
B9145: Problem Set 1

Due: Feb 17, 11:59pm

Carefully follow submission instructions announced on Canvas.

Question 1.1 (Tail bound for sub-Gaussian RVs and Lasso): For a class of functions H ⊂ {h :
Z → R}, recall the definition of (empirical) Rademacher complexity

Rn(H) := E

[
sup
h∈H

1

n

n∑
i=1

εih(Zi) | Z1, . . . , Zn

]
,

where εi’s are i.i.d. random signs (Rademacher variables), independent of everything else.

(a) Let Xj be sub-Gaussian random variables with parameter c2
j for j = 1, . . . , N . Show that for

any N ≥ 3,
E[ max

1≤j≤N
Xj ] ≤ max

1≤j≤N
cj ·
√

2 logN.

(b) For any finite H, show that Rn(H) ≤
(
suph∈H

1
n

∑n
i=1 h(Zi)

2
) 1

2

√
2 log |H|

n .

(c) Consider L1-regularized linear models Hs := {z 7→ θ>z : ‖θ‖1 ≤ s}. Assume there exists
C∞ > 0 such that ‖Z‖∞ ≤ C∞ almost surely. Derive the following scale-sensitive bound

Rn(Hs) ≤ sC∞

√
2 log(2d)

n
.

Hint For finite G, Rn(G) = Rn(convex-hull(G)).

Question 1.2 (Two-layer neural networks): Consider a neural network with two layers and
activation function a : R→ R. Let Z ∈ Rd be an input vector with ‖Z‖2 ≤ R2 almost surely, and
let a : R→ R be a 1-Lipschitz activation function with a(0) = 0. For example, the rectified linear
unit (ReLU) a(x) := max(x, 0), or hyperbolic tangent a(x) := tanh(x) are common choices that
satisfy this condition.

Let m be the number of hidden units in the two-layer neural network. We denote by wj ∈ Rd
the weights of the first layer connecting to the j-th hidden unit, for j = 1, . . . ,m, and use v ∈ Rm
to denote the weights of the second layer. Consider L2-regularized two-layer neural networks

H :=

z 7→
m∑
j=1

vja(w>j z) : ‖v‖2 ≤ C2,v, and ‖wj‖2 ≤ C2,w for all j = 1, . . . ,m

 .

Show the scale-sensitive bound Rn(H) ≤ 2R2C2,vC2,w

√
m
n .
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Hint Use the contraction principle: for a 1-Lipschitz function a : R→ R with a(0) = 0,

E

[
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

εia(h(Zi))

∣∣∣∣∣ | Z1, . . . , Zn

]
≤ 2E

[
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

εih(Zi)

∣∣∣∣∣ | Z1, . . . , Zn

]
.

Question 1.3 (Fast rates under curvature): In this problem, we will show losses with curvature
achieves faster rates of convergence. To do this, we study a localized Rademacher process around
the population optimum.

Let Θ ⊂ Rd be a compact, convex set, and let `(·; z) : Rd → R be a convex function for P -
almost surely all z. We assume that the population optimum θ? = argminθ∈Θ E[`(θ;Z)] is unique.
Consider Lipschitz losses (in some norm ‖·‖) that grow sufficiently fast near the optimum: for
constants r, c, L > 0, and all θ, θ′ satisfying ‖θ − θ?‖ ≤ r, ‖θ′ − θ?‖ ≤ r,∣∣`(θ; z)− `(θ′; z)∣∣ ≤ L∥∥θ − θ′∥∥ for P -almost surely all z,

and E[`(θ;Z)] ≥ E[`(θ?;Z)] +
c

2
‖θ − θ?‖2 .

(e.g. think about a linear regression problem with bounded data.)
Define the set of empirical and population approximate optimizers

Ŝε :=

{
θ ∈ Θ :

1

n

n∑
i=1

`(θ;Zi) ≤ inf
θ′∈Θ

1

n

n∑
i=1

`(θ′;Zi) + ε

}

Sε :=

{
θ ∈ Θ : E[`(θ;Z)] ≤ inf

θ′∈Θ
E[`(θ′;Z)] + ε

}
.

Let 0 < ε ≤ cr2/4 in the following.

(a) Argue that Ŝε 6⊆ S2ε implies

sup
θ∈S2ε

{
E[`(θ;Z)− `(θ?;Z)]− 1

n

n∑
i=1

(`(θ;Zi)− `(θ?;Zi))

}
≥ ε.

Hint Construct a θ ∈ Θ with E[`(θ;Z)] = E[`(θ?;Z)]+2ε, 1
n

∑n
i=1 `(θ;Zi) ≤

1
n

∑n
i=1 `(θ

?;Zi)+ε.

(b) Using results from class, prove that with probability at least 1− e−t,

sup
θ∈S2ε

{
E[`(θ;Z)− `(θ?;Z)]− 1

n

n∑
i=1

(`(θ;Zi)− `(θ?;Zi))

}

≤ 2E

[
sup
θ∈S2ε

1

n

n∑
i=1

εi (`(θ;Zi)− `(θ?;Zi))

]
+ 2L

√
2tε

cn
.

(c) Show the following: for some numerical constant C > 0,

E

[
sup
θ∈S2ε

1

n

n∑
i=1

εi (`(θ;Zi)− `(θ?;Zi)) | Z1, . . . , Zn

]
≤ CL

√
dε

cn
.

(You don’t need to find the constant.)

(d) Conclude that for a numerical constant C > 0 (which may differ from the one above), setting

εt = CL2 d+t
cn yields P

(
Ŝεt 6⊆ S2εt

)
≤ e−t.
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