
B9145: Problem Set 2

Due: Mar 23, 11:59pm

Carefully follow submission instructions announced on Canvas.

Question 2.1 (Minimax bounds for estimation (10 points)): We derive information theoretic
lower bounds for statistical estimation problems, analogous to those for stochastic optimization
we saw in class. For a class of distributions P, let θ : P → Rd be the statistical functional of
interest; θ(P ) is often called the “parameter”. Let d be a metric on Θ := {θ(P ) : P ∈ P}, and let

Φ : R+ → R+ be a non-decreasing function such that Φ(0) = 0. For n observations Xi
iid∼ P , we

measure performance of an estimator θ̂n(X1, . . . , Xn) by

sup
P∈P

EXn
1 ∼P

[
Φ
(
d(θ̂(Xn

1 ), θ(P ))
)]
.

The minimax risk for estimation is given by

Mn(P,Φ ◦ d) := inf
θ̂

sup
P∈P

EP
[
Φ
(
d(θ̂(Xn

1 ), θ(P ))
)]
,

where the infimum is taken over all measurable functions of X1, . . . , Xn. Derive Le Cam’s method:
for any fixed δ > 0, and P1, P−1 ∈ P such that d(θ(P1), θ(P−1)) ≥ 2δ,

Mn(P,Φ ◦ d) ≥ Φ(δ)

2

(
1−

∥∥Pn1 − Pn−1

∥∥
TV

)
.

You may give a concise derivation based on results from class.

Question 2.2 (Uniform estimation (20 points)): In this question, we will show that the min-
imax rate of estimation for the parameter of a uniform distribution (in squared error) scales

as 1/n2. In particular, assume that Xi
iid∼ Uniform(θ, θ + 1), meaning that Xi have densities

p(x) = 1 {x ∈ [θ, θ + 1]}. Let X(1) = mini{Xi} denote the first order statistic.

(a) Prove that

E[(X(1) − θ)2] =
2

(n+ 1)(n+ 2)
.

(Hint: the fact that E[Z] =
∫∞

0 P(Z ≥ t)dt for any positive Z may be useful.)

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of θ ∈ R for the
uniform family U = {Uniform(θ, θ + 1) : θ ∈ R} in squared error has lower bound c/n2, where
c is a numerical constant.
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Question 2.3 (Differentially private estimation (50 points)): We study estimation under a
privacy constraint, when the data collector cannot be trusted with sensitive information. Instead
of observing true data Xi ∈ X , a perturbed version Zi ∈ Z is viewed; given X = x, we write
Z ∼ Q(· | X = x), and call Q a “channel”. For α > 0, we say Zi is α-differentially private if for
any measurable subset A ⊂ Z and any pair x, x′ ∈ X ,

Q(Z ∈ A | X = x)

Q(Z ∈ A | X = x′)
≤ exp(α). (1)

Intuitively, differential privacy asks that x and x′ are similarly likely to have generated the observed
signal Z. Letting q(z | x) := Q(Z = z | X = x) be the conditional density of Z | X, the condition (1)

is equivalent to q(z|x)
q(z|x′) ≤ eα for all x, x′ ∈ X , and almost surely all z ∈ Z. In what follows, we

assume α < 1.
As we will show, differential privacy acts as a contraction on probabilities. For arbitrary prob-

abilities P1, P2 on X , let densities p1 and p2 be their densities w.r.t. a base measure µ; you may
treat this as a continuous density for convenience. Define the marginal distributions

Mi(Z ∈ A) :=

∫
X
Q(Z ∈ A | X = x)pi(x)dµ(x), i ∈ {1, 2}.

We will prove there is a universal (numerical) constant C <∞ such that for any P1, P2,

Dkl (M1||M2) +Dkl (M2||M1) ≤ C(eα − 1)2 ‖P1 − P2‖2TV . (2)

We show this result assuming Z = {1, . . . , k} for some finite k ∈ N; this is without loss of generality,
but you don’t have to justify this.

(a) Recall the definition of the total variation distance ‖P1 − P2‖TV = supA⊂X {P1(A)− P2(A)}.
Show ‖P1 − P2‖TV = 1

2

∫
|p1(x)− p2(x)|dµ(x).

(b) Define mj(z) :=
∫
q(z | x)pj(x)dµ(x), prove that for a universal constant c <∞,

|m1(z)−m2(z)| ≤ c(eα − 1) inf
x∈X

q(z | x) · ‖P1 − P2‖TV .

(c) Show the result (2) when Z = {1, . . . , k} for some finite k ∈ N.

Hint Use the following simple inequality: for any a, b > 0, we have
∣∣log a

b

∣∣ ≤ |a−b|
min{a,b} . To see

this, use log(1 + x) ≤ x to note

log
a

b
= log

(
1 +

a

b
− 1
)
≤ a− b

b
and log

b

a
≤ b− a

a
.

We now use the inequality (2) to prove minimax lower bounds for differentially private es-
timation. Consider a survey data on individuals i = 1, . . . , n, where we ask each individual
about illicit drug use: Xi = 1 if person i uses illicit drugs, 0 otherwise (X = {0, 1}). Define
θ(P ) = P (X = 1) = EP [X]. To protect privacy, we perturb each answer Xi in a α-differentially
private manner, and use Zi’s as our data.

To make sure everyone feels suitably private, assume α < 1/2; in this case, (eα−1)2 ≤ 2α2. Let
Qα be the family of all α-differentially private channels, and let P denote the Bernoulli distributions
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with parameter θ(P ) = P (Xi = 1) ∈ [0, 1]. We consider the minimax risk for private estimation of
the proportion θ(P )

Mn(θ(P), | · |, α) := inf
Q∈Qα

inf
θ̂

sup
P∈P

E
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
,

where the infimum is over (differentially private) channels Q and estimators θ̂, and the expectation
is taken with respect to both the Xi (according to P ) and the Zi (according to Q(· | Xi)).

(d) Use Le Cam’s method to argue that whenever P1, P2 satisfy |θ(P1)− θ(P2)| ≥ δ,

Mn(θ(P), | · |, α) := inf
Q∈Qα

inf
θ̂

sup
P∈P

E
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
≥ δ

2
inf

Q∈Qα
[1− ‖Mn

1 −Mn
2 ‖TV].

Then, use inequality (2) to show that for some universal constant c′ > 0.

Mn(θ(P), | · |, α) ≥ c′√
nα2

.

(e) Give a rate-optimal estimator for this problem. i.e., define a α-differentially private channel Q
and an estimator θ̂ such that E[|θ̂(Zn1 )− θ|] ≤ C ′/

√
nα2, where C ′ > 0 is a universal constant.

Hint Consider perturbing the data with probability 1− qα, where qα = eα/(1 + eα). Note that

(2qα − 1)−2 =
(
eα+1
eα−1

)2
≈ 4/α2 for α ≈ 0.

Question 2.4 (Adversarial robustness for linear logistic regression (10 points)): Consider a
binary classification problem with label y ∈ {−1,+1} and features x ∈ Rd. We study the logistic
regression loss `(θ;x, y) = − log σ(yθ>x), where σ(a) = 1

1+exp(−a) . Derive an alternative form for
the adversarial loss:

max
x̄∈Rd:‖x̄−x‖∞≤ε

`(θ; x̄, y) = − log σ
(
yθ>x− ε‖θ‖1

)
.

Give an interpretation of this result.

3


