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Review: NN Terminology

Feature Classification
Vector Head

y W — Y
Network » (1xd) b4 (dxk) = (1xk)

d = hidden dimension
k = number of classes (train)

Feature vector a.k.a. representation, embedding
Classification head a.k.a. linear classifier



Recap: Generalization

Our model learns from training data, but we want it to be robust to shifts
in the input distribution and flexible enough to perform many tasks

s - P

(C) No Person: 0.97,

Mammal: 0.96, Water: 0.94,
Beach: 0.94, Two: 0.94

(B) No Person: 0.99, Water:
0.98, Beach: 0.97, Outdoors:
0.97, Seashore: 0.97

(A) Cow: 0.99, Pasture:
0.99, Grass: 0.99, No Person:
0.98, Mammal: 0.98

Fig. 1. Recognition algorithms generalize poorly to new environments. Cows
in ‘common’ contexts (e.g. Alpine pastures) are detected and classified correctly (A),
while cows in uncommon contexts (beach, waves and boat) are not detected (B) or
classified poorly (C). Top five labels and confidence produced by ClarifAl.com shown.



Recap: Seeking generalization

e Most robustness interventions (e.g. new model architectures,
collecting more i.i.d. data, adversarial training) do not increase
effective and relative robustness, or come with unacceptable losses

in absolute robustness



Analyzing absolute vs effective robustness

Absolute: OOD performance

Effective: OOD performance
beyond what can be
predicted by ID performance

Relative: OOD performance

gained by applying
robustness intervention
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-Adding data may increase absolute robustness but decrease effective robustness
-Robustness intervention may increase effective robustness but decrease absolute

robustness



Accuracy on the Line

Changes in architecture do not increase effective

robustness...
Training from scratch ImageNet fine-tuning
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Adversarial training

Adversarial pertubations can cause a
model to fail

e Butwe can train to be resilient to
this

This leads to substantial effective
robustness gains

* Drop instandard accuracy shifts
points to the left

* Increase in robust accuracy shift
points off the line

Adversarial examples improve effective
(but not absolute) robustness.

Distribution Shift Plot (Logit Scaling)
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Recap: Seeking generalization

e Most robustness interventions (e.g. new model architectures,
collecting more i.i.d. data, adversarial training) do not increase
effective and relative robustness, or come with unacceptable losses
in absolute robustness

e Smart data collection strategies and taking advantage of unlabeled

data for pre-training can help



Smart data collection

Picking the right ‘mix’ of data sources can lead to substantial improvements.

CIFAR-4 air/land prediction
[ [
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0.0 0.2 0.4 0.6 0.8 1.0
a4: frac animal in training set [Rolf+2021]

Takeaways: If we want similar performance across groups, not having any
animals/vehicles = catastrophic. Want > 50% animals.



Self-Supervised Learning
v lis]

(b) Crop and resize ~ (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

Take a (massive) unlabeled dataset and create a
supervised learning problem

> Objective does not matter, goal is feature
learning

(g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

SimCLR: Contrastive learning - predict whether =~ o=
views are derived from same image

NT-Xent | wvt /T =108 Y crot oy eXP(u V/T)

Maximize agreement

Z; zZj : .
g() T Tg(.) ;,’:-;i-

h; <— Representation —» h; Folg
v @h ®) 2 = g(h)

Figure B.4. t-SNE visualizations of hidden vectors of images from
arandomly selected 10 classes in the validation set.




Recap: Seeking generalization

Most robustness interventions (e.g. new model architectures,
collecting more i.i.d. data, adversarial training) do not increase
effective and relative robustness, or come with unacceptable losses
in absolute robustness

Smart data collection strategies and taking advantage of unlabeled
data for pre-training can help

Models fail to generalize because information about the training
domain leaks into features

E, ) poll0, DNSIE, ) po1n 10, D]+ @(\/U(@, 1))

cross-domain loss In-domain loss information used




Spurious Correlations

. . . . Common training examples Test examples
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Few-shot learning before ~2020

Where do we get classification matrix W if we have a different set of
classes from training to test, or we trained on a synthetic objective?

z —
=) Network (1xd) % 7 = (1)
°

d =hidden dimension
[ = number of classes (test)



Zero-shot generalization

Motivated by:

E, i poll0, DISIE, ) 501910, D]+ @(\/U(Q, 1))

cross-domain loss INn-domain Ioss information used

We seek a model that is never exposed to the spurious
correlations of a particular source domains

> Then domain accuracy should mostly just be about how
hard the domain is.



CLIP: Jointly embedding images and text

Feature embedding model (1) Contrastive pre-training
Encoders e j
e Image: ResNet, ViT A ;L ;L Tl TJ’
e Text: Transformer
BN N1
\‘ IR L M S
Train ‘contrastively’ u_, wsge || o | oo Lo o] o
e large batches (32K) J
e positive example: paired N I

caption
e negative example: all other
captions



Training CLIP

# image_encoder - ResNet or Vision Transformer (1) Contrastive pre-training
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts Pepper the [
# W_i[d_i, d_e] - learned proj of image to embed i 7| Encoder l l l l
# W_t[d_t, d_e] - learned proj of text to embed
#t - learned temperature parameter T T | ™ N
# extract feature representations of each modality > b (T W T W T Ty
I_f = image_encoder(I) #[n, d_i] N _
T_f = text_encoder(T) #[n, d_t] \‘ —> L [f T T | LT | L LTy
[T > b (15T | LT BT . | LTy
# joint multimodal embedding [n, d_e] Encoder
I_e = 12_normalize(np.dot(I_f, W_i), axis=1) P
‘ T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
> Iy INT) | INTy | INT3 INTN
l # scaled pairwise cosine similarities [n, n]

logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function
labels = np.arange(n)

‘ loss_i = cross_entropy_loss(logits, labels, axis=80)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.



Generalizing with CLIP

Assume we have an embedding space where the representation of an image is close
to valid captions of the image

> Then embedding of our k text labels to d-dimensional vectors gives us W!

(2) Create dataset classifier from label text Feature Classification
plane VeCtOI' Head
= :| A photo of Text
= "] a {object}. Encoder
(3) Use for zero-shot prediction Yy v Y v Z x W — y
[0 [ (R (lxd) (ka) (le)
é;";%eer I LTy | LTy | LT3 | . [I'TN

A photo of
a dog.




Creating the CLIP classifier

3 templates7 = '''itap of a {}.a bad photo of the {}.a origami {}.a photo of the large {}.
. 4 a {} in a video game.art of the {}.a photo of the small {}.'''.split('\n')
For each class label: :
6 def zeroshot_classifier(classnames, templates):
l- Add to tem plates 7 with torch.no_grad():
. . 8 zeroshot_weights = []
2- Get d'dlmenSK)nal 9 for classname in tqdm.tgdm(classnames):
. 10 texts = [template.format(classname) for template in templates] #format with class
representatlons Of 11 texts = clip.tokenize(texts).cuda() #tokenize
l 4_1 t) l 12 class_embeddings = model.encode_text(texts) #embed with text encoder
temp ates abe 13 class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
A 14 class_embedding = class_embeddings.mean(dim=0)
:3- \/63r53§§€3 over 15 class_embedding /= class_embedding.norm()
. f 16 zeroshot_weights.append(class_embedding)
representat|ons 0] 17 zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
. 18 return zeroshot_weights
filled templates 19
20

21 zeroshot_weights = zeroshot_classifier(cifarl00.classes, templates7)
22 zeroshot_weights_ = zeroshot_classifier(cifarl@0.classes, templates80)
23 zeroshot_weights.shape, zeroshot_weights_.shape

100% | IEEEEEEENN| 100/100 [00:09<00:00, 10.50it/s]

I(torch.Size([512, 100]1), torch.Size([512, 100])) I & d X k matrix




Observations from a zero-shot model (CLIP)

ImageNet Zero-Shot

100 ResNet101  CLIP A Score

95 1

== Ideal robust model (y = x)

Zero-Shot CLIP -7
Standard ImageNet training a7
07 , Exisiting robustness techniques P ImageNet

85 1
80 1
75/
70 1
65 -
60 -
55

76.2 76.2 0%

ImageNetV2 70.1 +5.8%

ImageNet-R 88.9 +51.2%

50 1
45 A
40
354
30 1
25 1

20 T T T T T T
65 70 75 80 85 90 95 10
Average on class subsampled ImageNet (top-1, %)

ObjectNet 723  +39.7%

ImageNet

Sketch 60.2 +35.0%

Average on 7 natural distribution shift datasets (top-1, %)

» ImageNet-A [I4[ 774 +74.4%




Few shot robustness

Few-shot performance also shows similar
trends.

As we add data (1-shot to 128-shot to all)
- absolute robustness increases.
- relative robustness decreases.

Ideal robust model (y = x)
® Few-Shot CLIP (best model)
® Zero-Shot CLIP (best model)
® Standard ImageNet training
[ ]
®

301 8

254
Robustness intervention
Trained with more data

Average on 7 natural distribution shift datasets (top-1, %)

65 70 75 80 85 90 95

‘Ze rO Sh Ot a n d feW Sh Ot m Od e lS a re Average on class subsampled ImageNet (top-1, %)
inherently robust’

Figure 15. Few-shot CLIP also increases effective robustness
compared to existing ImageNet models but is less robust than
zero-shot CLIP. Minimizing the amount of ImageNet training
data used for adaption increases effective robustness at the cost of
decreasing relative robustness. 16-shot logistic regression CLIP
matches zero-shot CLIP on ImageNet, as previously reported in
Figure 7, but is less robust.



More robustness observations

Fine-tuning on imagenet data kills these robustness gains (red line)

Average on 7 natural distribution shift datasets (top-1, %)
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55 1
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30 1

Ideal robust model (y = x)
® Adaptive Zero-Shot CLIP

© ImageNet Zero-Shot CLIP

® Logistic Regression CLIP

® Standard ImageNet training
® Robustness intervention

® Trained with more data

75 80 85 90 95
Average on class subsampled ImageNet (top-1, %)

Adapt to ImageNet

ImageNet
ImageNetV2

ImageNet-A
ImageNet Sketch
ObjectNet
ImageNet-R

=5 0 5 10 15 20 25 30

-10

Change from zero-shot ImageNet classifier accuracy (%)
Adapt to class shift

Youtube-BB
ImageNet Vid
ObjectNet
ImageNet Sketch|0
ImageNet-R|0
ImageNet-A[0
ImageNetV2|0
ImageNet|0

+26.9

+8.3

+2.3

-10 -5 0 5 10 15 20 25 30
Change from zero-shot ImageNet classifier accuracy (%)

Problems are not a lack of data!




Feature distortion under fine-tuning

1. Features get distorted: Representations = 1 PR IOODEM
of ID training data are updated while | O AT
those of OOD data change less o —

2. Distorted features can lead to higher rd N
00D error: Classification head is Ty examte L
optimized for use with updated feature  oop, .
extractor, performs poorly on less ,";
changed features of OOD points “ PR B s

| gl ,,- we
Kumar+ 2022 R

—p [D

FT correct ID

(b) Toy example (fine-tuning)



Robust fine-tuning of zero-shot models

Problem: Fine-tuning kills robustness gains of CLIP

> WISE-FT (Wortsman 2022): ensemble the weights of the zero-shot and fine-tuned
models by simple linear interpolation

Accuracy on the distribution shifts

wse(z,a) = f(z,(1 —a) -0y + a - 6;)

Schematic: fine-tuning CLIP on the reference distribution leads to

higher accuracy on the reference distribution but less robustness

Schematic: our method, WIiSE-FT leads to
better accuracy on the distribution shifts without
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Dataset Design and Robustness of CLIP

Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
Nguyen (2023)

Web-crawled datasets have led to remarkable generalization capabilities in recent
image-text models such as CLIP or Flamingo, but little is known about the dataset creation
processes

e Reproducibility
e Potential presence of harmful content
e Hard to identify effective methods for assembling pre-training datasets

(i) How much do different web data sources vary in their induced robustness?
(ii) Do dataset combinations lead to better robustness?
(iii) Can filtering with an existing image-text model improve data quality?



Dataset Design and Robustness of CLIP

Q: How much do different web data sources vary in their induced robustness?

A: Performance (both in terms of accuracy and the slope of the linear trend) of the
pre-training data varies widely across shifts, with no single data source dominating.
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Dataset Design and Robustness of CLIP

Q: Do dataset combinations lead to better robustness?

A: Combining multiple sources does not necessarily yield better models, but rather dilutes
the robustness of the best individual data source.

__45- X 31
S o ~— =X
;357 321 ~— Linear fit (YFCC15m)
a = = |inear fit (LAION15m)
S 257 c1 Linear fit (YFCC15m+LAION15m)
o © Linear fit (YFCC7.5m+LAION7.5m)
D 15- o B YFCC15m
< = % LAION15m
e < ® YFCC15m+LAION15m
= 2 v YFCC7.5m-+LAION7.5m
£
5 . . | . 1 . . .
25 35 45 55 65 75 10 20 30 40

ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)



Visual Classification via Description from LLM

By only using the category name, FSL w/ CLIP neglects to use rich context information
available via language

e Gives no intermediate understanding of why a category is chosen
e Provides no mechanism for adjusting the criteria used towards this decision.

Menon & Vondrick (2022) use class descriptions from LLMs classify based on descriptive

features
Our top prediction: Hen CLIP’s top prediction: Dalmatian
and we say that because... but we don't say that because...
Average Average

—= two legs

—= red, brown, or white feathers
—= a small body

—= a small head

—= two wings

—= a tail

—= a beak

= a chicken

black or liver-colored spots
erect ears

long legs

short, stiff hair

a long, tapering tail

a long, slender muzzle




Visual Classification via Description from LLM

Richer class descriptions can help mitigate bias!

Subgroup Descriptors  Recognized Images
Wedding i iy

t: a groom wearing a tuxedo : b "{ A Sub-group Ours CLIP

OR . Western African  100% 40%

t: a groom wearing a dashiki Chinese 100% 20%
Japanese 100% 0%

OR
I: a groom wearing a kimono

North Indian 100% 60%

Figure 6: (left) CLIP only compares to the word ‘wedding’, yielding biased results — it only correctly
recognizes the first row. The descriptor-based approach provides a way to address the bias, by
expanding the initial set of descriptors (only the top) to be more inclusive with prior knowledge.
(right) Modifying the descriptors to be more inclusive causes accuracy to significant improve on
sub-groups.



Robustness in Modern NLP

Up until now, we have focused on robustness in modern computer vision
>What about Natural Language Processing?

Modern NLP is focused on zero-shot and few-shot generalization via a
paradigm called In-Context Learning applied to large language models

>popularized by GPT-3 (Brown 2021)
>language model can perform arbitrary tasks!



L
Language Modeling

Objective: Predict most likely word conditioned on some input string

n
p(@) = [[ p(suls1, - 50-1)
1=1

Generative language R
m Od e ls are tra | n ed on Decoder-Only Architecture
. . /[ Decoder Block }
massive corpora to predict : ——— ]
the next word :
[ .................... Feed FomardNeura| Network .................... ]
. ; Masked Self-Attention :
Language IS generated \[A ..... “ ................... —_—rrTTT T T ]/

left-to-right, one word at a
time (e.g. GPT family)

[ Token and Positional Embedding ]

the chicken walked




In Context Learning

Learn to perform many tasks

without any gradient updates and
given zero or a few examples

Prompt components:

e task description
e examples
e query

“Learn” the task being performed
from prompt

e Relevant context

e Label space

e Answer format

e Input-output correspondence

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt



In Context Learning Examples

Sentiment

Circulation revenue has increased by 5%
in Finland. // Positive

Panostaja did not disclose the purchase
price. // Neutral

Paying off the national debt will be
extremely painful. // Negative

The company anticipated its operating
profit to improve. //

mUm |

Positive

Topic

Circulation revenue has increased by
5% in Finland. // Finance

They defeated ... in the NFC
Championship Game. // Sports

Apple ... development of in-house
chips. // Tech

The company anticipated its operating
profit to improve. //

mUN |

Finance



GPT-3 Performance

Zero-shot One-shot Few-shot

175B Params

Natural Language

60 Prompt

50
S
= 40
@
3 30
=l 2 A T L e =2 13B Params
20
A R i
——————— === 1.3B Params

0 10° 10’

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.



Instruction Tuning

CLIP: Zero-shot across different object classes via language embedding.

Instruction Tuning: Zero-shot across different tasks via language.

Finetune on many tasks (“instruction-tuning”)
(; p <)\

( N .
Input (Commonsense Reasonin Input (Translation)
Here is a goal: Get a cool sleep on Translate this sentence to |Dference on unseen task typg
summer days. ‘ ' Spanish: . ‘In NatiuralLAR liiteiai
How would you accomplish this goal? ‘1A'Ihe rl;e\i'l\fc ?an:ce btt::ld':ntg';1 r Premise: At my age you will probably
OPTIONS: ' o m?:\thl; SSginanres have learnt one lesson.
(-Keep stack of p!llow == !n fridge.) Hypothesis: It's not certain how many
\-Keep stack of pillow cases inoven. | | Target ' lessons you'll learn by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
\ keep stack of pillow cases in fridge ) se construyo en tres meses. OPTIONS:
b , _ e (-yes | [ -itis not possible to tell | [ -no |
. Sentiment analysis tasks )
= - R FLAN Response
( Coreference resolution tasks | . ]
[ 4 It is not possible to tell
L] ‘ \ /
9 >




Instruction Tuning

CLIP: Zero-shot across different object classes via language embedding.

Instruction Tuning: Zero-shot across different tasks via language.

(A) Pretrain—finetune (BERT, T5)

.
Fgska"" —> onwskA  (C) Instruction tuning (FLAN)

* Typically requires many i
task-specific examples Pretrained Inference
o ?ne spﬁct:iali(zed model LM on task A
or each tas
~ Model learns to perform Inference ol?
. many tasks via natural unseen tas
(B) Promptlng (G PT-3) language instructions

Improve performance

via few-shot prompting
Pretrained or prompt engineering  Inference
LM > on task A

Figure 2: Comparing instruction tuning with pretrain—finetune and prompting.




How does this relate to robustness?

CLIP: zero-shot learning to avoid dataset biases
Instruction-tuning: zero-shot learning to avoid task biases

Define a task with a set of datasets, split into train and test tasks

rN ral lan inferen ) [c e[ §g|;|1;|mgm;ﬂ (Egmnhﬁgg\ c g A (- ) fIr_ang[g;ign b

(7 datasets) (4 datasets) (4 datasets) (4 datasets) (3 datasets) (4 datasets) (8 datasets)
(ANLI(R1-R3))(_ RTE _ )|(_ CoPA )|{(_ IMDB )||( MRPC )||(ARC easycnal))||(CommonGen) | (Paracraw ENIDE )
( cB ) SNLI )||(HellaSwag)||( Sent140 ) QQP ( NQ )[|C DART )||(Paracraw ENES)
( MNL ) wNl 1 [C_PieA )[f(C_ssT2 || paws )|[( T@A )||( E2ENLG ) || (Paracraw ENIFR)
p &StoryCloze) ) \( Yelp j) & g y & WEBNLG )J (WMT-16 EN/CS )
- - . . - <
Bead. comp. '

(5 datasets) commonsense | | (3 datasets) || (7 datasets) (11 datasets) bl Ll
(Bool )(OBQA )|| (2datasets) DPR (CoaA )(TREC )| | (_AESLC ) (Mult-News ) (_SamSum )
. ((QUAC )(CoLA )| | C_ AG News ) ( Newsroom ) (WikiLingua EN) | | ( WMT-16 EN/RU )
( DRQP )(SQuAD)| | ( CosmosQA )| | ( Winogrande ) O O | D D ST
J é ReCoRD )J é WSC273 )J &( Fix Punctuation (NLG))) k( Gigaword )COpin-Abs: Movie) ) L )




Instruction Tuning

These zero shot models Finetune on many tasks (“instruction-tuning”)

(r \a 3)
H Input (Commonsense R nin Input (Translation)
are inhere ntly robust. Here is a goal: Get a cool sleep on Translate this sentence to Inference on unseen task type
L3 H .
The key is to make them | simmerdas. Spenish: _ ' Input (Natural Lanquage Inferen
How would you accomplish this goal? | The new office building e :
L Premise: At my age you will probably
p e rfO rmwe “. OPTIONS: miit?’:"t iniless hanties have learnt one lesson.
joseep sk or p!llow cases !n frioge ] é Hypothesis: It's not certain how many
(-Keep stack of pillow cases inoven. | | Target ' lessons you'll learn by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
keep stack of pillow cases in fridge se construy6 en tres meses. OPTIONS:
Q Sentiment analysis tasks J +tis not possibe o fll |
z ELAN R n
C Coreference resolution tasksj ) ;
It is not possible to tell
. ( ) )

.~ GPT-3 175B zero shot [ GPT-3 175B few-shot [ FLAN 137B zero-shot

Performance
on unseen
task types

Natural language inference =~ Reading Comprehension Closed-Book QA




Benefits of massive multitasking + zero-shot learning

Remarkably good zero-shot performance now achievable: within 10% of supervised.

READING COMPREHENSION CLOSED-BOOK QA
BoolQ MultiRC OBQA ARC-e ARC-c NQ TQA
acc. F1 acc. acc. acc. EM EM
Supervised model 91.2% 88.2¢ 85.4¢ 2.6 81.1¢ 36.6% 60.5¢
Base LM 137B zero-shot 81.0 60.0 41.8 76.4 42.0 3.2 259
- few-shot 79.7 59.6 50.6 80.9 49.4 22.1 63.3
GPT-3 175B zero-shot 60.5 72.9 57.6 68.8 51.4 14.6 64.3
- few-shot 775 74.8 65.4 70.1 51.5 29.9 712
FLAN 137B zero-shot
- average template 80.2427 745124 T7.4a120 79.5a86 61.7a102 18.614.0| 66.512.2
std=3.1 std=3.7 std=1.3 std=0.8 std=1.4 std=2.7 std=2.6
- best dev template 829454 77.5a27 78.4a130 79.6a87 63.1a116 20.716.1] 68.1138

Table 2: Results on reading comprehension and closed-book question answering. For FLAN, we
report both the average of up to ten templates, as well as the best dev template. The triangle a indicates
improvement over few-shot GPT-3. The up-arrow + indicates improvement only over zero-shot GPT-3.
T5-11B.



Chain Of Thought Prompting
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models - Wei et al. (2022)

Standard Prompting Chain-of-Thought Prompting
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11. A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples

L J Co they have?

A: The answer is 27. x '

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

A:

answer is 9. ./




Reinforcement Learning From Human Feedback

Instruction tuning relies
on typical NLP datasets to
generate ICL examples

Under RLHF, collect
prompts and desired
outputs from humans

> Align with human
preferences

> Key ingredientin
ChatGPT, etc

Is RL necessary?

Ouyang 2022

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

¢
e)

2

Some people went
to the moon...

\J

SFT
.9

5%
VA
EEE

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Explain gravity.. Explain war

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Once upon a time...

\J
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| %}
.m.’“.

N
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Multi-modal training with GATO

We can turn image patches into “token embeddings” and apply transformer (ex.
VIT) > What if we mix tokens from different modalities (text, vision, joint
trajectories, game controls, etc.)?

Atari images Batched and masked
and discrete actions shifted targets

/
Everythingis

a token if you TRTTRIRE
. Images, proprioception
Squlnt hard andgcontinuous actions IIIIIIIIIII ( i E(HB)
enough! PN DL ato
: j A a a7

Batched input I I I I

Images and
sssssssss Propriocepti
Image
Q: What’s in the picture?
A: It's a cute cat M Text
Continuous ac tions

IIII IIII P Discrete actions

Figure 2: Training phase of Gato. Data from different tasks and modalities is serialized into a flat sequence of
tokens, batched, and processed by a transformer neural network akin to a large language model. Masking is used
such that the loss function is applied only to target outputs, i.e. text and various actions.



Multi-modal zero-shot learning with Flamingo

Input Prompt

TN J

This is a

— This is a shiba.
e ey s
in Chile. popular in Japan.
4
N\
What is the title Where is this .
of this painting? painting What is ‘the name
: of the city where
Answer: The displayed? ; i
. . this was painted?
Hallucinogenic Answer: Louvres o
Toreador. Museum, Paris. ’
4
e Output: AVE Output: .
JDERSEOUN. "Underground" "CONGRESS ,o,™ "Congress" Dtitpet:

n -

S

(  Completion

)

a flamingo.
They are found
in the
Caribbean and

South America.

~

Arles.

~

""Soulomes"'




Multi-modal zero-shot learning with Flamingo

This is a picture of two teddy
(™ bears on the moon.

What are they doing?

They are having a
(™ conversation.

What object are they using?
(™ Itlooks like a computer.
Is this surprising?
(™ Yes, it is surprising.

Why is this picture surprising
to you?

I think it is surprising because

teddy bears are not usually
(> found on the moon.

What is the common thing
about these three images?

(> They are all flamingos.

What is the difference be-
tween these three images?

The first one is a cartoon, the

second one is a real flamingo,

and the third one is a 3D
(7> model of a flamingo.

&)

©

This is an apple with a sticker
on it.

What does the sticker say?
The sticker says "iPod".
Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.
What color is the sticker?

It’s white.

This is a cityscape. It looks
(™ like Chicago.

‘What makes you think this is

Chicago?

I think it’s Chicago because

of the Shedd Aquarium in the
(™ background.

What about this one? Which

city is this and what famous

landmark helped you recog-

nise the city?

This is Tokyo. I think it’s

Tokyo because of the Tokyo
™ Tower.

&)




Multi-modal zero-shot learning with GPT-4

Example of GPT-4 visual input:

User ‘What is funny about this image? Describe it panel by panel.

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question about an image with multiple panels which GPT-4 is able to answer.

www.reddit.com/r/hmmm/comments/ubabsv/hmmm/




Key commonalities between CLIP and zero-shot LLMs

Key takeaways
e Zero-shot models are inherently robust.

* One path to building effective robust models is to build effective zero-shot
ones

- Language is a common interface across tasks

> Progress in large language models is causing an explosion in
zero-shot learning progress across vision, robotics, etc.



