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1 Introduction

In this lecture note we discuss the basics of targeted maximum likelihood estimator (TMLE). The note is based on

Van der Laan et al. (2011); Kennedy (2022) and the Machine-Learning and Causality reading group1 at Columbia

University. TMLE is a nonparametric method that a researcher can use to answer queries that take as an input

observational data from an unknown distribution. An important application is in causal inference where, under

the additional assumptions of a Structural Causal Model causal queries from observational data can be answered.

This is specially important in settings where experimental studies are expensive/not expensive and structural

assumptions on the data generating process are likely to be wrong.

2 Notation and Basic Definitions

We have iid copies of the random variable denoted by D = {X,A, Y } ∼ P0. {Di}ni=1 is our data. The true

distribution P0 is unknown. We assume a statistical model M. We also assume that P0 ∈ M. One could also

impose a structure in the statistical model by defining M = {Pθ : θ ∈ Θ} where θ itself is infinite dimensional.

We are interested in evaluating a target parameter (a functional) ψ under the true distribution. I.e., for

ψ : M → Rd we want to compute ψ0 ≜ ψ(P0). For concreteness, we focus in the case where treatments are binary,

and we want to compute

ψ0 = EX,0[E0[Y |A = 1, X]− E0[Y |A = 0, X]],

where the expectation is under the true distribution P0. We will see examples in which Y is binary, and continuous

and bounded. Recall our nontestable causal assumption (ignorability). We have that

E0[Y (1)− Y (0)]
(a)
= EX,0[E0[Y (1)− Y (0)|X]]

= E0[E0[Y (1)|X]− E0[Y (0)|X]]

(b)
= E0[E0[Y (1)|X,A = 1]− E0[Y (0)|X,A = 0]]

= E0[E0[Y |X,A = 1]− E0[Y |X,A = 0]]

= ψ0,

1Special thanks to Judy Gan and Tiffany Cai.
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where (a) follows from the tower property and (b) from ignorability. Hence, under causal assumptions, TMLE help

us to actually answer the causal query: Average Treatment Effect (ATE). As before, we use the notation

µ(A = 1, X) = E0[Y |A = 1, X], µ(A = 0, X) = E0[Y |A = 0, X],

we also denote by PX,0 the marginal distribution of X under P0. Note that is enough for us to know only

Q0 = (µ, PX,0),

in order to compute ψ(P0). Since we focus only on learning Q0 instead of the whole P0, we denote it as our target,

and TMLE is a methodological procedure that will allow us to move from an initial estimator Q̂n
2 of Q0 to a

targeted one that is closer to Q0 that we denote by Q⋆n.

3 Debiasing

Suppose our target parameter (functional) ψ satisfy the following expansion for two distributions P̄ and P :

ψ(P̄ )− ψ(P ) =

∫
∇ψ(P̄ )d(P̄ − P ) +R2(P̄ , P )

which is referred to as Von Mises expansion and∇ψ(P ) is a square integrable function with zero mean and R2(P̄ , P )

is a second order term. You can think of it as being a Taylor expansion of ψ and ∇ψ being the derivative of ψ,

which is commonly referred to as the Efficient Influence Function/Curve (IF/IC) of ψ or pathwise derivative of ψ.

Other common notations for the IF are ϕ or ψ̇.

Example 1. Let ψ(P ) = E[Y |A = 1, X]. Then, the Influence Function of ψ is given by

∇ψ(P )(Y,A,X) =
I(A = 1)

e(A = 1|X)
(Y − µ(1, X)) + µ(1, X)− ψ(P ).

This expansion is very powerful, and allows us to characterize the bias of a plug-in estimator based on some

initial estimator P̂n. We have that

ψ(P̂n)− ψ(P0) =

∫
∇ψ(P̂n)d(P̂n − P0) +R2(P̂n, P0)

=

∫
∇ψ(P̂n)dP̂n −

∫
∇ψ(P̂n)dP0 +R2(P̂n, P0)

= −
∫

∇ψ(P̂n)dP0 +R2(P̂n, P0),

where the last inequality follows from the fact that ∇ψ is zero mean. Suppose now that we have access to another

sample independent of P̂n that we denote by Pn2
. Since the RHS is just an expectation, we can “pretend” that

ψ(P̂n) +

∫
∇ψ(P̂n)dP0 ≈ ψ(P̂n) +

1

n2

∑
i

∇ψ(P̂n)(Di),

2We use the subscript n to show the dependence of the sample size.
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which is an unbiased plug-in estimator, and 1
n

∑
i∇ψ(P̂n)(Di) is the unbiasing term.

3.1 AIPW

Now we show how to debias a naive plug-in estimator using the Von Mises expansion. As we will see shortly, this

leads to the AIPW (doubly-robust and assymptotically optimal) estimator. We start by solving

µP̂n
= argmin

µ

1

n

∑
i

(Yi − µ(Ai, Xi))
2,

and the naive plug-in estimator is simply

ψ(P̂n) =
1

n

∑
i

µ(1, Xi)− µ(0, Xi),

which is likely to be biased. Next, we compute on a different sample n2,
1
n2

∑
i∇ψ(P̂n)(Di), and summing both

terms we get:

ψ(P̂n) +
1

n2

∑
i

∇ψ(P̂n)(Di) = ψ(P̂n)−
1

n2

∑
i

ψ(P̂n) +
1

n2

∑
i

(µ̂(1, Xi)− µ̂(0, Xi))

+
1

n2

∑
i

(
I(Ai = 1)

eP̂n
(Ai = 1|Xi)

− I(Ai = 0)

eP̂n
(Ai = 0|Xi)

)
(Yi − µ̂(Ai, Xi))

which is precisely AIPW when we use a two split procedure. Note that it can be interpreted as a standard plug-in

estimator plus a first order correction term.

3.2 TMLE

At the heart of TMLE, just like in the debiasing procedure described before, is the efficent influence function.

Recall that the IF for the ATE under binary treatment is given by

∇ψ(Q0)(Y,A,X) =

(
I(A = 1)

e0(A = 1|X)
− I(A = 0)

e0(A = 0|X)

)
(Y − µ(A,X)) + µ(1, X)− µ(0, X)− ψ(Q0).

Let Q̂n = (µ̂, Q̂X) be our initial estimator for our region of interest of P0. Define a loss function L such

that E0[L(Q)] is minimized at Q0 (the relevant part of the true distribution). As an example, one could take

L(P ) = − logP (in this case, E0[L(P )] is minimized at P0). Next, Recall that for any P ∈ M, we can define a

parametric submodel {P (ϵ) : ϵ} so that P (0) = P . Therefore, we can take our initial estimator for relevant part

of P0 and define {Q̂n(ϵ)} with Q̂n(0) = Q̂n. Until now there is nothing really important going on. Here is the

smart part: We also want that our parametric submodel have the property that d
dϵL(Q̂n(ϵ)) (the score) evaluated

at ϵ = 0 matches the influence function evaluated at Q̂n.

Why is this powerful? Because then we can solve the optimization problem ϵ⋆ = argminϵ L(Q̂n(ϵ)) and ensure

that for Q̂n(ϵ
⋆), En[∇ψ(Q0)] = 0, i.e., in the empirical measure, Q̂n(ϵ

⋆) is already debiased. Next, we give two

examples in how to define a parametric submodel applies the procedure described above and allow us to debias our
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estimator for the ATE efficiently. It will be useful to define the notation

H⋆(A,X) =

(
I(A = 1)

ê(A = 1|X)
− I(A = 0)

ê(A = 0|X)

)
.

The function H⋆ is sometimes refereed to as the clever covariate.

On the P0 factorization. We want to build parametric submodels such that their scores spans the efficient IF.

We can write

∇ψ(Q0)(Y,A,X) =

(
I(A = 1)

e0(A = 1|X)

)
(Y − µ(1, X)) + µ(1, X)− ψ(Q0) = D⋆

Y +D⋆
W .

for D⋆
Y =

(
I(A=1)

e0(A=1|X)

)
(Y − µ(1, X)) and D⋆

X = µ(1, X) − ψ(Q0). However, in the discussion above we presented

how to construct a submodel to deal with D⋆
Y only. Why we do not worry about updating D⋆

X also?

Note that for D⋆
X , one could define the parametric submodel given by:

dP (ϵ) = dP (1 + ϵf(X)),

for f(X) = µ(1, X)−ψ(Q0). This is a mean zero function, moreover, for L(P (ϵ)) given by the negative log likelihood

function, we get that d
dϵ log dP (ϵ) =

µ(1,X)−ψ(Q0)
1+ϵ(µ(1,X)−ψ(Q0))

, which matches D⋆
X when evaluated at ϵ = 0, satisfying all

the requirements for the TMLE procedure. Moreover, when optimizing L(P (ϵ)), with respect to ϵ, we get from the

FOC that ϵ = 0, which is due to the fact that the empirical measure already minimizes the negative log likelihood

on the observed data.

Example 2. Suppose Y continuous, bounded and A ∈ {0, 1} We define L(Q)(O) ≜ (Y −µ(A,X))2. Next we define

our parametric submodel. Since Q̂X is simply the nonparametric estimator for the marginal distribution of X, it

is already assymptotically optimal. We would like to “debias” µ̂. We define the parametric submodel for µ as

µn(ϵ)(A,X) = µ̂(A,X) + ϵH⋆(A,X).

Then,

d

dϵ
L(µn(ϵ

⋆)) = −2(Y − µ̂(A,X)− ϵ⋆H⋆(A,X))H⋆(A,X)

=

(
I(A = 1)

ê(A = 1|X)
− I(A = 0)

ê(A = 0|X)

)
(Y − µ̂⋆(A,X))

= 0,

where the last equality follows from defining µ⋆(A,X) ≜ µ̂(A,X) + ϵ⋆H⋆(A,X).

Therefore, we can debias a initial estimator by solving an one-dimensional optimalization problem to find ϵ⋆,

and update our initial estimator. Note that the FOC for the optimazation problem that we solve for ϵ, already

implies that µ⋆ is unbiased since it “solves” for the relevant part of the IF.

Next we provide an example in which the outcomes are binary and we use a different loss function to define our

submodel.
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Example 3. Suppose Y ∈ {0, 1} and A ∈ {0, 1}. We define L(Q)(O) ≜ − logµ(A,X)Y (1− µ(A,X))1−Y , i.e., we

take the (minus) of the log-likelihood function for the negative binomial. Next we define our parametric submodel.

Since Q̂X is simply the nonparametric estimator for the marginal distribution of X, it is already assymptotically

optimal. We would like to “debias” µ̂. We define our submodel as

logit µn(ϵ)(A,X) = logit µ̂(A,X) + ϵH⋆(A,X),

Then, since the score of a logistic regression parameter is the error times the covariate (add reference), we have

that
d

dϵ
L(µn(ϵ)) = (Y − µ̂(A,X))H⋆(A,X) =

(
I(A = 1)

ê(A = 1|X)
− I(A = 0)

ê(A = 0|X)

)
(Y − µ̂(A,X)),

which is precisely the part of the influence function that depends on µ.

There are advantages in using exactly the same procedure in Example 3 for bounded continuous outcomes in

order to force the target to satisfy also global constraints of P0. We refer to Chapter 7 Van der Laan et al. (2011).

3.3 Algorithmic Procedure for TMLE

We now describe the algorithmic procedure of TMLE.

• Split data in two samples of size n1 and n2;

• With first sample, find the initial model:

µP̂n1
= argmin

µ

1

n1

∑
i

(Yi − µ(Ai, Xi))
2;

• With the second sample, solve for the parametric submodel using some proposal function L (here we use L2):

ϵ⋆ = argmin
1

n2

n∑
i=1

(
Yi − µP̂n1

(Ai, Xi)− ϵH⋆(Ai, Xi)
)2

;

• Compute the target step µ⋆ = µP̂n1
+ ϵ⋆H⋆

• With the second sample, compute the plug-in estimator

1

n2

∑
i

ψ(Q⋆n1
) =

1

n2

∑
i

(
µ⋆(1, Xi)− µ⋆(0, Xi)

)
;

• Compute asymptotic valid confidence intervals: For each i in n2 calculate

IF (Di) = (µ̂(1, Xi)− µ̂(0, Xi)) +

(
I(Ai = 1)

eP̂n
(Ai = 1|Xi)

− I(Ai = 0)

eP̂n
(Ai = 0|Xi)

)
(Yi − µ̂(Ai, Xi))− ψ(Di).

Then,

σtmle =

√
1

n2

∑
i

IF 2(Di).
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Why TMLE?

• Plug-in estimator

• Stable: estimator do not blow up

• Flexible approach to leverage ML methods to answer causal queries

• Minimal assumptions

• Asymptotically efficient
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