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Fairness in Machine Learning

▶ Machine learning algorithms can amplify existing biases and
unfairness in society
▶ Example: COMPAS recidivism prediction algorithm, high false

positive rate for Black defendants1

▶ Different approaches to fairness (e.g., group fairness,
individual fairness, counterfactual fairness, etc.)
[Friedler et al., 2019]

▶ Challenges in achieving fairness in machine learning
▶ Trade-off between fairness and other objectives (e.g., accuracy,

utility) [Kleinberg et al., 2016]
▶ Lack of diversity in data and algorithms

[Buolamwini and Gebru, 2018]
▶ Need for transparency and accountability in algorithmic

decision-making [Diakopoulos, 2018]

1https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Fairness Gerrymandering

If we only look for unfairness over a small number of pre-defined
groups:

▶ Equitable with respect to single attributes

▶ Maximally violates statistical parity fairness for a red circle or
green triangle
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Roadmap

▶ To prevent Fairness Gerrymandering

→
▶ Demand statistical notions of fairness across exponentially (or

infinitely) many subgroups →
▶ Computational Challenge →
▶ Show the equivalence between auditing subgroup fairness and

weak agnostic learning →
▶ Implications:

▶ computationally hard in the worst case
▶ common heuristics for learning can be applied successfully in

practice

▶ Fictitious play in a two-player zero-sum game between a
Learner and an Auditor
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Model

▶ Individual: (X , y) = ((x , x ′), y), x ∈ X : protected attributes;
x ′ ∈ X ′: unprotected attributes; y ∈ {0, 1}: label

▶ (X , y): i.i.d. drawn from an unknown distribution P
▶ D: decision making algorithm, D(X ) ∈ {0, 1}
▶ G: family of indicator functions, g : X 7→ {0, 1}, g(x) = 1

indicates than individual with x is in group g



Definitions of Fairness

Definition (Statistical Parity (SP) Subgroup Fairness)

Fix any classifier D, distribution P, collection of group indicators
G, and parameters α, β ∈ [0, 1]. We say that D satisfies
(α, β)-statistical parity (SP) Fairness with respect to P and G if
for every g ∈ G such that min(Pr[g(x) = 1],Pr[g(x) = 0]) ≥ α we
have:

|Pr[D(X ) = 1 | g(x) = 1]− Pr[D(X ) = 1]| ≤ β

α: how small a fraction of population we are allowed to ignore
β: how much deviations positive classifications are allowed



Comparison of Concepts

Definition (Calibration [Hébert-Johnson et al., 2018])

For all but an α-fraction of a set S , the average of the true
probabilities of the individuals receiving prediction v is α-close to v .
Multicalibration requires α−calibrated on all subsets of C.

▶ SP-fairness cares about the difference between the average
prediction of groups.

▶ Calibration cares about the difference between the prediction
accuracy within groups of same prediction.

▶ SP-fairness can be seen as constraints on learning a good
predictor

▶ Calibration aligns with learning a good predictor
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Auditing

Theorem (Informal)

Auditing for an arbitrary D w.r.t. G is computationally equivalent
to weak agnostic learning of G under the marginal distribution on
(x ,D(X )).

Definition (Auditing (in English))

Given access to samples (x , x ′, y ,D(X )), can we decide if D is SP
fair, or output a violated g?

Definition (Weak Agnostic Learning (in English))

Learn patterns purely from the training data with no assumptions
about the underlying data distribution of the data; ‘Weak’ in the
sense that model can make errors in its predictions, but still needs
to perform better than random guessing.
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Auditing

Intuition: For P(D(X ) = g(x)) to be better than random guess,
the group should be imbalanced.

P(D(X ) = 1|g(x) = 1)P(g(x) = 1)+P(D(X ) = 1|g(x) = 0)P(g(x) = 0)

▶ If g is violated, then g or ¬g predict the decisions made by
algorithm D better than random guess

▶ If g predicts the decisions made by the algorithm D better
then random guess, then g or ¬g is violated



Learning

Theorem (Worst-case intractability of auditing (informal))

Even for G with simple structure such as conjunctions of Boolean
attributes, there exist distributions P such that the auditing
problem cannot be solved in polynomial time.



Learning

Effective heuristics on specific (non-worst case) distributions:

▶ Formulate as a two-player repeated zero-sum game

▶ Given oracles to solve agnostic learning problem and auditing
problem

▶ Learner objective: minimize error subject to fairness w.r.t. G
▶ Learner: propose a classifier h ∈ H
▶ Auditor: find a group that is being discriminated against most

▶ Provably convergent learning algorithm: theoretical
convergence rate quite slow, but in practice converges quickly



Summary

▶ Statistical notions of fairness across exponentially (or
infinitely) many subgroups

▶ Computational problem of auditing subgroup fairness is
equivalent to the problem of weak agnostic learning

▶ Formulation of subgroup fairness as fictitious play in a
two-player zero-sum game between a Learner and an Auditor



Auditing

Definition
Fix a notion of fairness (either statistical parity or false-positive
fairness), a collection of group indicators G over the protected
features, and any α, β, α′, β′ ∈ (0, 1] such that α′ ≤ α and β′ ≤ β.
A collection of classifiers H is (α, β, α′, β′)-(efficiently) auditable
under distribution P for groups G if there exists an auditing
algorithm A such that for every classifier D ∈ H, when given
access the distribution Paudit(D), A runs in time
poly (1/α, 1/α′, 1/β, 1/β′, 1/δ), and with probability (1− δ),
outputs an (α′, β′)-unfair certificate for D whenever D is
(α, β)-unfair with respect to P and G.



Weak Agnostic Learning

Definition ([Kalai et al., 2008])

Let Q be a distribution over X ×{0, 1} and let ε, γ ∈ (0, 1/2) such
that ε ≥ γ. We say that the function class G is (ε, γ)-weakly
agnostically learnable under distribution Q if there exists an
algorithm L such that when given sample access to Q, L runs in
time poly (1/γ, 1/δ), and with probability 1− δ, outputs a
hypothesis h ∈ G such that

min
f ∈G

err(f ,Q) ≤ 1/2− ε =⇒ err(h,Q) ≤ 1/2− γ.

where err(h,Q) = Pr(x ,y)∼Q [h(x) ̸= y ].



Two Fairness Notions

Statistical

▶ group-level outcomes: the
outcomes for different
groups are not too different.

▶ e.g. equal false positive or
negative rates across groups
(equal opportunity); equality
of classification rates
(statistical parity)

▶ can be obtained and
checked without making any
assumptions about the
underlying population

Individual

▶ individual-level outcomes:
treating similar individuals
similarly, regardless of group
membership

▶ more difficult to achieve:
require more assumptions on
the setting

▶ similarity measures between
individuals include k-nearest
neighbors or kernel density
estimation
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