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]
Overview

@ Two-part taxonomy of formal fairness definitions
@ Statistical limitations of both families of fairness definitions

@ Steps to build more equitable algorithms

Presenters: Haoxian Chen and Chenkai Yu The Measure and Mismeasure of Fairness 2/35



|
Setting

@ Obeserved covariates X ~ Dy i.i.d.

Discrete protected attributes A = a(X) € A

@ Binary decision D € {0,1} determined by a rule
dlx) =P(D =1|X =x)

@ Budget E[D] <

@ Binary outcome Y and possibly two potential outcomes Y (0) and
Y (1) affected by D
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e
Examples

Diabetes screening
e Covariates (X): patient's age, body mass index (BMI), (race) etc.
@ protected attribute (A): race
@ Outcomes (Y'): whether a patient has diabetes or not.
°

Goal: design an equitable screening policy d to determine which
patients to be screened, based on X.
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e
Examples

College admissions
e Covariates (X): student'’s test score, (race) etc.
@ protected attribute (A): race

e Causal outcomes (Y): Y (1)/Y(0) describes whether an applicant
would attain a degree if admitted/not admitted.

@ Goal: design an equitable admission policy d to determine which
students to admit.
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|
Two-part Taxonomy of Fairness Definitions

Limiting the Effect of Decisions on Disparities

@ Requires the policy to have equal error rates across groups, defined
by protected attributes.

Limiting the Effect of Attributes on Decisions
@ Limits the effect of protected attributes on policy decision.
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|
Limiting the Effect of Decisions on Disparities

Demographic parity
D 1 A.
Example(s):

@ The proportion of patients who are screened for the disease is equal
across race groups.

@ An equal proportion of students is admitted across race groups.
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|
Limiting the Effect of Decisions on Disparities

Equalized false positive rates
D1 A|Y=0.
Example(s):

@ The screening rates of individuals who in reality do not have
diabetes are equal across race groups.
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|
Limiting the Effect of Decisions on Disparities

Counterfactual predictive parity
Y(1) 1L A|D=0.
Example(s):
@ In college admissions example, among rejected applicants, the

proportion who would have attained a college degree, had they
been accepted, is equal across race groups.
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|
Limiting the Effect of Decisions on Disparities

Counterfactual equalized odds
D1 A|Y(1).

Example(s):
@ among applicants who would graduate if admitted (i.e., Y (1) = 1),
students are admitted at the same rate across race groups.
@ among applicants who would not graduate if admitted (i.e.,
Y (1) = 0), students are again admitted at the same rate across
race groups.
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|
Limiting the Effect of Decisions on Disparities

Conditional principal fairness
D1 AlY(0),Y(1),W.
Example(s):

@ conditional principal fairness means that “similar” applicants are
admitted at the same rate across race groups.
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|
Limiting the Effect of Attributes on Decisions

Blinding
Suppose X = X, x A, where X, denotes “unprotected” attributes.
Then blinding holds when for all a,a’ € A and z, € X,

d(zy,a) = d(zy,ad).

Example(s):
@ The screening decision depends solely on factors like age and BMI.
@ College admissions decisions depend only on factors like test scores
and extracurricular activities. )
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|
Limiting the Effect of Attributes (Causal)

Counterfactual fairness
E[D(d")|X] = E[D|X],

where D(a’) denotes the decision when one’s protected attributes are
counterfactually altered.
Example(s):

@ For each group of observationally identical applicants (i.e., same
values of X), the actual admitted proportion is the same as the
proportion who would be admitted if their race were
counterfactually altered.
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|
Limiting the Effect of Attributes (Causal)

Path-specific counterfactual

Allows protected traits to influence decisions along certain causal paths
but not others.

" _— _— e
Race Education Test Score Deecision Graduation

N/

M

Preparation
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|
Limiting the Effect of Attributes (Causal)

[I-fairness

Let II be a collection of paths, and, for a measurable function w on X,
let W = w(X) describe a reduced set of the covariates X. Path-specific
fairness, also called II-fairness, holds when, for any a € A,

E|Dna« W] =E[D|W],

where D(a’) denotes the decision when one's protected attributes are
counterfactually altered.
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e
Equitable Decisions without Trade-offs

Assume E[D] < b =1, i.e. no budget constraint.

Expected utility

Denote v(y) by the benefit of making decision D =y over D =1 — y.
Then the expected utility of making decision D =1 over D =0 is

u() == Ep(Y)|X = 2] = r() - v(1) + [L - ()] - 0(0),

where 7(z) =P (Y = 1|X = x)
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e
Equitable Decisions without Trade-offs

Define the utility of a policy u(d) := E[d(X) - u(X)].

Threshold policy maximizing utility

A decision policy d*(z) is utility-maximizing if u(d*) = maxy a(d).
Therefore, we have

d(z) = {1 if r(z) > ()

0 otherwise

We call t .= 0(07;(_03](1) as the optimal threshold.
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e
The Problem of Classification Parity

However, threshold policies in general violate classification parity.

Distribution of risk Conditional distribution of risk
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|
The Problem of Inframarginality

Theorem 9

If 0 <t < 1, then for almost every collection of group-specific risk
distributions which have densities on [0, 1], no utility-maximizing
decision-policy satisfies demographic parity or equalized false positive
rates.
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e
The Problem with Fairness through Unawareness
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e
The Problem with Fairness through Unawareness

Theorem 10

Suppose 0 < t < 1, where t is the optimal decision threshold on the risk
scale, as in Eq. (9). Let 7 : X, x A — X, denote restriction to the
unprotected covariates. Let p(x) = Pr(Y =1 | n(X) = w(x)) denote
the risk estimated using the blinded covariates. Suppose that r(z) and
p(x) have densities on [0, 1] that are positive in a neighborhood of t.
Further suppose that there exists € > 0 such that the conditional
variance VAR(r(X) | p(X)) > € a.s., where r(z) is the risk estimated
from the full set of covariates. Then no blind policy is utiIity—maximizing.j
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e
Equitable Decisions in the Presence of Trade-offs

Multi-objective

In the setting of b < 1, we need consider the tradeoff between two
competing objectives:

ur(d) == E[m(X) - d(X)],  uz(d) := E[la(x)=a, - d(X)]
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|
The Geometry of Fair Decision Making

Counterfactual Fairness / Path-Specific Fairness Principal Fairness
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Theory of Fairness in the Presence of Trade-offs

Consistency of utility
We say that a set of utilities U/ is consistent modulo « if, for any
u,u’ €U:
1. For any z,sign(u(z)) = sign (v'(x));
2. For any x; and x5 such that o (x1) = o (x2) ,u (1) > u (x2) if and
only if v’ (z1) > u' (z2). )
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|
Theory of Fairness in the Presence of Trade-offs

Pareto dominance
Suppose U is a collection of utility functions.
@ Pareto dominated: For a decision policy d, there exists a feasible
alternative d’ such that u (d') > u(d) for all w € U, and there exists
v € U such that u' (d') > u/(d).
@ Strongly Pareto dominated: For a decision policy d, there exists a
feasible alternative d’ such that u (d') > u(d) for all u € U.

@ Pareto efficient: A policy d that is feasible and not Pareto
dominated.

@ Pareto frontier: The set of Pareto efficient policies.
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|
Theory of Fairness in the Presence of Trade-offs

Characterization of Pareto efficient policy

Suppose U is a set of utilities that is consistent modulo . Then any
Pareto efficient decision policy d is a multiple-threshold policy. That is,
for any u € U, there exist group-specific constants ¢, > 0 such that, a.s.:

d(z) {1 u(w) > toy)

0 u(m) < ta(a:)
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|
Theory of Fairness in the Presence of Trade-offs

U-fineness distribution

Let I/ be a collection of functions from Z to R? for some set Z. We say
that a distribution of Z on Z is U-fine if g(Z) has a density for all
uel.
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]
Limitations of Fairness Definitions

Theorem 17
Suppose U is a set of utilities consistent modulo «.. Further suppose that for all a € A there exist a

U-fine distribution of X and a utility u € U such that Pr(u(X) > 0, A = a) > 0, where A = a(X).

Then
@ For almost every U-fine distribution of X and Y'(1), any decision policy satisfying
counterfactual equalized odds is strongly Pareto dominated.

@ If [Img(w)| < oo and there exists a U-fine distribution of X such that Pr(4 =a, W = w) >

for all a € A and w € ImG(w), where W = w(X), then, for almost every U fine joint

distribution of X, Y (0), and Y (1), any decision policy satisfying conditional principal fairness is

strongly Pareto dominated.

@ If |[ImG(w)| < oo and there exists a U-fine distribution of X such that Pr(A =a,W =
w;) > 0 for all @ € A and some distinct wg,w; € IMG(w), then, for almost every U“-fine
joint distributions of A and the counterfactuals X1 4,4/, any decision policy satisfying
path-specific fairness is strongly Pareto dominated.

0

v
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]
Limitations of Fairness Definitions

Corollary 18
Consider a utility of the form

u*(d) = v (E[m(X) - d(X)], E [Ta(x)=, - d(X)])

where v is monotonically increasing in both coordinates and m(x) > 0.
Then, under the same hypotheses as in Theorem 17, for almost every
joint distribution, no utility-maximizing decision-policy satisfies
counterfactual equalized odds, conditional principal fairness, or
pathspecific fairness.
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e
Ways to Improve Equitability

Balancing inherent trade-offs in decision problems
e Explicitly calculate the Pareto frontier.

@ If not possible to compute, list and discuss trade-offs to reduce the
risk of adopting problematic policies, like those satisfying some
formal fairness criteria. )

Presenters: Haoxian Chen and Chenkai Yu The Measure and Mismeasure of Fairness 30/35



e
Ways to Improve Equitability

Assessing calibration

@ Check whether risk scores correspond to the same observed level of
risk across groups.

@ Measure calibration: regress observed outcomes against risk
estimates and group membership.
@ Rectifying miscalibration:
e Training group-specific models
o Include group membership in a single model
o Include additional non-protected covariates
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]
Calibration is not sufficient

Loan application

@ Within zip code, White and Black applicants have similar default
rates.

@ Black applicants live in zip codes with relatively high default rates.

@ The bank would tend to refuse Black applicants.
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]
Calibration is not sufficient

Diabetes example with noisy covariates
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e
Ways to Improve Equitability

Selecting the targets of prediction
@ Label bias: a mismatch between our true outcome of interest and
the available data.

o Heavier policing in communities of color might lead to Black
and Hispanic defendants being arrested. Data might cause
underestimation of the risk posed by White defendants.

e Suppose counterfactual outcome is of our interest, we cannot
observe it in reality (e.g., release vs detention).

@ One way to mitigate label bias is to adjust the target of interest.

e To represent one's medical need, health status could be a

better proxy than medical cost. :
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e
Ways to Improve Equitability

Collecting training data
@ |deal: datasets are representative of the populations on which they
are ultimately applied.
@ Value: it depends on the degree to which race, gender and other
protected attributes are predictive.
@ Benefits:
o At training, full support of features is present.
o At model validation, representative samples helps to assess the
model’s generalization.
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