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Prediction and causality
• A central goal of ML is to predict an outcome given variables 

describing a situation

- Given patient characteristics, will their outcome improve?


• Most decision-making problems revolve around a decision / 
intervention / treatment

- What would happen if we changed the system?

- Given patient characteristics, will their outcome improve if they 

follow a new diet?


• We want to develop a scientific understanding of a decision

- If you predict housing demand based on price, then a prediction 

model will say high price means high demand

2
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Prediction and causality

• Causal inference is a multi-disciplinary field spanning 
across economics, epidemiology, and statistics


• Focus is on questions about counterfactuals

- What structure of data do we need to answer this question?

- How do we interpret the key estimands?


• ML models can predict outcomes; when can it predict 
counterfactuals?

- How can we leverage flexible ML models to infer causality?
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Potential outcomes

• Framework for explicitly modeling counterfactuals


• A: binary treatment assignment (1: treated, 0: control)


• Y(1) and Y(0) are potential outcomes


• X is observed covariates 

Problem: We only observe Y := Y(A)

First goal: Estimate average treatment effect
⌧ := E[Y (1)� Y (0)]
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• Randomization is sometimes infeasible or prohibitively 
expensive

- e.g. post-market drug surveillance, effect of air pollution on long-

term health outcomes


• Experimentation can be risky in high-stakes scenarios

- operational scenarios: new inventory policy for Amazon, new 

pricing algorithm for Uber


• May want to use existing large-scale data collected under 
some data-generating policy (e.g. legacy system)
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Observational studies
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• Historically, many important findings from observational 
data

- “citrus fruit curing scurvy described in the 1700s or insulin as a 

treatment for diabetes in the 1920s long preceded the advent of 
the modern randomized clinical trial.”


- “these methods had in common a reliable method of diagnosis, a 
predictable clinical course, and a large and obvious effect of the 
treatment.” [Corrigan-Curay et al. 2018]


• These results need to be contextualized and viewed with 
more skepticism than RCTs
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• Throughout we implicitly assumed there is only a single 
version of the treatment that gets applied to all treated units

- This may not be true if drugs go stale in storage, or dosages differ


• We also assumed there is no interference between units 
- Whether or not individual i is treated has no impact on the treatment 

effect of another individual j

- This can also fail in many real-world scenarios


• Together these assumptions are called stable unit treatment 
value assumption (SUTVA)
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• Any two-sided platform faces interference between units


• Consider the following scenario:

- Lyft A/B tests a new promotion strategy for drivers

- Each driver is randomized into treatment or control

- It is observed that drivers finish a lot more rides with the promotion

- So they decide this promotion is worth spending resources on


• But the estimate turned out to be an overestimate, not 
worth the cost of the promotion. Why?
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Interference
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• Both treated and control drivers see the same set of demand


• If promotion incentivizes treated drivers to work more for less 
nominal fares, this cannibalizes demand that would usually go to 
control drivers


• Interference occurs in a number of different settings

- Two-sided platforms: Airbnb, ridesharing, ad auctions

- Network effects: e.g. adoption of new education technology


• When this happens, the potential outcomes now depend on all 
possible  treatment assignments

- Very active area of research

2n
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• Previous regression-based direct method still works if there 
are no unobserved confounders (also called ignorability)


         Assumption.     


• Observed treatment assignments are based on covariate 
information alone (+ random noise)

- Treatment assignment does not use information about 

counterfactuals


• Strong assumption. Often violated in practice.

- e.g. doctors often use unrecorded info to prescribe treatments

Y(1), Y(0) ⊥ A ∣ X



B9145: Reliable Statistical Learning

Hongseok Namkoong

No unobserved confounding
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         Assumption.     


• Under no unobserved confounding, 
 




• Directly regress Y on X for treated units (Z=1) to get  

Y(1), Y(0) ⊥ A ∣ X

𝔼P[Y(1)] = 𝔼P[𝔼[Y(1) ∣ X]] = 𝔼[𝔼P[Y(1) ∣ X, Z = 1]]

𝔼 ̂P[Y ∣ X, Z = 1]
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• We need enough samples for both control and treatment 
throughout the covariate space

- This governs the effective sample size


• Propensity score  


• Assume that there exists  such that
 almost surely


• This means I have at least  number of samples for fitting 
the two outcome models

e⋆(X) := ℙ(A = 1 ∣ X)

ϵ > 0
ϵ ≤ e⋆(X) ≤ 1 − ϵ

ϵn
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Overlap
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• This breaks if data is generated by a deterministic policy

- e.g. always assign the drug (treatment) when age > 50


• We need sufficient amount of randomness in treatment 
assignment in all covariate regions


• Governs difficulty of estimation. Often violated in practice.
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Assessing overlap
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• “If the covariate distributions are similar, as they would be, in 
expectation, in the setting of a completely randomized experiment, 
there is less reason to be concerned about the sensitivity of 
estimates to the specific method chosen than if these distributions 
are substantially different.”


• “On the other hand, even if unconfoundedness holds, it may be 
that there are regions of the covariate space with relatively few 
treated units or relatively few control units, and, as a result, 
inferences for such regions rely largely on extrapolation and are 
therefore less credible than inferences for regions with substantial 
overlap in covariate distributions.”


• Imbens and Rubin
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Assessing overlap
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• Overlap governs effective sample size

- Even approaches that don’t require propensity weighting is affected 

under this fundamental restriction


• Causal inference literature has developed various 
“supplementary analysis” tools for assessing credibility of 
empirical claims


• One of the most common conventions is to plot the 
propensity scores of treated and control groups 
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Assessing overlap
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• Difference in covariate distributions between treatment and control 
group is summarized by the propensity score


• Let  be the density of  in the treatment group (similarly )


• Let 





                  

f1(X) X f0(X)

p := ℙ(A = 1)

Var(e⋆(X)) = p(1 − p)(𝔼 [e⋆(X) ∣ A = 1] − 𝔼 [e⋆(X) ∣ A = 0])

= p2(1 − p)2 ⋅ 𝔼 ( f1(X) − f0(X)
pf1(X) + (1 − p)f0(X) )

2
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Assessing overlap
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• A common visualization is to look at the pdf of the 
propensity score across treatment groups


• Plot approximates pdfs of the distribution 



• For each , plot fraction of observations in the 
treatment group with  (and similarly for control)

ℙ(e⋆(X) ∈ ⋅ ∣ A = a)

q ∈ (0,1)
e⋆(x) = q
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Assessing overlap
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• Athey, Levin, Seira (2011) studied timber auctions

- Award timber harvest contracts via first price sealed auction or open 

ascending auction


• Idaho: randomized with different probabilities across 
different regions


• California: determined by small vs. large sales volume; 
cutoff varies by region
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Idaho

19Slide by Susan Athey and Stefan Wager

Athey, Levin, Seira (2011)
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California

20Slide by Susan Athey and Stefan Wager

Athey, Levin, Seira (2011)



Estimators

21
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Direct method

22

• By no unobserved confounding,



               


• Fit  via the loss minimization problem

            


• ATE estimator 


• Good if the outcome models are easy to learn

μ⋆
a (X) := 𝔼[Y(a) ∣ X] = 𝔼[Y(a) ∣ X, A = a]

= 𝔼[Y ∣ X, A = a]

μ⋆
a (X)
minimizeμa∈𝔐a 𝔼[(Y − μa(X))2 ∣ A = a]

̂τDM :=
1
n

n

∑
i=1

̂μ1(Xi) − ̂μ0(Xi)

observable
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Inverse propensity weighting
• What if the outcome models are very complex and difficult to 

estimate?


• A natural approach is to reweight samples to correct for 
confounding bias

- Essentially importance sampling

- Reweight treated units to look like “everyone”


• First, estimate the propensity score 

- e.g. run logistic regression to predict A given X

e⋆(X) := ℙ(A = 1 ∣ X)

23
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Inverse propensity weighting

            


• Can work well if propensity score is simple to estimate


• But estimating this well over the entire covariate space 
can be difficult

- Calibration is hard, especially in high-dimensions


• When overlap doesn’t hold, importance weights blow up

̂τIPW :=
1
n

n

∑
i=1 ( Ai

̂e(Xi)
Yi −

1 − Ai

1 − ̂e(Xi)
Yi)

24
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Unbiasedness
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Estimating propensity score
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Inverse propensity weighting

• Can work well if propensity score is simple to estimate


• But estimating this well over the entire covariate space 
can be difficult

- Calibration is hard, especially in high-dimensions


• When overlap doesn’t hold, importance weights blow up

27
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Debiasing
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• Idea: Correct plug-in estimator using the first-order error


                                               


• Debiased estimator 
 
                                


• Automatically achieves second-order error 

ψ( ̂P) − ψ(P) = ∇ψ( ̂P)⊤( ̂P − P) + 𝖱𝖾𝗆2

ψ( ̂P) − ∇ψ( ̂P)⊤( ̂P − P)

𝖱𝖾𝗆2
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Debiasing
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• Outcome model    ,  
propensity score    


• Debiasing gives doubly robust estimator


           


• Propensity weight residuals to debias the direct method


• Accurate if you can do either well; insensitive to errors in nuisance 
estimates

μ⋆
1 (X) := 𝔼[Y |X, A = 1]

e⋆(X) := ℙ(A = 1 |X)

𝔼[Y(1)] = 𝔼 [ μ⋆
1 (X) +

A
ℙ(A = 1 ∣ X)

(Y − μ⋆
1 (X))]
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Debiasing

30

• Outcome model    ,  
propensity score    


  

μ⋆
1 (X) := 𝔼[Y |X, A = 1]

e⋆(X) := ℙ(A = 1 |X)

̂τAIPW :=
1
n

n

∑
i=1

( ̂μ1(Xi) − ̂μ0(Xi))

+
1
n

n

∑
i=1 ( Ai

̂e(Xi)
(Yi − ̂μ1(Xi)) −

1 − Ai

1 − ̂e(Xi)
(Yi − ̂μ0(Xi)))
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Control variate
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• Control variate is a centered RV, such that if you want to estimate 
E[Y], you estimate E[Y + V] instead


• You get a variance reduction whenever  Var(V ) − 2Cov(Y, V ) < 0
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Control variate
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Control variate
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Control variate
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Nuisance parameters
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• Outcome model ,  
propensity score 


• If a good parametric model exists, then can estimate at 
the usual  rates


• In general, these are infinite dimensional objects. Can be 
difficult to estimate.

μ⋆
a (X) := 𝔼[Y |X, A = a]

e⋆(X) := ℙ(A = 1 |X)

1/ n
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Semiparametrics
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• We only care about estimating the ATE

- One-dimensional estimand, infinite dimensional nuisance parameters


• Estimation accuracy of nuisance parameters is good only 
insofar as it helps with estimating the ATE


• Due to its high-dimensional nature, often difficult to estimate 
nuisances at parametric rates


• Goal: semiparametric estimators that are insensitive to errors 
in nuisance estimates
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Doubly robust
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• One main advantage of AIPW is that even if one of the 
nuisance parameter models are misspecified, you can still 
get correct asymptotic behavior


• Consistent estimator of the ATE so long as either outcome 
models or propensity score can be estimated consistently



B9145: Reliable Statistical Learning

Hongseok Namkoong

Heuristic derivation
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𝔼 [Y(1) −
1
n

n

∑
i=1

̂μ1(Xi) +
Ai

̂e(Xi)
(Yi − ̂μ1(Xi))]

= 𝔼 (1 −
e⋆(X)

̂e(X) )(μ⋆
1 (X) − ̂μ(X))
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Orthogonality
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• When is a semiparametric estimator insensitive to errors in 
nuisance estimates?


• Directional derivative of functional wrt nuisance parameters 
at true value is near-zero


• Ensures that a little perturbation in nuisance parameters 
near the truth values does not affect functional



B9145: Reliable Statistical Learning

Hongseok Namkoong

Orthogonality
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• Directional (Gateaux) derivative of functional w.r.t. nuisance 
parameters around the true values  is zero            γ⋆ = (μ⋆

1 , μ⋆
0 , e⋆, h⋆)
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Orthogonality

41
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Orthogonality
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Why orthogonality?

43

• Allows getting central limit rates on ATE estimation even when 
we can only estimate nuisance parameters at slower rates


• In addition to no unobserved confounding, 
, we assume the following rate condition


    


• This allows us to trade-off errors between nuisance 
parameters. Only their product needs to go down at this rate!

e⋆(X), ̂e(X) ∈ [ϵ,1 − ϵ]

∥ ̂e − e⋆∥P,2(∥ ̂μ1 − μ⋆
1 ∥P,2 + ∥ ̂μ0 − μ⋆

0 ∥P,2) = op(n−1/2)
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Central limit result
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• CLT for the semiparametric AIPW, even when nuisance estimates 
converge at slower-than-parametric rates




where 


• This is the oracle asymptotic variance; when the true nuisance 
parameters are known


• AIPW achieves optimal asymptotic efficiency

n ( 1
n

n

∑
i=1

ψAIPW(Xi, Yi, Ai; ̂μ0, ̂μ1, ̂e) − τ) ⇒ N(0,σ2
AIPW)

σ2
AIPW := Var (ψAIPW (X, Y, A; μ⋆

0 , μ⋆
1 , e⋆))
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Sketch of asymptotics
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Sketch of asymptotics
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• Estimate nuisance parameters on the auxiliary sample

bµa(X) ⇡ E[Y (a) | X = x], a 2 {0, 1}

<latexit sha1_base64="sbl33p7RvlhWrMlbBwKJ4jXDkzI="></latexit>

be(X) ⇡ P(A = 1 | X)

<latexit sha1_base64="ff4lhMfrCUviHTiZTrpAYnc3lO8="></latexit>

• Instead of sample-splitting, we can alternate the role 
of main and auxiliary samples over multiple splits

Cross-fitting
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• Estimate ATE by plugging in nuisance estimates

̂τ1 :=
1
n

n

∑
i=1

̂μ1(Xi) − ̂μ0(Xi) +
Ai

̂e(Xi)
(Y − μ1(Xi)) −

1 − Ai

1 − ̂e(Xi)
(Y − μ0(Xi))

Cross-fitting
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̂τ =
1
5 ( )̂τ1 + ̂τ2 + ̂τ3 + ̂τ4 + ̂τ5

• Same procedure for direct method, IPW


• Similar central limit result follows as before

Cross-fitting
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Heterogeneous treatment effects
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• Treatment effect often varies with user / patient / agent 
characteristics (covariates)


• Example: Oregon Health Insurance Experiment

- Evaluate effect of Medicaid on low-income adults on emergency 

department (ED) visits in 2008

- Precursory study to federal Medicaid expansion in 2014, which cost 

$553 billion/year

- Insurance allows visits ED, but access to preventive care may also 

reduce need of ED visits
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Oregon Health Insurance Experiment
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CATE

• To estimate personalized treatment effects, we want to 
estimate the conditional average treatment effect (CATE) 

                       


• Few different ways to estimate this using black-box ML 
models


• Again, key challenging is missing data


- We never observed counterfactuals

τ(X) := 𝔼[Y(1) − Y(0) ∣ X]

52
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S-Learner
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• Shared feature representation, assuming similar model 
class for both treatment and control
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T-Learner
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• Can fit different models over treatment options
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• Evaluate effect of wording on survey results (“welfare” 
vs “assistance to the poor”)


• Resoundingly positive treatment effects, but significant 
heterogeneity across covariates

Welfare attitudes experiment



B9145: Reliable Statistical Learning

Hongseok Namkoong

X-Learner
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• Regress on the imputed treatment effect Y(1) - Y(0)


• Fit T-learner models and compute imputed treatment effects


     if ,  if 


• Fit another set of models  on the two category of 
imputed values, take


                   

Yi − ̂μθ,0(Xi) Ai = 1 ̂μθ,1(Xi) − Yi Ai = 0

̂τ1, ̂τ0

̂τ(X) := ̂e(X) ̂τ0(X) + (1 − ̂e(X)) ̂τ1(X)

Kunzel et al. (2018)
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X-Learner
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• Usually, number of samples in treatment >> those in control


• Advantageous if CATE is much smoother than individual 
outcome functions

Kunzel et al. (2018)
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R-Learner
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Nie and Wager (2020)



B9145: Reliable Statistical Learning

Hongseok Namkoong

R-Learner
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Nie and Wager (2020)


