
be the robust surrogate. For any distribution Q and any ρ > 0,

sup
Q:Wc(Q,P )≤ρ

EQ[`(θ;Z)] = inf
λ≥0

{
λρ+ EP [φλ(θ;Z)]

}
. (6.2)

The dual form makes crisp how the optimal transport problem plays a role in defining worst-case perturba-
tions. The supremum inside the expectation considers a perturbation z to the data Z, such that it makes
the loss `(θ; z) bigger, while being penalized by the cost of moving mass from Z to z. Comparing this to the
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f-divergence dual that upweighted examples with higher loss, we see that Wasserstein DRO (6.1) considers
the geometry of the inputs by using the cost function c.

The computational cost of considering probabilities whose support may differ from P is steep. The dual
formulation (6.2) has reformulated an infinite-dimensional problem over probabilities to computing the robust
surrogate φλ, but even evaluating the robust surrogate is computationally intractable in general. The
maximization problem φλ(θ;Z) = supz `(θ; z)−λc(Z, z) is almost always non-concave, even for simple linear
models. Furthermore, a naive analysis of the statistical estimation of Wasserstein DRO yields nonparametric
rates. Identifying structured scenarios with alleviated computational and statistical difficulties is an area of
active research.

Before proceeding with the proof of Proposition 1, we consider an example.

Example 1. Consider the cost function c(z, z′) = 1
2‖z − z′‖22, and the corresponding robust surrogate

function

φλ(θ;Z) = sup
z′∈Z

{
`(θ; z′)− λ

2
‖z′ − z‖22

}
.

Plugging the first order approximation `(θ; z′) ≈ `(θ; z) +∇z`(θ; z)>(z′− z) into the robust surrogate yields

φλ(θ; z) ≈ sup
z′∈Z

{
`(θ; z) +∇z`(θ; z)>(z′ − z)− λ

2
‖z′ − z‖22

}
.

First order condition of optimality implies that the supremum is attained at z′ ∈ Z such that

∇z`(θ; z) = λ · (z′ − z) ≡ z′ = z +
1

λ
· ∇z`(θ; z) .

Note that the worst-case perturbation z′ is simply a gradient-ascent step from z along ∇z`(θ; z). Therefore,
we can approximate the robust surrogate as

φλ(θ; z) ≈ `(θ; z) +
1

2λ
· ‖∇z`(θ; z)‖22 .

Plugging this into the dual for the empirical distribution P̂n (which is simply the uniform distribution on
samples {Z1, . . . , Zn}) yields

inf
λ≥0

{
λρ+

1

n
·
n∑
i=1

φλ(θ;Zi)

}
= inf
λ≥0

{
λρ+

1

n
·
n∑
i=1

{
`(θ;Zi) +

1

2λ
· ‖∇z`(θ;Zi)‖22

}}

=
1

n
·
n∑
i=1

`(θ;Zi) + inf
λ≥0

{
λρ+

1

2λ
· 1

n
·
n∑
i=1

‖∇z`(θ;Zi)‖22

}

=
1

n
·
n∑
i=1

`(θ;Zi) + inf
λ≥0

{
λρ+

1

2λ
· EP̂n

[
‖∇z`(θ;Z)‖22

]}

=
1

n
·
n∑
i=1

`(θ;Zi) +
√

2ρ ·
(
EP̂n

[
‖∇z`(θ;Z)‖22

])1/2

where the third equality follows from the fact that the infimum is attained at λ = 1
ρ . Therefore, under

first-order approximations, Wasserstein DRO amounts to a regularization that makes ‖∇z`(θ;Z)‖ small and
guards against data perturbations. �
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Proof of Proposition 1. Although the proof of Proposition 1 is involved, we can gain basic intuition by
considering a substantially simplified scenario. Consider a discrete sample space

Z := {z1, . . . , zk}.

The definition of the Wasserstein distance can then be simplified to

min
π(zi,zj)≥0

∑
i,j

π(zi, zj)c(zi, zj) :
∑
i

π(zi, zj) = q(zj),
∑
j

π(zi, zj) = p(zi),
∑
i,j

π(zi, zj) = 1

 .

Then, Rc(θ;P ), the Wasserstein distributionally robust objective (6.1) can be written as

max
π(zi,zj)≥0

∑
i,j

π(zi, zj)`(θ; zj) :
∑
j

π(zi, zj) = p(zi),
∑
i,j

π(zi, zj) = 1,
∑
i,j

π(zi, zj)c(zi, zj) ≤ ρ

 .

Now, use Lagrangian duality to note that

Rc(θ;P ) = min
λ≥0

max
π≥0

λρ+
∑
i,j

π(zi, zj)(`(θ; zj)− λc(zi, zj)) :
∑
j

π(zi, zj) = p(zi),
∑
i,j

π(zi, zj) = 1

 .

The inner maximum problem is evidently attained at

π(zi, zj) =

{
p(zi) if j is the smallest index in argmaxj{`(θ; zj)− λc(zi, zj)}
0 otherwise

.

We conclude that

Rc(θ;P ) = min
λ≥0

{
λρ+

∑
i

p(zi) max
j
{`(θ; zj)− λc(zi, zj)}

}
,

which is the desired result (6.2) for discrete sample spaces.

6.2.1 Connection to Regularization

By choosing the regularizer, we can show that Wasserstein DRO is equivalent to classical regularizers.

Proposition 2 (Regression). Consider the cost function c((x, y), (x′, y′)) = ‖(x, y) − (x′, y′)‖2k for some
k ∈ [0,∞). Then,

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
=

( 1

n
·
n∑
i=1

(Yi − θ>Xi)
2

)1/2

+
√
ρ · ‖[θ,−1]‖k∗

2

,

where k∗ = k/(k − 1) and satisfies 1
k + 1

k∗ = 1.

Proof. To simplify notation, set Z = (X,Y ) and θ̄ = [θ,−1] ∈ Rd+1. From the duality result for Wasserstein
DRO (Proposition 1), we get

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
= inf
λ≥0

{
λρ+ EP̂n

sup
z′

{
(θ̄>z′)2 − λ‖Z − z′‖2k

}}
.
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First, we simplify the surrogate loss φλ(θ̄, Z) = supz′
{

(θ̄>z′)2 − λ‖Z − z′‖2k
}

. Doing a change of variable
∆ = Z − z′ yields

φλ(θ̄, Z) = sup
∆

{(
θ̄>Z − θ̄>∆

)2 − λ‖∆‖2k}
= sup

∆

{(
θ̄>Z + sign(θ̄>Z) · |θ̄>∆|

)2 − λ‖∆‖2k} (sup attained when signs match)

= sup
∆

{(
|θ̄>Z|+ |θ̄>∆|

)2 − λ‖∆‖2k}
= sup

c>0
sup

∆:‖∆‖k=c

{(
|θ̄>Z|+ |θ̄>∆|

)2 − λc2} ,
where in the final line we separated the optimization problem into concentric circles of radius r in the ‖·‖·.
Using Holder’s inequality, the preceding display is bounded by

sup
c>0

{(
|θ̄>Z|+ ‖θ̄‖k∗c

)2 − λc2} ,
but since there is always a ∆ satisfying ‖∆‖k = c for which Holder’s inequality is tight, the bound is in fact
an equality. Hence, the surrogate loss can be rewritten as follows(

θ̄>Z
)2

+ sup
c>0

{
−(λ− ‖θ̄‖2k∗) · c

2 + 2 · |θ̄>Z| · ‖θ̄‖k∗c
}

=

{
λ

λ−‖θ̄‖2k∗
· (θ̄>Z)2 if λ > ‖θ̄‖2k∗

∞ otherwise

This allows us to conclude

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
= inf
λ>‖θ̄‖2k∗

{
λρ+

λ

λ− ‖θ̄‖2k∗
· 1

n

n∑
i=1

(θ̄>Zi)
2

}
.

First order condition of optimality implies that the infimum is attained at λ = ‖θ̄‖2k∗+
(
‖θ̄‖2k∗
ρ · 1

n

∑n
i=1(θ̄>Zi)

2
)1/2

,

which yields

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
=

( 1

n
·
n∑
i=1

(θ̄>Zi)
2

)1/2

+
√
ρ · ‖θ̄‖k∗

2

,

as required.

A similar equivalence can be shown for

• Regression under Covariate Shift: If the cost function c is

c((x, y), (x′, y′)) =

{
‖x− x′‖2k if y = y′

∞ if y 6= y′

then

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
=

( 1

n
·
n∑
i=1

(Yi − θ>Xi)
2

)1/2

+
√
ρ · ‖θ‖k∗

2
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• Logistic Loss: If Y ∈ {−1,+1} and the cost function c is

c((x, y), (x′, y′)) =

{
‖x− x′‖k if y = y′

∞ if y 6= y′

then

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
log
(

1 + e−Y ·θ
>X
)]

=
1

n
·
n∑
i=1

log
(

1 + e−Yi·θ>Xi

)
+ ρ · ‖θ‖k∗

• Support Vector Machine: If Y ∈ {−1,+1} and the cost function c is

c((x, y), (x′, y′)) =

{
‖x− x′‖k if y = y′

∞ if y 6= y′

then

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[(

1− Y · θ>X
)

+

]
=

1

n
·
n∑
i=1

(
1− Yi · θ>Xi

)
+

+ ρ · ‖θ‖k∗
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