

Today, we present...

Multicalibration: Calibration for the (Computationally-Identifiable) Masses

Úrsula Hébert-Johnson ¹ Michael P. Kim ¹ Omer Reingold ¹ Guy N. Rothblum ²

Motivation

- Task: Learning a predictor f on a population \mathcal{X} , based on samples i from a ground truth D.
- Classification: Each i holds a (random) boolean value with expectation p_i^st
- Desirable properties:
 - Given a particular subpopulation (in danger of being discriminated) $S \subset \mathcal{X}$, we want $E_{i \sim S} f = E_{i \sim S} p_i^*$ (No bias)
 - ...One problem: Might discriminate the groups with high variance.
 - One alternative: Consider the levels $L_v = \{i \mid f_i = v\}$: We want for all levels $v \in [0,1]$, $E_{i \sim L_v \cap S} f = E_{i \sim L_v \cap S} p_i^*$. This is the idea behind calibration.
- Main takeaway: Zero bias (or even low bias), is not enough to ensure "fairness" for a subpopulation. Enforcing zero bias across all the levels $L_v \cap S$ is better but (much) stronger.

Requirements

- Unbiased is unrealistic: instead, we want (1) $|E_{i\sim L_v\cap S}(f-p_i^*)| \leq \alpha$.
- We want calibration across multiple sets: We want it to be satisfied for a collection $\mathcal C$ of subpopulations.
- We want a tractability: Testing for all values $v \in [0,1]$ is unrealistic. We only test the levels v for a discretized version of [0,1], of precision λ , denoted $\Lambda[0,1]$.
- We want feasibility: We can only hope for (1) to be true on a (1α) -fraction of S.

Strongest definition of multicalibration

Definition $((\mathcal{C}, \alpha, \lambda)$ -multicalibration). Let $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be a collection of subsets of \mathcal{X} . For any $\alpha, \lambda > 0$, a predictor f is $(\mathcal{C}, \alpha, \lambda)$ -multicalibrated if for all $S \in \mathcal{C}$, $v \in \Lambda[0, 1]$, and all categories $S_v(f)$ such that $\mathbf{Pr}_{i \sim \mathcal{D}}[i \in S_v(f)] \geq \alpha \lambda \cdot \mathbf{Pr}_{i \sim \mathcal{D}}[i \in S]$, we have

$$\mathop{\mathbf{E}}_{i \in S_v(f)}[f_i - p_i^*] \le \alpha.$$

« Normal » definition of multicalibration

Definition (Calibration). For any $v \in [0,1]$, $S \subseteq \mathcal{X}$, and predictor f, let $S_v = \{i : f_i = v\}$. For $\alpha \in [0,1]$, f is α -calibrated with respect to S if there exists some $S' \subseteq S$ with $\mathbf{Pr}_{i \sim \mathcal{D}}[i \in S'] \geq (1 - \alpha) \cdot \mathbf{Pr}_{i \sim \mathcal{D}}[i \in S]$ such that for all $v \in [0,1]$,

$$\left| \underset{i \sim S_v \cap S'}{\mathbf{E}} [f_i - p_i^*] \right| \le \alpha. \tag{2}$$

Note: Normal multicalibration is just normal calibration on all the subpopulations of the collection

Overview of results:

- Is it possible? Answer: Yes! as long as we have a certificate of membership for each $S \in \mathcal{C}$
- Can it be done efficiently? Answer: Yes! as long as:
 - We have enough samples
 - The certificate of membership can be done efficiently
 - We have an implicit representation of ${\cal C}$
- Bonus: (γ : Ratio of samples from S)
 - Time complexity $\sim t|\mathcal{C}|$ poly $\left(\frac{1}{\alpha}, \frac{1}{\gamma}\right)$
 - Sample complexity $\sim \log |\mathcal{C}| \operatorname{poly}\left(\frac{1}{\alpha}, \frac{1}{\gamma}\right)$
- How much do we lose in accuracy? Very little!
- On a high level, multicalibration is as hard as Weak Agnostic Learning

How do we interact with data?

Definition (Guess-and-check oracle). Let $\tilde{q}: 2^{\mathcal{X}} \times [0,1] \times [0,1] \to [0,1] \cup \{\checkmark\}$. \tilde{q} is a guess-and-check oracle if for $S \subseteq \mathcal{X}$ with $p_S = \mathbf{E}_{i \sim S}[p_i^*]$, $v \in [0,1]$, and any $\alpha > 0$, the response to $\tilde{q}(S,v,\omega)$ satisfies the following conditions:

• if
$$|p_S - v| < 2\omega$$
, then $\tilde{q}(S, v, \omega) = \checkmark$

- if $|p_S v| > 4\omega$, then $\tilde{q}(S, v, \omega) \in [0, 1]$
- if $\tilde{q}(S, v, \omega) \neq \checkmark$, then

$$p_S - \omega \le \tilde{q}(S, v, \omega) \le p_S + \omega.$$

Note: typo, replace α with ω

Intuition: We have an inner mechanism that

- Checks if a subpopulation is close to a given level
- Returns a more accurate level for that subpopulation

Bridge:

· Between Differential-Privacy and Adaptive Data Analysis

The Algorithm

Algorithm 1 – Learning a (C, α) -multicalibrated predictor

```
Let \alpha, \lambda > 0 and let \mathcal{C} \subseteq 2^{\mathcal{X}}.
Let \tilde{q}(\cdot, \cdot, \cdot) be a guess-and-check oracle.
    • Initialize: f = (1/2, ..., 1/2) \in [0, 1]^{\mathcal{X}}
    • Repeat:
       \circ For each S \in \mathcal{C} and v \in \Lambda[0, 1]:
           - Let S_v = S \cap \{i : f_i \in \lambda(v)\}
           - if \mathbf{Pr}_{i \sim \mathcal{D}}[i \in S_v] < \alpha \lambda \cdot \mathbf{Pr}_{i \sim \mathcal{D}}[i \in S]:
                continue
            - Let \bar{v} = \mathbf{E}_{i \sim S_n}[f_i]
            - Let r = \tilde{q}(S_v, \bar{v}, \alpha/4)
            - If r \neq \checkmark:
                update f_i \leftarrow f_i + (r - \bar{v}) for all i \in S_v
                (project onto [0, 1] if necessary)
        \circ If no S_v updated: exit
    • For v \in \Lambda[0,1]:
       \circ Let \bar{v} = \mathbf{E}_{i \sim \lambda(v)}[f_i]
        \circ For i \in \lambda(v): f_i \leftarrow \bar{v}
    • Output f
```

Intuition: As long as we can find a potential uncalibrated, we

- Call the oracle. Effect: Either we check if it's calibrated, or:
- We gain a better understanding of the true levels on this part of the population
- Improve our predictor based on this new knowledge

Performance

Theorem 1. Suppose $\mathcal{C} \subseteq 2^{\mathcal{X}}$ is collection of sets where for $S \in \mathcal{C}$, there is a circuit of size s that computes membership in S and $\mathbf{Pr}_{i \sim \mathcal{D}}[i \in S] \geq \gamma$. For any $p^* : \mathcal{X} \to [0,1]$, there is a predictor that is (\mathcal{C}, α) -multicalibrated implemented by a circuit of size $O(s/\alpha^4\gamma)$.

Theorem 2. Suppose $\mathcal{C} \subseteq 2^{\mathcal{X}}$ is collection of sets such that for all $S \in \mathcal{C}$, $\Pr_{i \sim \mathcal{D}}[i \in S] \geq \gamma$, and suppose set membership can be evaluated in time t. Then Algorithm 1 run with $\lambda = \alpha$ learns a predictor of $f: \mathcal{X} \to [0,1]$ that is $(\mathcal{C}, 2\alpha)$ -multicalibrated for p^* from $O(\log(|\mathcal{C}|)/\alpha^{11/2}\gamma^{3/2})$ samples in time $O(|\mathcal{C}| \cdot t \cdot \operatorname{poly}(1/\alpha, 1/\gamma))$.

Best-in-class prediction

Theorem 5. Suppose $C \subseteq 2^{\mathcal{X}}$ is a collection of subsets of \mathcal{X} and \mathcal{H} is a set of predictors. There is a predictor f that is α -multicalibrated on C such that

$$\mathbf{E}_{i \sim \mathcal{X}}[(f_i - p_i^*)^2] - \mathbf{E}_{i \sim \mathcal{X}}[(h_i^* - p_i^*)^2] < 6\alpha,$$

where $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \mathbf{E}_{i \sim \mathcal{X}}[(h-p^*)^2]$. Further, suppose that for all $S \in \mathcal{C}$, $\mathbf{Pr}_{i \sim \mathcal{D}}[i \in S] \geq \gamma$, and suppose that set membership for $S \in \mathcal{C}$ and $h \in \mathcal{H}$ are computable by circuits of size at most s; then s is computable by a circuit of size at most s.

Intuition:

- We calibrate \mathcal{C} and the levels of all the elements in the set of predictors
- The prediction error increases by a small additive term

Multicalibration and WAL

• Informal definition of Weak Agnostic Learning:

Given a concept class and a hypothesis class, an algorithm is a weak agnostic learner if, whenever there is a non-trivial concept that correlates with the data, the algorithm can produce a non-trivial hypothesis that also correlates with the data

• Informal result:

Weak Agnostic Learning is as hard as Multicalibration. Meaning we can reduce one to the other.

- If our collection admits a WAL, then we can construct a multicalibrated algorithm
- If our collection has a multicalibrated predictor, then we can construct a WAL

Definition (Weak agnostic learner). Let $\rho \geq \tau > 0$, $\mathcal{C} \subseteq 2^{\mathcal{X}}$, and $\mathcal{H} \subseteq [-1,1]^{\mathcal{X}}$. A (ρ,τ) -weak agnostic learner \mathcal{L} for a concept class \mathcal{C} with hypothesis class \mathcal{H} solves the following promise problem: given a collection of labeled samples $\{(i,y_i)\}$ where $i \sim \mathcal{D}$ and $y_i \in [-1,1]$, if there is some $c \in \mathcal{C}$ such that $\mathbf{E}_{i \sim \mathcal{D}}[c_i \cdot y_i] > \rho$, then \mathcal{L} returns some $h \in \mathcal{H}$ such that $\mathbf{E}_{i \sim \mathcal{D}}[h_i \cdot y_i] > \tau$.

Theorem 3. Let $\rho, \tau > 0$ and $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be some concept class. If \mathcal{C} admits a (ρ, τ) -weak agnostic learner that runs in time $T(|\mathcal{C}|, \rho, \tau)$, then there is an algorithm that learns a predictor that is (\mathcal{C}, α) -multicalibrated on $\mathcal{C}' = \{S \in \mathcal{C} : \mathbf{Pr}_{i \sim \mathcal{D}}[i \in S] \geq \gamma\}$ in time $O(T(|\mathcal{C}|, \rho, \tau) \cdot \operatorname{poly}(1/\alpha, 1/\lambda, 1/\gamma))$ as long as $\rho \leq \alpha^2 \lambda \gamma/2$ and $\tau = \operatorname{poly}(\alpha, \lambda, \gamma)$.

Theorem 4. Let $\alpha, \gamma > 0$ and suppose $C \subseteq 2^{\mathcal{X}}$ is a concept class. If there is an algorithm for learning a (C', α) -multicalibrated predictor on $C' = \{S \in C : \mathbf{Pr}_{i \sim \mathcal{D}}[i \in S] \geq \gamma\}$ in time $T(|C|, \alpha, \gamma)$ then we can implement a (ρ, τ) -weak agnostic learner for C in time $O(T(|C|, \alpha, \gamma) \cdot \operatorname{poly}(1/\tau))$ for any $\rho, \tau > 0$ such that $\tau \leq \min \{\rho - 2\gamma, \rho/4 - 4\alpha\}$.

Intuition: We have an inner mechanism that

- Checks if a subpopulation is close to a given level
- Returns a more accurate level for that subpopulation

Bridge:

• Between WAL and Fairness

In practice?

- Holistic problem:
 - Multicalibration vs Equalizing error rates
 - Tay-Sach disease in Askhenazi population
 - Fairness in data vs Fairness in outcome

Discussion

