Potential outcomes

e A feature vector X € RX e A treatment assignment A € {0,1}

e Potential outcomes: Y(1), Y(0) < Observe Y := Y(A), never Y(1 — A)

Average Treatment Effect (ATE)
ATE = E[Y(]1) — Y(0)]

Conditional Average
Treatment Effect

= Ey.p, |[E[Y(1)|X] — E[¥(0) |X]]

= [EXNPX (X) ﬂg((X)] XNP [ﬂ*(X)]

Py is the data generating distribution for X



Problem |: population shifts

a.k.a. X-shift, covariate shit



Problem I: what if P, changes?

e Even for carefully designed randomized trials, “statistics” starts only
at treatment assignment, with big biases in selection into study

Distribution of log-district size in studies versus total population
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[Tipton et al. 2019] The convenience of large urban school districts: a study of recruitment practices in 37 randomized trials



Problem I: what if P, changes?

[ ] “C“n'Cal 'tr|a|s for new drugs skew heavily white” [Oh et al. *15, Burchard et al. '15,

SA Editors '18]

— Out of 10,000+ cancer trials, less than 5% of participants were non-white

e Even large clinical trials suffer from these biases. Recently, two
large trials with n = 5K-10K had opposite findings on a treatment to
lower blood pressure on cardiovascular disease [eonzta. 16 maieta. 13 Gisverto ot al. 15, Basu etal. 17



Problem ll: unobserved confounders

a.k.a. Y | X shift



Unobserved confounders

e There always exists unobserved confounders that simultaneously affect
potential outcomes and treatment assignments

Judges are more lenient after taking a
break, study finds parsiger 1)

Overlooked factors in the analysis of parole
deCiSionS [Weinshall-Margel '11]

* \Visual observations used in clinical decisions and drugs preferentially
prescribed those who can tolerate them

- Not properly recorded even at the resolution of large databases



Worst-case approach

Posit a set of “plausible” distribution shifts, and take worst-case over them
If effects are still valid under plausible shifts, we can certify robustness
Sensitivity of a finding: magnitude of shift when endpoint crosses a threshold

Today: worst-case bounds on the Doubly Robust estimator

< Population-level worst-case bound
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Worst-case approach

Posit a set of “plausible” distribution shifts, and take worst-case over them

If effects are still valid under plausible shifts, we can certify robustness

Sensitivity of a finding: magnitude of shift when endpoint crosses a threshold

Today: worst-case bounds on the Doubly Robust estimator

Is this a “sensible” amount of
distribution shift / violation?



Part |: External validity

a.k.a. X-shift, covariate shit



Challenges

Effect of Medicaid enrollment

e X-shift problematic when treatment _ nrolir
on doctor’s office utilization

effect is heterogeneous

- Healthcare: across demographics, 02
comorbidities, and concomitant drugs o1
* Option 1: Directly estimate conditional 5N ?
average treatment affect (CATE)? I3
- ML models unstable on underrepresented n o1
groups; resulting inference underpowered o
e Option 2: Subgroup analysis?
hispanic V

- Difficult due to intersectionality e tire v
college+ X

<<<

[Leigh et al. ’16, Imai et al. ‘13, Gijsberts et al. ’15, Basu et al. ’17, Baum et al. ’17, Duan et al. ’19, Nie and Wager ’20]



Subpopulations

Automatically find worst-off subpopulations
and measure treatment effect on them

dproportion a € (0, 1], prob. ()

() x is a subpopulation ¢==p st. Px() = aOx + (1 — a)0's
Q'
Qx
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Subpopulations

Automatically find worst-off subpopulations
and measure treatment effect on them

dproportion a € (0, 1], prob. ()
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Recap

Worst-case subpopulation . cotex

» Treatment assignment: A

» Potential outcome: Y(0), Y(1)

. , - » Response Y := Y(Z)
o = subpopulation with proportion
Qx = « larger than o € (0, 1]

Worst-case Subpopulation Treatment Effect

WTE,, = sup Eo, [ (X)]
Qxzo

where ,LL*(X) — E[Y(l) - Y(O) | X]

is the conditional average treatment effect (CATE).




Recap

WTE = Tail-average .

» Treatment assignment: A

Potential outcome: Y(0), Y(1)
CATE u*(X) = E[Y(1) — Y(0) | X]

Covariates: X

( ) (1 — a)-quantile

Lemma (Shapiro et al.‘09) / of u*(X)
sup Bo ()] = B0 | 400 2 g




e Use any ML method to fit #*(X) = E[Y|X,A = 1] — E[Y|X,A = 0]

e Debiasing: Correct plug-in estimator using the first-order error

Main Resulit w(p*) == sup Eg, |[p"(X)]

Qx =«

o(f) — o(*) = Vo(@)' (2 — p*) + Rem

» Debiased estimator automatically only has second-order error

\_

-
Theorem (Jeong & N.’20)

|. Even when nuisance parameters converge more slowly,

V1 — w) = N0,6%)

2. ¢ is the optimal asymptotic variance

~




Effect of Medicaid on doctor visits over time

¢ Evaluate effect of Medicaid enrollment on doctors’ office utilization
e Medicaid costs $553 billion/yr; need to ensure valid effects through time
e OQutcome: visit to doctors in the two-weeks prior to a random survey date

e Control for demographics, medical history, employment, earnings,
insurance, government assistance etc (d = 396)

¢ Take the viewpoint of an analyst in 2009 (n = 82,993)



Demographic compositions shift over time

Change in share from 2009
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Effect of Medicaid on doctor visits over time

e Evaluate effect of Medicaid enrollment on doctors’ office utilization in 2009

ATE
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Effect of Medicaid on doctor visits over time

e Evaluate effect of effect of Medicaid enrollment on doctors’ office utilization

treatment effect
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e Evaluate effect of effect of Medicaid enrollment on doctors’ office utilization

Effect of Medicaid on doctor visits over time

Change in share from 2009

ue

© g’

treatment effect

0.15

0.10

0.05

0.00;

—0.05 1

—0.10

® True
False
s}
+ N +
+¢
\C o X
\‘\’\S\Da“ S A0 Y S Az C()\\ec)e
ed \© O




Part ll: unobserved confounders
a.k.a. Y | X shift



Bounded unobserved confounding

e What if there's a hidden variable U that wasn't observed?

l _ @
e.g. partial knowledge of “
counterfactuals Ya @

Relaxed assumption: Bounded unobserved confounding
There exists ' > 1, and U such that Y(1),Y(0) L A | X, U,

PA=1|X,U=u)
u —
PA=0|X,U=u)

can vary by at most a factor of I rosenaun 02




Bounded unobserved confounding

(

Relaxed assumption: Bounded unobserved confounding

There exists ' > 1, and U such that Y(1),Y(0) L A | X, U,

PA=1|X,U=u)
U can vary by at most a factor of I osenvaum 02
PA=0|X,U=u)

~

e Equivalent to a logit model: for some function x( - ) € [0,1], g( -),
PA=1|X,U)

log
PA=0]|X,U)

=g(X)+logI' - k(X, U)



FAQs

Relaxed assumption: Bounded unobserved confounding

There exists ' > 1, and U such that Y(1),Y(0) L A | X, U,

PA=1|X,U=u)
U can vary by at most a factor of I osenvaum 0
PA=0|X,U=u)

e How do | choose ™
= Domain expertise (e.g. clinical intuition)

=) Sensitivity: what would be a clinically significant result? what value of I" would
change its significance?

¢ |s this the only natural confounding model?
= No. Today: modern semiparametric framework.




Recap
» Treatment assignment: A
Lower bound fOf [E [Y( 1) ‘ X] » Potential outcome: Y(0), Y(1)
» Response Y := Y(Z)
unobservable

 Lower bound unobservables under I -bounded unobserved confounding

F[Y(1) | X,A = 0] = E[YL(Y|X) | X,A = 1]

dP(Y() € - | X,A=1)

observable L(-]|X):=
dP(Y(1) € - | X,A = 0)

[ Lemma Under I'-confounding, y = L(y|x) can vary by at most a factor of I" 1

e Minimizing over the above set of likelihood ratios,

E[Y(1) | X,A=0]2> inf E[YLY|X) | X,A = 1] =: 6(X) Bound is tight
LeZ,



Recap
» Treatment assignment: Z

COnveX Duahty » Potential outcome: Y(0), Y(1)

» Response Y := Y(Z)

[ Lemma Under I'-confounding, y = L(y|x) can vary by at most a factor of I" 1

e Minimizing over the above set of likelihood ratios,

E[Y(1) | X,A=0] > inf E[YL(Y|X)|X,A=1]=:0*(X)  Boundis tight

LeZ,

e One-dimensional dual for each X

[ Lemma 0 (X) = sup {u : E[(Y()) —p), —-TX (1) —p)_ | X,A=1] > 0} J




What can ML do?

* Tremendous empirical success is curve-fitting tools in high-
dimensions, under noisy data

» Key ingredients: stochastic optimization & model selection

Weighted squared loss
r(G:y) = (= 01+ Ty - )2




Sensitivity of CATE via loss minimization

« E[Y(1) | X,A = 0] 2 6;(X) = sup { : E[(Y(1) = p), —T(¥(1) = p)_ | X,A = 1] >0}

[ Main result |: 91* is the unique solution to minimizey., E[Z(O(X); Y(1)) |A = 1]}

Weighted squared
loss e Estimate lower bound using flexible ML models

» Solve weighted regression problem using any
black-box ML approach

e .., random forests, boosted trees, NNs




Recap

Lower bound for |E [Y( 1 )] : lff‘!&‘&i?iifiﬁ:ﬁeé‘iaf Y(1)

» Response Y := Y(Z)

e Similarly as before, we derive a debiased estimator for
ur = E[AY(D) + (1 = A)FF(X)] < E[Y(1)]

e Bounds the doubly robust estimator for the ATE; equal whenI = 1

«Value of prediction: DR estimator close to worst-case bound y; (a.k.a.
robust to confounding) when residuals ¥ — 6,(X) are small

4 )

Theorem Even when ML-based nuisance estimators converge at slower rates,
~— — 2
V(i = pp) = N(0,6%)




Sepsis management in the ICU

e Sepsis in ICU patients accounts for 1/3 of deaths in hospitalS e s oms

 Automated approaches can manage important medication for sepsis

[Futoma ’18; Komorowski 18; Raghu 17]

e |CU data suffers from unobserved confounders

* ED physician: “initial treatment of antibiotics at admission to the
hospital are often confounded by unrecorded factors that affect the
eventual outcome (death or discharge from the ICU).”



Proof of concept

* Whether to quickly begin antibiotic treatment is a topic of much discussion:
balance early treatment vs. risks of over-prescription seymour *17; sterling *15]

* Two policies: with or without antibiotics in the first step

e We use simulator developed by Obserst and Sontag (2019)

Cumulative Reward

Design Sensitivity, Ours

0.4
0.3
0.2
0.1
0.0
—0.1]

—— With Antibiotics  —"

—-—- Without Antibiotics

1 2 3 4 5 6
Level of confounding (I)

Our approach allows certifying
robustness under realistic
values of confounding



Summary

* Worst-case bounds on the causal effect estimated through ML models

e Debiasing: CLT even when nuisance estimates converge slower; optimal

e Guard against brittle findings that do not hold under distribution shift

Assessing External Validity Over Worst-case Subpopulations.

Jeong & N. Under review. Short version appeared in COLT 2020.

Bounds on the conditional and average treatment effect with unobserved confounding factors.
Yadlowsky, N., Basu, Duchi, and Tian. Annals of Statistics, 2022.

Off-policy policy evaluation for sequential decisions under unobserved confounding.

N., Keramati, Yadlowsky, and Brunskill. NeurlPS 2020.



