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Prediction and causality

* A central goal of ML is to predict an outcome given variables
describing a situation

- Given patient characteristics, will their outcome improve?

* Most decision-making problems revolve around a decision /
intervention / treatment

- What would happen if we changed the system?

- Given patient characteristics, will their outcome improve if they
follow a new diet?

* \We want to develop a scientific understanding of a decision

- If you predict housing demand based on price, then a prediction
model will say high price means high demand
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Prediction and causality

e Causal inference is a multi-disciplinary field spanning
across economics, epidemiology, and statistics

* Focus is on questions about counterfactuals
- What structure of data do we need to answer this question?
- How do we interpret the key estimands?

e ML models can predict outcomes; when can it predict
counterfactuals?

- How can we leverage flexible ML models to infer causality?
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Potential outcomes

 Framework for explicitly modeling counterfactuals
e A: binary treatment assignment (1: treated, 0: control)
* Y(1) and Y(0) are potential outcomes

e X Is observed covariates

First goal: Estimate average treatment effect
T:=E[Y(1) —Y(0)]

Problem: We only observe Y := Y(A)



Observational studies

 Randomization is sometimes infeasible or prohibitively
expensive

- e.g. post-market drug surveillance, effect of air pollution on long-
term health outcomes

* Experimentation can be risky in high-stakes scenarios

- operational scenarios: new inventory policy for Amazon, new
pricing algorithm for Uber

* May want to use existing large-scale data collected under
some data-generating policy (e.g. legacy system)
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Observational studies

e Historically, many important findings from observational
data

- “citrus fruit curing scurvy described in the 1700s or insulin as a
treatment for diabetes in the 1920s long preceded the advent of
the modern randomized clinical trial.”

- “these methods had in common a reliable method of diagnosis, a
predictable clinical course, and a large and obvious effect of the
treatment.” [Corrigan-Curay et al. 2018]

e These results need to be contextualized and viewed with
more skepticism than RCTs
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SUTVA

 Throughout we implicitly assumed there is only a single
version of the treatment that gets applied to all treated units

- This may not be true if drugs go stale in storage, or dosages differ

e We also assumed there is no interference between units

- Whether or not individual i is treated has no impact on the treatment
effect of another individual |

- This can also fail in many real-world scenarios

Together these assumptions are called stable unit treatment
value assumption (SUTVA)
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Interference

* Any two-sided platform faces interference between units

e Consider the following scenario:
- Lyft A/B tests a new promotion strategy for drivers
- Each driver is randomized into treatment or control
- It is observed that drivers finish a lot more rides with the promotion
- So they decide this promotion is worth spending resources on

e But the estimate turned out to be an overestimate, not
worth the cost of the promotion. Why?
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Interference

e Both treated and control drivers see the same set of demand

e |f promotion incentivizes treated drivers to work more for less

nominal fares, this cannibalizes demand that would usually go to
control drivers

e Interference occurs in a number of different settings
- Two-sided platforms: Airbnb, ridesharing, ad auctions
- Network effects: e.g. adoption of new education technology

 When this happens, the potential outcomes now depend on all
possible 2" treatment assignments

- Very active area of research
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No unobserved confounding

* Previous regression-based direct method still works if there
are no unobserved confounders (also called ignorability)

Assumption. Y(1),Y(O) LA | X

e Observed treatment assignments are based on covariate
information alone (+ random noise)

- Treatment assignment does not use information about
counterfactuals

e Strong assumption. Often violated in practice.
- e.g. doctors often use unrecorded info to prescribe treatments
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No unobserved confounding
Assumption. Y(1),Y(0) LA |X
* Under no unobserved confounding,

EplY(1)] = Ep[E[Y(1) | XT] = E[Ep[Y(]) | X, Z = 1]]

o Directly regress Y on X for treated units (Z=1) to get E[Y | X, Z = 1]
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Overlap

* \We need enough samples for both control and treatment
throughout the covariate space

- This governs the effective sample size
e Propensity score ¢*(X) :=PA =1 | X)

e Assume that there exists € > 0 such that
e < e*(X) <1 — € almost surely

e This means | have at least en number of samples for fitting
the two outcome models
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Overlap

 This breaks if data is generated by a deterministic policy
- e.g. always assign the drug (treatment) when age > 50

* We need sufficient amount of randomness in treatment
assignment in all covariate regions

e Governs difficulty of estimation. Often violated in practice.
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Assessing overlap

e “If the covariate distributions are similar, as they would be, in
expectation, in the setting of a completely randomized experiment,
there is less reason to be concerned about the sensitivity of
estimates to the specific method chosen than if these distributions
are substantially different.”

e “On the other hand, even if unconfoundedness holds, it may be
that there are regions of the covariate space with relatively few
treated units or relatively few control units, and, as a result,
inferences for such regions rely largely on extrapolation and are
therefore less credible than inferences for regions with substantial
overlap in covariate distributions.”

e |Imbens and Rubin
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Assessing overlap

* Qverlap governs effective sample size

- Even approaches that don’t require propensity weighting is affected
under this fundamental restriction

e Causal inference literature has developed various
“supplementary analysis” tools for assessing credibility of
empirical claims

e One of the most common conventions is to plot the
propensity scores of treated and control groups
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Assessing overlap

e Difference in covariate distributions between treatment and control
group is summarized by the propensity score

o Let f;(X) be the density of X in the treatment group (similarly f(X))
e Letp =PA=1)

Var(e*(X)) = p(1 = p)(E [e*(X) | A = 1] —=E [e*(X) | A = 0])

2
H00 = £(X)
— p? 1 — 2, [
pp (Pﬂ(X)+(1—P)ﬁ)(X)>
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Assessing overlap

e A common visualization is to look at the pdf of the
propensity score across treatment groups

* Plot approximates pdfs of the distribution
Pe*X) e - |A=a)

e Foreach g € (0,1), plot fraction of observations in the
treatment group with e *(x) = g (and similarly for control)
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Assessing overlap

e Athey, Levin, Seira (2011) studied timber auctions

- Award timber harvest contracts via first price sealed auction or open
ascending auction

|daho: randomized with different probabilities across
different regions

California: determined by small vs. large sales volume;
cutoff varies by region

B9145: Reliable Statistical Learning
Hongseok Namkoong 18



ldaho

Very few observations with extreme propensity scores
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California

Untrimmed v. trimmed so that e(x) € [.025, .975]
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Estimators



Direct method

* By no unobserved confounding,
puy(X) == E[Y(a) | X] = E[Y(a) | X,A = a]

= [E[Y | X, A = Cl] 4~ observable
e Fit u(X) via the loss minimization problem
minimize, ean  E[(Y — ,ua(X))z | A = a]

1 n
ATE estimator #py 1= — ) f1;(X) — Ay(X,)
n =1

e Good if the outcome models are easy to learn
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Inverse propensity weighting

 What if the outcome models are very complex and difficult to
estimate?

* A natural approach is to reweight samples to correct for
confounding bias

- Essentially importance sampling
- Reweight treated units to look like “everyone”

e First, estimate the propensity score e*(X) := P(A =1 | X)

- e.g. run logistic regression to predict A given X
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Inverse propensity weighting

. 12": A, 1=A
T = — - ,
s \ex) ! 1-ex)

e Can work well if propensity score is simple to estimate

e But estimating this well over the entire covariate space
can be difficult

- Calibration is hard, especially in high-dimensions

* When overlap doesn’t hold, importance weights blow up
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Unbiasedness
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Estimating propensity score

Bd e s Ptau unknom. Hoo do e et €2

L"il"'t“ .e?—essim
e(x : T
bg,i_'_:g);:\- = {(;0) eq-  flkip)l= 'K
Then  sole 4.0 d HE

W
MiA E[ {)rj (H— 6<'>( 24-1) - 1&({;9)))]

ee @
-

N
W moded s wdl-'srem"id, them € X € .

B9145: Reliable Statistical Learning
Hongseok Namkoong

20



Inverse propensity weighting

e Can work well if propensity score is simple to estimate

e But estimating this well over the entire covariate space
can be difficult

- Calibration is hard, especially in high-dimensions

 When overlap doesn’t hold, importance weights blow up
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Debiasing
e |dea: Correct plug-in estimator using the first-order error
y(P) — y(P) = Vy(P)(P — P) + Rem,

e Debiased estimator
w(P) — Vy(P)'(P — P)

e Automatically achieves second-order error Rem»,
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Debiasing

Outcome model u(X) := E[Y]|X,A = 1],
propensity score e*(X) := P(A = 1|X)

Debiasing gives doubly robust estimator

N A
E[Y(D)] =E ﬂl(X) +|]:D(A=1|X)( _/41( )

Propensity weight residuals to debias the direct method

Accurate if you can do either well; insensitive to errors in nuisance
estimates
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Debiasing

e Outcome model u(X) :=E[Y|X,A = 1],
propensity score  e*(X) := P(A = 1|X)

) IO, - .
CAlPW ©= 2 (i, (X) — fp(X)))
i=1

+1§n‘, AV, (X)) — —— (Y, — X))
n 2(X)) i — H1\4 1 — (X)) i — KMo\
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Control variate

e Control variate is a centered RV, such that if you want to estimate
E[Y], you estimate E[Y + V] instead

e You get a variance reduction whenever Var(V) — 2Cov(Y, V) < 0

VW'( Aj‘g(x) + ("t'(x)\ Wilx ‘)

) AT
= Ver _C%I;‘) + UL;—((I—- ec(,q) “l’(x)) +2&v (C'(x\ ) ‘”ﬁ;q)l‘“x))
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Control variate
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Control variate

lov (:r] , :464) [e.(,q (”,_.m) (x)]
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Control variate
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Nuisance parameters

e Outcome model u(X) := E[Y|X, A = a],
propensity score ¢*(X) := P(A = 1| X)

e |f a good parametric model exists, then can estimate at
the usual 1/4/n rates

* |n general, these are infinite dimensional objects. Can be
difficult to estimate.
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Semiparametrics

We only care about estimating the ATE

- One-dimensional estimand, infinite dimensional nuisance parameters

Estimation accuracy of nuisance parameters is good only
iInsofar as it helps with estimating the ATE

Due to its high-dimensional nature, often difficult to estimate
nuisances at parametric rates

Goal: semiparametric estimators that are insensitive to errors
IN nuisance estimates
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Doubly robust

 One main advantage of AIPW is that even if one of the
nuisance parameter models are misspecified, you can still
get correct asymptotic behavior

e Consistent estimator of the ATE so long as either outcome
models or propensity score can be estimated consistently
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Heuristic derivation

1 n
Elvi)——) 4
n =

(X)

X
)(ﬂ (X) — a(X))
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Orthogonality

* When is a semiparametric estimator insensitive to errors in
nuisance estimates?

e Directional derivative of functional wrt nuisance parameters
at true value is near-zero

 Ensures that a little perturbation in nuisance parameters
near the truth values does not affect functional
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Orthogonality

e Directional (Gateaux) derivative of functional w.r.t. nuisance
parameters around the true values y* = (uf, uf,e*, h*) IS Zero

Let ",z (M.mu c\ ke +#e ‘fuf(a st puisanee f"m‘"
k stAistical fandional  BY(0i7) Ne:(wm '”W

ml\*

-——" E"KP)’] + r("l“‘]‘» \ V(q eN

P=(x.Y. A M=Marc) [t
(%MM (Pim):= Mo (x) + -—)(‘r ~H() - (‘l‘"l‘ﬁ(x))]

40



Orthogonality
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Orthogonality
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Why orthogonality?

Allows getting central limit rates on ATE estimation even when
we can only estimate nuisance parameters at slower rates

In addition to no unobserved confounding,
e*(X), é(X) € [e,1 — €], we assume the following rate condition

A - n ~12
1e — e* |l polla; — ullpa + g — ullpa) = 0,(n~ ")

This allows us to trade-off errors between nuisance
parameters. Only their product needs to go down at this rate!
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Central limit result

e CLT for the semiparametric AIPW, even when nuisance estimates
converge at slower-than-parametric rates

l « A
\/E ;ZWAIPW(XZ', Y, A fgr 11,8) — 7 | = N(0,05 pw)
i=1

where UiIPW = Var (WAIPW (X, Y, A,//ldk, /’ll*a 6*) )

* This is the oracle asymptotic variance; when the true nuisance
parameters are known

* AIPW achieves optimal asymptotic efficiency
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Sketch of asymptotics

We we +he (f,.ﬂm.& lw»‘mzrﬁm
A7 ¥pe ) — EHom) = 92 toid ) Bt ;izb
tBp ¥ 1) — EY(o 1)

By e tioglc AT, B .© = Nlo,Bi) W Faop
Spﬂ'ﬁpﬁ"-@‘fa;“"\ﬂm J'—“®£9°'

B9145: Reliable Statistical Learning
Hongseok Namkoong

®

45



Sketch of asymptotics
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Cross-fitting

e |nstead of sample-splitting, we can alternate the role
of main and auxiliary samples over multiple splits

¥% data ¥% data ¥% data ¥% data ¥ data

[Chernozhukov '18]

(X))~ E[Y(a)| X =2x], a € {0,1}
e X)=P(A=1|X)

Cross-fitting

e Estimate nuisance parameters on the auxiliary sample



Cross-fitting

(@))

'.1% f ¥% data ¥% data ¥% data ¥ data ¥% data
N

g £

6§ % data

z 1zn: 1,(X) — fig(X)) + A (Y (X)) -4 (Y (X))
T = — ) — : — ) — —_ _

e Estimate ATE by plugging in nuisance estimates



Cross-fitting

[Chernozhukov '18]

Cross-fitting

¥% data ¥ data ¥% data Vs data Vs data

1 N N N N N
—( T1+72+T3+T4+75

e Same procedure for direct method, IPW

e Similar central limit result follows as before



Heterogeneous treatment effects

e Treatment effect often varies with user / patient / agent
characteristics (covariates)

 Example: Oregon Health Insurance Experiment

- Evaluate effect of Medicaid on low-income adults on emergency
department (ED) visits in 2008

- Precursory study to federal Medicaid expansion in 2014, which cost
$553 billion/year

- Insurance allows visits ED, but access to preventive care may also
reduce need of ED visits
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Oregon Health Insurance Experiment
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CATE

e To estimate personalized treatment effects, we want to
estimate the conditional average treatment effect (CATE)

o(X) == E[Y(1) = Y(0) | X]

* Few different ways to estimate this using black-box ML
models

* Again, key challenging is missing data

- We never observed counterfactuals
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S-Learner

Tt a ;in?ln,mdddz‘,mll ‘todmwd'csp)'l‘whs
T & (x.A)
rin E[ (= gany’]
Ten  Z(x):= B, ¥ —Flo, x)

e Shared feature representation, assuming similar model
class for both treatment and control
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T-Learner

& oo wded, 4 dedmad & anlzd
win  EL (-t (x)) lAfa]
o
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@
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e Can fit different models over treatment options
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Welfare attitudes experiment

e Evaluate effect of wording on survey results (“welfare”
vs “assistance to the poor”)

e Resoundingly positive treatment effects, but significant
heterogeneity across covariates
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X-Learner

Kunzel et al. (2018)

Regress on the imputed treatment effect Y(1) - Y(0)

Fit T-learner models and compute imputed treatment effects
Yi = loo(X) T A; = 1, fig (X)) = Y ifA; = O

Fit another set of models 7, 7, on the two category of
Imputed values, take

2X) = 2(X)2(X) + (1 = (X))E,(X)
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X-Learner

Kunzel et al. (2018)

e Usually, number of samples in treatment >> those in control

 Advantageous if CATE is much smoother than individual
outcome functions

Observed Outcome & First Stage Base Learners C  Individual Treatment Effects & CATE Estimators
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R-Learner
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R-Learner

Nie and Wager (2020)

éukhmdivj thig fmm (¥) , e amwe o
7-rn) = (A-€6))2x) +4
o it we f\f m, € o heldad J:Ih/

wl n NN 5‘0‘0'6
wn [ (-A 00 — (269 %09)* ]

O A

B9145: Reliable Statistical Learning
Hongseok Namkoong

59



