
B9145: Topics in Trustworthy AI Spring 2025

Lecture 2: Distributionally Robust Optimization
Lecturer: Hongseok Namkoong Scribe: Samuel Deng and Rachitesh Kumar

2.1 Distributionally Robust Optimization (DRO)

Let Θ ⊆ Rd be the model class or decision space, Z be the data domain, and ` : Θ×Z → R be a loss function
representing statistical prediction error. Let P be the data generating distribution over Z, so Z ∼ P is a
draw of random data. Our typical learning problem minimizes average risk (or, henceforth, just risk):

min
θ∈Θ

R(θ) := min
θ∈Θ

EP [`(θ;Z)]. (2.1)

If the data-generating distribution P is sufficiently representative of the population of interest, (2.1) is
effective. However, this requirement is frequently violated, as in the following real-world examples:

• Data is often collected from a particular set of geospatial locations, and may not be representative
of the entire population of interest. For instance, Figure 2.1 plots the demographic compositions of
low-income adults in Oregon and Texas.

• Even small shifts in the environment (as in image classification in ImageNet) degrade the performance
of state-of-the-art models, up to 11-14% for average-case risk.

• Machine learning systems deterioriate on subpopulations and underrepresented user groups in datasets
(possibly reflecting societal biases) in applications as varied as: speech reconigtion, facial reconition,
video captioning, language identification, and recommender systems.
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Figure 2.1: Demographics of low-income adults.

Instead of taking the average-case approach of (2.1), we consider a worst-case approach. Given a set Q of
probability distributions, we minimize the worst-case expected loss over distributions Q ∈ Q:

min
θ∈Θ

sup
Q∈Q

EQ[`(θ;Z)]. (2.2)
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This is distributionally robust optimization (DRO). For a fixed model θ ∈ Θ, we interpret this as an adversary
playing the worst distribution Q for that model. Of course, we should ask the question: what does the set
Q of distributions include?

In this lecture, we will explore distributional robustness in a neighborhood around the data-generating
distribution P. This is a natural goal for prediction problems where we are interested in learning models θ
that perform uniformly well across small perturbations to the data-generating distribution. We define what
we mean by a “neighborhood” in the sequel.

Before we move on, we also consider briefly what it means to optimize the sample risk, the empirical estimate
of (2.1):

min
θ∈Θ

R̂(θ) :=

n∑
i=1

1

n
`(θ;Zi), (2.3)

where Z1, . . . , Zn are i.i.d. data drawn from P. We may view the 1
n as a uniform weighting over the losses of

each example, `(θ;Zi). Instead, in the DRO framework, we might generalize this to assign different weights
to each `(θ;Zi), as follows:

min
θ∈Θ

sup
p∈Pn

n∑
i=1

pi`(θ;Zi), (2.4)

where Pn is an appropriately chosen set of n-vectors. We will explore (2.4) in the sequel.

2.2 f-divergence DRO

We begin by defining the notion of an f -divergence, a notion of closeness between two distributions using a
convex function f .

Definition 1 (f -divergence). Let f : R → R+ = R+ ∪ {∞} be a convex function satisfying f(1) = 0 and
f(t) = +∞ for any t < 0. Then, the f -divergence between distributions Q and P is:

Df (Q||P ) :=

∫
f

(
dQ

dP

)
dP.

This is a general notion that, for different choices of f , give us familiar notions of distance between distri-
butions. For example:

• f(t) = t log t gives KL-divergence.

• f(t) = |t− 1| gives total variation distance.

• f(t) = (t− 1)2 gives χ2 divergence.

One should think of f -divergences in terms of the simple picture in Figure 2.2. When distributions are
equal, the f divergence always evaluates to 0. When the ratio between dQ and dP increases, i.e. when Q is
sufficiently different from P , the f -divergence blows up.
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Figure 2.2. f(t) = (t−1)2, the convex function that χ2 divergence is based on. To the left of t = 0 (indicated
by the yellow line), the function takes value f(t) =∞.

Using the tool of f -divergence, we may now properly define the set Q of “close” distributions and the
“neighborhood” discussed in Section 2.1. The distributionally robust optimization problem minimizes, for
some fixed distribution P , f -divergence, and radius ρ:

min
θ∈Θ

{
Rf (θ;P ) := sup

Q�P
{EQ[`(θ;Z)] : Df (Q||P ) ≤ ρ}

}
. (2.5)

Note that, here, there are two main parameters defining the collection of distributions of interest, Q: (1) ρ, the
radius/magnitude for the unknown distribution shift and (2) f , the choice of distance between distributions.
In practice, these are nontrivial to choose, for nailing down all distributions of interest in real-world problems
is difficult (and not even clearly captured by f and ρ). A couple other remarks:

• f -divergence limits us to using distributions Q that have the same support as P . In future lecture, we
will relax this with a different family of distances (Wasserstein).

• (2.5) has the effect of upweighting regions of Z with high losses `(θ;Z). That is, it optimizes the
performance of θ on the tails or the “hard” examples. (2.4) above suggests this, and the duality
derivation in Section 2.2.1 makes this clear as well.

2.2.1 Dual reformulation

By itself, the inner optimization in (2.5) seems intractable, so we will reformulate the problem through
duality. This gives us the following important proposition.

Proposition 1 (Duality of DRO). Let P be a probability measure on Z and ρ > 0. Let f∗ be the Fenchel
conjugate of f ,

f∗(s) := sup
t
{st− f(t)}.

Then,

Rf (θ;P ) = inf
λ≥0,η∈R

{
λEP

[
f∗
(
`(θ;Z)− η

λ

)]
+ λρ+ η

}
(2.6)

for all θ. Moreover, if the supremum on the left hand side is finite, there are finite λ(θ) ≥ 0 and η(θ) ∈ R
attaining the infimum on the right hand side.
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Proof. Fix some θ ∈ Θ and distribution P. We redefine (2.5) in terms of the likelihood ratio, L(Z) := dQ(Z)
dP (Z) .

This gives us:
Rf (θ;P ) = sup

L≥0
{EP [L(Z)`(θ;Z)] : EP [f(L(Z))] ≤ ρ,EP [L(Z)] = 1} . (2.7)

From Lagrangian duality, we will assign λ ≥ 0 to the constraint EP [f(L(Z))] ≤ ρ and η ∈ R to EP [L(Z)] = 1,
so:

= sup
L≥0

inf
λ≥0,η∈R

{EP [L(Z)`(θ;Z)] + λ(ρ− EP [f(L(Z))]− η(EP [L(Z)]− 1)}

Taking L ≡ 1 gives us EP [f(L)] = 0 and EP [L] = 1 so the extended Slater condition holds and we can switch
the order of the inf and sup . After doing this and rearranging, we obtain:

= inf
λ≥0,η∈R

sup
L≥0
{EP [L(Z)`(θ;Z)− λf(L(Z))− ηL(Z)]}+ λρ+ η

= inf
λ≥0,η∈R

sup
L≥0

{
λEP

[
L(Z)(`(θ;Z)− η)

λ
− f(L(Z))

]}
+ λρ+ η. (2.8)

Notice that L : Z → R+ is an arbitrary nonnegative measurable function that we are taking a supremum
over. This allows us to interchange the inner supremum and the integral, giving us the Fenchel conjugate:

sup
L≥0

EP
[
L(Z)(`(θ;Z)− η)

λ
− f(L(Z))

]
= sup
L≥0

∫
Z

L(Z)(`(θ;Z)− η)

λ
− f(L(Z))dP

=

∫
Z

sup
L≥0

{
L

(
`(θ;Z)− η

λ

)
− f(L)

}
dP

=

∫
Z
f∗
(
`(θ;Z)− η

λ

)
dP

= EP
[
f∗
(
`(θ;Z)− η

λ

)]
.

Plugging this back into (2.8) gives us our desired result.

As a concrete example of Proposition 1, consider divergences that look like tk. Specifically, for k ∈ (1,∞),
we consider the Cressie-Read family of divergences, defined as:

fk(t) :=

{
tk − 1 if t ≥ 0

∞ otherwise
(2.9)

Denoting k∗ = k
k+1 and (s)+ = max(s, 0), we obtain the following Fenchel conjugate,

f∗k (s) = k−k∗(k − 1)(s)k∗+ + 1. (2.10)

Applying Proposition 1, we obtain:

Rf (θ;P ) = inf
λ≥0,η∈R

{
λ1−k∗k−k∗(k − 1)EP

[
(`(θ;Z)− η)

k∗
+

]
+ λ(ρ+ 1) + η

}
Now, optimizing over λ ≥ 0 and denoting ck(ρ) := (1 + ρ)

1
k , we obtain the final dual form:

Rk(θ;P ) = inf
η∈R

{
ck(ρ)EP

[
(`(θ;Z)− η)k∗+

] 1
k∗

+ η

}
(2.11)

Thus, in this particular case of Cressie-Read f -divergences, the simplified form above shows that distribu-
tional robustness is equivalent to optimizing the tail performance of the model. η is the threshold at which
we care about the loss of an example; for examples with loss less than η, the expectation in (2.11) vanishes.
Thus, the harder examples (with loss greater than η) are emphasized by a power of k∗.
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Figure 2.3. Variation in error over all the classes. As ρ increases (DRO hedges against further distributions),
we see that the variation in class-wise error becomes smaller; the error rates become more uniform through
the classes.

2.2.2 Optimization

The following section of notes are at a higher level – in this portion of the lecture, we discussed how DRO
works in practice and its pros and cons. First, to actually operationalize (2.5) in practice, we of course do
not have access to population distributions, so we must use an empirical plug-in. Suppose we have a finite
sample of data {Zi}ni=1. The empirical plug-in formulation of the primal is:

sup
q

{
n∑
i=1

qi`(θ;Zi) : Df (q||1/n) ≤ ρ, q>1 = 1, qi ≥ 0

}
. (2.12)

To optimize this, we can play a 2-player stochastic game (adversary plays q and the player plays θ ∈ Θ), or
just do batch gradient descent on the whole thing. Alternatively, we can optimize the empirical formulation
of the dual in (2.6) using a standard solver.

However, how does DRO perform in practice? In lecture, we looked at an experiment for fine-grained
recognition. The taks was to classify images of dogs to dog breeds (with 120 breeds/classes total). In the
dataset, there was no underrepresentation: each breed/class had the same number of images. The experiment
used DRO with χ2 divergence, parametrized with ρ > 0 as the magnitude of distance between distributions.

In Figure 2.3, we see that performing DRO with a significant ρ parameter decreases the variation in error
across the classes. In Figure 2.4, we actually see that DRO in this specific experiment actually consistently
does better than the standard average-case risk minimization, even when we are accounting for every single
class. This suggests that, at least in some cases, DRO is useful even for the original goal of average-case risk
minimization (2.1). This motivates Section 2.2.3
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Figure 2.4. Top-5 error rate across x classes. On the far left is top-5 error rate on the hardest 20 classes;
on the far right is the top-5 error rate over all classes. Each curve represents DRO at level ρ ≥ 0; ρ = 0 is
standard average-case risk minimization.
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2.2.3 Connections to variance regularization

In Section 2.2.2, we observed that, at least in this specific experiment, applying DRO actually helped with
the original goal of standard average-case risk minimization. Recall the classical notion of (average-case)
risk for a data-generating distribution P , which we rewrite here for convenience:

R(θ) = EP [`(θ;Z)] (2.13)

for Z ∼ P.

This raises the question: does DRO provide any guarantees for our original (classical) goal of minimizing
average-case risk (2.13)? In this section, forget all about the goal of robust optimization to distribution
shifts; we return to our classical goal of minimizing standard average-risk. We will show a theoretical result
that DRO helps in this classical goal.

Fix some data-generating distribution P . The standard approach for minimizing risk in statistical learning
is ERM. That is, we find the model θ̂erm ∈ Θ that minimizes the average-case sample risk:

θ̂erm ∈ argmin
θ∈Θ

R̂n(θ) :=
1

n

n∑
i=1

`(θ;Zi),

for a dataset {Zi}ni=1 all drawn i.i.d. from P. The hope is that R̂n(θ) is a good approximation of R(θ).

From the empirical Bernstein’s inequality, with probability 1− δ,

R(θ) = EP [`(θ;Z)] ≤ R̂n(θ)︸ ︷︷ ︸
bias

+

√
2VarP̂n(`(θ;Z))

n︸ ︷︷ ︸
variance

+
C log 1

δ

n
. (2.14)

Above, VarP̂n is empirical variance. Any estimator has a bias and variance, and (2.14) makes this explicit.
We might hope to use this upper bound directly (optimally trading off between bias and variance) by solving
this variance-regularized sample risk.

θ̂var ∈ argmin
θ∈Θ

R̂n(θ) +

√
2VarP̂n(`(θ;Z))

n

 . (2.15)

The problem is that we cannot solve 2.15 through standard optimization methods because it is non-convex.
However, skipping to the punchline, it will happen that using DRO with a specific setup will allow us to
minimize 2.15.

We will setup the DRO problem now. Fix some P , and draw a dataset of n examples {Zi}ni=1 i.i.d. from

P . Let P̂n be the empirical distribution from the n examples. Consider the χ2 divergence, where we use
the function f(t) = 1

2 (t − 1)2 as the f -divergence, following Definition 1. We denote the f -divergence as
Dχ2 (Q||P ). For some ρ > 0, define the class of distributions Pn,ρ that we want to be robust against as:

Pn,ρ :=
{

Distribution P : Dχ2

(
P ||P̂n

)
≤ ρ

n

}
(2.16)

Notice that, in this collection of “close” distributions, as n → ∞, we get closer and closer to our original
distribution P . We are sticking very close to our original distribution, and, for n → ∞ at the limit, this is
just standard optimizing for the original distribution P (which we can just do via ERM). Maximizing over
this collection gives us the empirical likelihood upper confidence bound :

Rn(θ,Pn,ρ) := max
P∈Pn,ρ

EP [`(θ;Z)] = max
p:Dχ2(P ||P̂n)≤ ρ

n

n∑
i=1

pi`(θ;Zi). (2.17)
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Solving for the best model that optimizes (2.17) is just a DRO problem. We’ll denote this best DRO model
as:

θ̂rob ∈ argmin
θ∈Θ

{
Rn(θ,Pn,ρ) = max

p:Dχ2(P ||P̂n)≤ ρ
n

n∑
i=1

pi`(θ;Zi)

}
. (2.18)

The difference between θ̂var from (2.15) and θ̂rob from (2.18) is that θ̂rob can actually be efficiently solved for
using DRO methods! The problem is convex, and we can use any of the methods in Section 2.2.2 to solve
it. It turns out that (2.17) actually converges to the term being optimized in (2.15), which connects DRO
to the direct variance-regularized risk.

Theorem 2 (Equivalence of DRO and Variance-Regularized Risk). For general f -divergences and bounded
loss `(θ;Z) ≤M ,

Rn(θ;Pn,ρ) = R̂n(θ) +

√
2ρVarP̂n(`(θ;Z)))

n
+ Remn(θ). (2.19)

Let σ2(θ) := Var(`(θ;Z)). Also, Remn(θ) ≤
√

12ρM
n and Remn(θ) = 0 with probability at least 1 −

exp
(
−nσ

2(θ)
36M2

)
.

We will prove Theorem 2 below. Using Theorem 2, we get the following guarantee on the true risk of the
DRO model which optimizes Rn(θ,Pn,ρ). Recall the definition of θ̂rob from (2.18).

Theorem 3. Let ρ = log 1
δ + d log n. Then, with probability at least 1− δ,

R(θ̂rob) ≤ Rn(θ̂rob,Pn,ρ) +
crMρ

n

≤ min
θ∈Θ

R(θ) +

√
2ρVarP̂n(`(θ;Z)))

n

+
crMρ

n
,

where R(θ) is the standard average-case risk from (2.13) and Pn,ρ is from (2.16).

The thrust of Theorem 3 is that running DRO allows us to achieve the optimal bias-variance tradeoff we
wanted in (2.14) with respect to the standard measure of risk, R(θ). Further, this actually beats ERM!
Denote R(θ∗) := infθ∈ΘR(θ), the true minimizer of standard risk. ERM gives us the following guarantee:

R(θ̂erm) ≤ R(θ∗) +

√
2ρMR(θ∗)

n
+
CMρ

n
. (2.20)

If Var(`(θ;X))�MR(θ∗), then the bound in Theorem 3 is actually tighter than that of (2.20). This shows
DRO beating ERM, which provides a possible theoretical explanation for Figure 2.4 in Section 2.2.2.

Finally, we provide the proof (sketch) of Theorem 2.

Proof. Denote zi := `(θ, Zi) and denote ui = pi − 1
n and denote z and s2

n the sample mean and sample
variance, respectively. With this notation, the empirical likelihood upper confidence bound becomes:

Rn(θ;Pn,ρ) = max
p

{
〈p, z〉 : Dχ2 (p||1/n) ≤ ρ

n

}
Using the definition of χ2 divergence,

= max
p

{
〈p, z〉 :

1

n

n∑
i=1

(npi − 1)2 ≤ ρ

n
, p>1 = 1, p ≥ 0

}
.
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Using the change of variable from ui := pi − 1
n , we get:

= z + max
u

{
〈u, z − z〉 : ‖u‖2 ≤ ρ

n2
, u>1 = 1, u ≥ −1

n

}
≤ z +

√
2ρ

n
‖z − z‖2 = z +

√
2ρ

n
s2
n (by Cauchy-Schwarz).

The final inequality is tight if, for all i,

ui =
1

n

√
2ρ

ns2
n

(zi − z) ≥ −
1

n
.

2.3 Wasserstein Distributionaly Robust Optimization

The f -divergence takes value∞ whenever a perturbed distribution Q has support outside of that of P . This
may be limiting when there is a natural geometry in the data space. In this case, instead of reweighting data,
we may consider directly perturbing data values according to this geometry. For example, this is appropriate
for adversarial attacks that perturb pixels of images by an amount imperceptible to humans.

Wasserstein distances uses the geometry of the underlying space to define a notion of closeness between
distributions. Let Z ⊂ Rm, and let (Z,A, P ) be a probability space. Let the transportation cost c :
Z ×Z → [0,∞) be nonnegative, lower semi-continuous, and satisfy c(z, z) = 0. For probability measures P
and Q supported on Z, let Π(P,Q) denote their couplings, meaning measures π on Z2 with π(A,Z) = P (A)
and π(Z, A) = Q(A) for all A ⊂ Z. The Wasserstein distance between P and Q is

Wc(Q,P ) := inf
π∈Π(P,Q)

Eπ[c(Z,Z ′)].

This infimization problem is known as the optimal transport problem, where we wish to transport mass away
from P to Q, where c(z, z′) represents the unit cost of transporting mass from z to z′.

2.3.1 Dual reformulation

We can perform distributionally robust optimization (DRO) w.r.t. the Wasserstein distance. For ρ ≥ 0 and
distribution P0, we let Q = {Q : Wc(Q,P ) ≤ ρ}, the Wasserstein DRO problem is given by

minimize
θ∈Θ

{
Rc(θ;P ) := sup

Q
{EQ[`(θ;Z)] : Wc(Q,P ) ≤ ρ}

}
. (2.21)

In particular, the Wasserstein ball allows for distributions Q that have a different support to P , so long as
the cost of transporting mass from P to Q is not too high.

The following proposition gives a duality result for Wasserstein DRO (2.21). We assume EP [`(θ;Z)] < ∞
throughout.

Proposition 4. Fix any θ ∈ Θ. Let z 7→ `(θ; z) be upper semi-continuous. Let φλ(θ; z0) = supz∈Z {`(θ; z)− λc(z, z0)}
be the robust surrogate. For any distribution Q and any ρ > 0,

sup
Q:Wc(Q,P )≤ρ

EQ[`(θ;Z)] = inf
λ≥0

{
λρ+ EP [φλ(θ;Z)]

}
. (2.22)
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The dual form makes crisp how the optimal transport problem plays a role in defining worst-case perturba-
tions. The supremum inside the expectation considers a perturbation z to the data Z, such that it makes
the loss `(θ; z) bigger, while being penalized by the cost of moving mass from Z to z. Comparing this to the
f-divergence dual that upweighted examples with higher loss, we see that Wasserstein DRO (2.21) considers
the geometry of the inputs by using the cost function c.

The computational cost of considering probabilities whose support may differ from P is steep. The dual
formulation (2.22) has reformulated an infinite-dimensional problem over probabilities to computing the
robust surrogate φλ, but even evaluating the robust surrogate is computationally intractable in general. The
maximization problem φλ(θ;Z) = supz `(θ; z)−λc(Z, z) is almost always non-concave, even for simple linear
models. Furthermore, a naive analysis of the statistical estimation of Wasserstein DRO yields nonparametric
rates. Identifying structured scenarios with alleviated computational and statistical difficulties is an area of
active research.

Before proceeding with the proof of Proposition 4, we consider an example.

Example 1. Consider the cost function c(z, z′) = 1
2‖z − z′‖22, and the corresponding robust surrogate

function

φλ(θ;Z) = sup
z′∈Z

{
`(θ; z′)− λ

2
‖z′ − z‖22

}
.

Plugging the first order approximation `(θ; z′) ≈ `(θ; z) +∇z`(θ; z)>(z′− z) into the robust surrogate yields

φλ(θ; z) ≈ sup
z′∈Z

{
`(θ; z) +∇z`(θ; z)>(z′ − z)− λ

2
‖z′ − z‖22

}
.

First order condition of optimality implies that the supremum is attained at z′ ∈ Z such that

∇z`(θ; z) = λ · (z′ − z) ≡ z′ = z +
1

λ
· ∇z`(θ; z) .

Note that the worst-case perturbation z′ is simply a gradient-ascent step from z along ∇z`(θ; z). Therefore,
we can approximate the robust surrogate as

φλ(θ; z) ≈ `(θ; z) +
1

2λ
· ‖∇z`(θ; z)‖22 .

Plugging this into the dual for the empirical distribution P̂n (which is simply the uniform distribution on
samples {Z1, . . . , Zn}) yields

inf
λ≥0

{
λρ+

1

n
·
n∑
i=1

φλ(θ;Zi)

}
= inf
λ≥0

{
λρ+

1

n
·
n∑
i=1

{
`(θ;Zi) +

1

2λ
· ‖∇z`(θ;Zi)‖22

}}

=
1

n
·
n∑
i=1

`(θ;Zi) + inf
λ≥0

{
λρ+

1

2λ
· 1

n
·
n∑
i=1

‖∇z`(θ;Zi)‖22

}

=
1

n
·
n∑
i=1

`(θ;Zi) + inf
λ≥0

{
λρ+

1

2λ
· EP̂n

[
‖∇z`(θ;Z)‖22

]}

=
1

n
·
n∑
i=1

`(θ;Zi) +
√

2ρ ·
(
EP̂n

[
‖∇z`(θ;Z)‖22

])1/2

where the third equality follows from the fact that the infimum is attained at λ = 1
ρ . Therefore, under

first-order approximations, Wasserstein DRO amounts to a regularization that makes ‖∇z`(θ;Z)‖ small and
guards against data perturbations. �



Lecture 2: Distributionally Robust Optimization 2-11

Proof of Proposition 4. Although the proof of Proposition 4 is involved, we can gain basic intuition by
considering a substantially simplified scenario. Consider a discrete sample space

Z := {z1, . . . , zk}.

The definition of the Wasserstein distance can then be simplified to

min
π(zi,zj)≥0

∑
i,j

π(zi, zj)c(zi, zj) :
∑
i

π(zi, zj) = q(zj),
∑
j

π(zi, zj) = p(zi),
∑
i,j

π(zi, zj) = 1

 .

Then, Rc(θ;P ), the Wasserstein distributionally robust objective (2.21) can be written as

max
π(zi,zj)≥0

∑
i,j

π(zi, zj)`(θ; zj) :
∑
j

π(zi, zj) = p(zi),
∑
i,j

π(zi, zj) = 1,
∑
i,j

π(zi, zj)c(zi, zj) ≤ ρ

 .

Now, use Lagrangian duality to note that

Rc(θ;P ) = min
λ≥0

max
π≥0

λρ+
∑
i,j

π(zi, zj)(`(θ; zj)− λc(zi, zj)) :
∑
j

π(zi, zj) = p(zi),
∑
i,j

π(zi, zj) = 1

 .

The inner maximum problem is evidently attained at

π(zi, zj) =

{
p(zi) if j is the smallest index in argmaxj{`(θ; zj)− λc(zi, zj)}
0 otherwise

.

We conclude that

Rc(θ;P ) = min
λ≥0

{
λρ+

∑
i

p(zi) max
j
{`(θ; zj)− λc(zi, zj)}

}
,

which is the desired result (2.22) for discrete sample spaces.

2.3.2 Connection to regularization

By choosing the regularizer, we can show that Wasserstein DRO is equivalent to classical regularizers.

Proposition 5 (Regression). Consider the cost function c((x, y), (x′, y′)) = ‖(x, y) − (x′, y′)‖2k for some
k ∈ [0,∞). Then,

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
=

( 1

n
·
n∑
i=1

(Yi − θ>Xi)
2

)1/2

+
√
ρ · ‖[θ,−1]‖k∗

2

,

where k∗ = k/(k − 1) and satisfies 1
k + 1

k∗ = 1.

Proof. To simplify notation, set Z = (X,Y ) and θ̄ = [θ,−1] ∈ Rd+1. From the duality result for Wasserstein
DRO (Proposition 4), we get

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
= inf
λ≥0

{
λρ+ EP̂n sup

z′

{
(θ̄>z′)2 − λ‖Z − z′‖2k

}}
.
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First, we simplify the surrogate loss φλ(θ̄, Z) = supz′
{

(θ̄>z′)2 − λ‖Z − z′‖2k
}

. Doing a change of variable
∆ = Z − z′ yields

φλ(θ̄, Z) = sup
∆

{(
θ̄>Z − θ̄>∆

)2 − λ‖∆‖2k}
= sup

∆

{(
θ̄>Z + sign(θ̄>Z) · |θ̄>∆|

)2 − λ‖∆‖2k} (sup attained when signs match)

= sup
∆

{(
|θ̄>Z|+ |θ̄>∆|

)2 − λ‖∆‖2k}
= sup

∆

{(
|θ̄>Z|+ ‖θ̄‖k∗‖∆‖k

)2 − λ‖∆‖2k} (sup is attained when Holder’s ineq. is tight)

=
(
θ̄>Z

)2
+ sup

∆

{
−(λ− ‖θ̄‖2k∗) · ‖∆‖

2
k + 2 · |θ̄>Z| · ‖θ̄‖k∗‖∆‖k

}
=

{
λ

λ−‖θ̄‖2k∗
· (θ̄>Z)2 if λ > ‖θ̄‖2k∗

∞ otherwise

This allows us to conclude

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
= inf
λ>‖θ̄‖2k∗

{
λρ+

λ

λ− ‖θ̄‖2k∗
· 1

n

n∑
i=1

(θ̄>Zi)
2

}
.

First order condition of optimality implies that the infimum is attained at λ = ‖θ̄‖2k∗+
(
‖θ̄‖2k∗
ρ · 1

n

∑n
i=1(θ̄>Zi)

2
)1/2

,

which yields

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
=

( 1

n
·
n∑
i=1

(θ̄>Zi)
2

)1/2

+
√
ρ · ‖θ̄‖k∗

2

,

as required.

A similar equivalence can be shown for

• Regression under Covariate Shift: If the cost function c is

c((x, y), (x′, y′)) =

{
‖x− x′‖2k if y = y′

∞ if y 6= y′

then

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
(Y − θ>X)2

]
=

( 1

n
·
n∑
i=1

(Yi − θ>Xi)
2

)1/2

+
√
ρ · ‖θ‖k∗

2

• Logistic Loss: If Y ∈ {−1,+1} and the cost function c is

c((x, y), (x′, y′)) =

{
‖x− x′‖k if y = y′

∞ if y 6= y′

then

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[
log
(

1 + e−Y ·θ
>X
)]

=
1

n
·
n∑
i=1

log
(

1 + e−Yi·θ
>Xi

)
+ ρ · ‖θ‖k∗
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• Support Vector Machine: If Y ∈ {−1,+1} and the cost function c is

c((x, y), (x′, y′)) =

{
‖x− x′‖k if y = y′

∞ if y 6= y′

then

sup
Q:Wc(Q,P̂n)≤ρ

EQ
[(

1− Y · θ>X
)

+

]
=

1

n
·
n∑
i=1

(
1− Yi · θ>Xi

)
+

+ ρ · ‖θ‖k∗


	Distributionally Robust Optimization (DRO)
	f-divergence DRO
	Dual reformulation
	Optimization
	Connections to variance regularization

	Wasserstein Distributionaly Robust Optimization
	Dual reformulation
	Connection to regularization


