In Search of Lost Domain Generalization

Jingwen Liu

Paper by Ishaan Gulrajani and David Lopez-Paz

Feb 13

What is domain generalization?

Classical Supervised Learning

- Dataset $D = \{(x_i, y_i)\}_{i=1}^n$ iid from P(X, Y)
- Loss function $\ell: \mathscr{Y} \times \mathscr{Y} \to [0,\infty)$
- Goal: find a predictor $f: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathbb{E}_{(x,y)\sim P}[\ell(f(x), y)]$
- Approach: ERM minimize $\frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$

Domain Generalization Problem

- k different domains: for each $j \in \{1, ..., k\}$ Dataset $D^{j} = \{(x_{i}^{j}, y_{i}^{j})\}_{i=1}^{n_{j}}$ iid from $P(X^{j}, Y^{j})$
- Goal: out-of-distribution generalization find a predictor f perform well at unseen test domain d_{test}
- Need to assume some invariances across train and test domains

Example Datasets

Lots of Algorithms, but ...

- Empirical Risk Minimization (ERM)
- Group Distributionally Robust Optimization (DRO)
- DANN
- Invariant Risk Minimization (IRM)

- All evaluated under different datasets and model selection methods
- Need a standardized and rigorous benchmark to make fair comparisons

What could go wrong? **Model Selection**

- Need to choose hyperparameters
- Choose between different architecture variants
- But no validation data \approx test data
- What's the correct way of doing model selection?

Training-domain validation set

- validation subsets
- Combine the validation subsets of each domain
 - create an overall validation set
- Choose the model that does the best on this overall validation set
- Assumes training sample and test sample following similar distributions

• For each $j \in \{1, \dots, k\}$, split the data set $D^j = \{(x_i^j, y_i^j)\}_{i=1}^{n_j}$ into training and

Leave-one-domain-out cross-validation

- For each hyperparameter set, train k models, each leaving one domain dataset outside of the training set
- Evaluate each model on its held-out domain and average the accuracies over \boldsymbol{k} models
- Pick the hyperparamter set that has the best performance on the averaged accuracy
- Retrain the model using all k domains
- Assume training and test domain are drawn from a meta-distribution over domains

Test-domain validation set (oracle)

- Validation set \sim test distribution
- Query access
- Limit the number of queries i.e. at most 20 queries in this paper

DOMAINBED

• Datasets

Dataset	Domain	S				
Colored MNIST	+90%	+80%	-90%	<i>l</i>)		
Rotated MNIST	0° 9	15° آ	30°	45°	60°	75°
VLCS	Caltech101	LabelMe	SUN09	VOC2007		
PACS	Art	Cartoon	Photo	Sketch		
Office-Home	Art	Clipart	Product	Photo		
Terra Incognita	L100	L38	L43	L46		
DomainNet	Clipart	Infographic Celler	Painting	QuickDraw	Photo	Sketch

- Model selection criteria
- Train-domain validation set
- Leave-one-domain-out crossvalidation
- Test-domain oracle validation

Baseline Algorithms

- Empirical Risk Minimization (ERM, Vapnik [1998]) minimizes the sum of errors across domains and examples.
- Group Distributionally Robust Optimization (DRO, Sagawa et al. [2019]) performs ERM while increasing the importance of domains with larger errors.
- Inter-domain Mixup (Mixup, Xu et al. [2019], Yan et al. [2020], Wang et al. [2020]) performs ERM on linear interpolations of examples from random pairs of domains and their labels.
- Meta-Learning for Domain Generalization (MLDG, Li et al. [2018a]) leverages MAML [Finn et al., 2017] to meta-learn how to generalize across domains.
- Different variants of the popular algorithm of Ganin et al. [2016] to learn features $\phi(X^d)$ with distributions matching across domains:
 - Domain-Adversarial Neural Networks (DANN, Ganin et al. [2016]) employ an adversarial network to match feature distributions.
 - Class-conditional DANN (C-DANN, Li et al. [2018d]) is a variant of DANN matching the conditional distributions $P(\phi(X^d)|Y^d = y)$ across domains, for all labels y.
 - CORAL [Sun and Saenko, 2016] matches the mean and covariance of feature distributions.
 - MMD [Li et al., 2018b] matches the MMD [Gretton et al., 2012] of feature distributions.
- Invariant Risk Minimization (IRM [Arjovsky et al., 2019]) learns a feature representation $\phi(X^d)$ such that the optimal linear classifier on top of that representation matches across domains.

Experiment Results Compare to the state-of-the-art for typical datasets

Dataset / algorithm	Out-of-distribution accuracy (by domain)						nain)
Rotated MNIST	0°	15°	30°	45°	60°	75°	Average
Ilse et al. [2019] Our ERM	93.5 95.6	99.3 99.0	99.1 98.9	99.2 99.1	99.3 99.0	93.0 96.7	97.2 98.0
PACS	А	С	Р	S			Average
Asadi et al. [2019] Our ERM	83.0 88.1	79.4 78.0	96.8 97.8	78.6 79.1			84.5 85.7
VLCS	С	L	S	V			Average
Albuquerque et al. [2019] Our ERM	95.5 97.6	67.6 63.3	69.4 72.2	71.1 76.4			75.9 77.4
Office-Home	А	С	Р	R			Average
Zhou et al. [2020] Our ERM	59.2 62.7	52.3 53.4	74.6 76.5	76.0 77.3			65.5 67.5

Experiment Results

		Model selec	tion method:	training doma	in validation set			
Algorithm	CMNIST	RMNIST	VLCS	PACS	Office-Home	TerraInc	DomainNet	Avg
ERM	52.0 ± 0.1	98.0 ± 0.0	77.4 ± 0.3	85.7 ± 0.5	67.5 ± 0.5	47.2 ± 0.4	41.2 ± 0.2	67.0
IRM	51.8 ± 0.1	97.9 ± 0.0	78.1 ± 0.0	84.4 ± 1.1	66.6 ± 1.0	47.9 ± 0.7	35.7 ± 1.9	66.0
DRO	52.0 ± 0.1	98.1 ± 0.0	77.2 ± 0.6	84.1 ± 0.4	66.9 ± 0.3	47.0 ± 0.3	33.7 ± 0.2	65.5
Mixup	51.9 ± 0.1	98.1 ± 0.0	77.7 ± 0.4	84.3 ± 0.5	69.0 ± 0.1	48.9 ± 0.8	39.6 ± 0.1	67.1
MLDG	51.6 ± 0.1	98.0 ± 0.0	77.1 ± 0.4	84.8 ± 0.6	68.2 ± 0.1	46.1 ± 0.8	41.8 ± 0.4	66.8
CORAL	51.7 ± 0.1	98.1 ± 0.1	77.7 ± 0.5	86.0 ± 0.2	68.6 ± 0.4	46.4 ± 0.8	41.8 ± 0.2	67.2
MMD	51.8 ± 0.1	98.1 ± 0.0	76.7 ± 0.9	85.0 ± 0.2	67.7 ± 0.1	49.3 ± 1.4	39.4 ± 0.8	66.8
DANN	51.5 ± 0.3	97.9 ± 0.1	78.7 ± 0.3	84.6 ± 1.1	65.4 ± 0.6	48.4 ± 0.5	38.4 ± 0.0	66.4
C-DANN	51.9 ± 0.1	98.0 ± 0.0	78.2 ± 0.4	82.8 ± 1.5	65.6 ± 0.5	47.6 ± 0.8	38.9 ± 0.1	66.1

Model selection method: Leave-one-domain-out cross-validation

Algorithm	CMNIST	RMNIST	VLCS	PACS	Office-Home	TerraInc	DomainNet	Avg
ERM	34.2 ± 1.2	98.0 ± 0.0	76.8 ± 1.0	83.3 ± 0.6	67.3 ± 0.3	46.2 ± 0.2	40.8 ± 0.2	63.8
IRM	36.3 ± 0.4	97.7 ± 0.1	77.2 ± 0.3	82.9 ± 0.6	66.7 ± 0.7	44.0 ± 0.7	35.3 ± 1.5	62.9
DRO	32.2 ± 3.7	97.9 ± 0.1	77.5 ± 0.1	83.1 ± 0.6	67.1 ± 0.3	42.5 ± 0.2	32.8 ± 0.2	61.8
Mixup	31.2 ± 2.1	98.1 ± 0.1	78.6 ± 0.2	83.7 ± 0.9	68.2 ± 0.3	46.1 ± 1.6	39.4 ± 0.3	63.6
MLDG	36.9 ± 0.2	98.0 ± 0.1	77.1 ± 0.6	82.4 ± 0.7	67.6 ± 0.3	45.8 ± 1.2	42.1 ± 0.1	64.2
CORAL	29.9 ± 2.5	98.1 ± 0.1	77.0 ± 0.5	83.6 ± 0.6	68.6 ± 0.2	48.1 ± 1.3	41.9 ± 0.2	63.9
MMD	42.6 ± 3.0	98.1 ± 0.1	76.7 ± 0.9	82.8 ± 0.3	67.1 ± 0.5	46.3 ± 0.5	39.3 ± 0.9	64.7
DANN	29.0 ± 7.7	89.1 ± 5.5	77.7 ± 0.3	84.0 ± 0.5	65.5 ± 0.1	45.7 ± 0.8	37.5 ± 0.2	61.2
C-DANN	31.1 ± 8.5	96.3 ± 1.0	74.0 ± 1.0	81.7 ± 1.4	64.7 ± 0.4	40.6 ± 1.8	38.7 ± 0.2	61.1
Model selection method: Test-domain validation set (oracle)								
Algorithm	CMNIST	RMNIST	VLCS	PACS	Office-Home	TerraInc	DomainNet	Avg

Algorithm	CMNIST	RMNIST	VLCS	PACS	Office-Home	TerraInc	DomainNet	Avg
ERM	58.5 ± 0.3	98.1 ± 0.1	77.8 ± 0.3	87.1 ± 0.3	67.1 ± 0.5	52.7 ± 0.2	41.6 ± 0.1	68.9
IRM	70.2 ± 0.2	97.9 ± 0.0	77.1 ± 0.2	84.6 ± 0.5	67.2 ± 0.8	50.9 ± 0.4	36.0 ± 1.6	69.2
DRO	61.2 ± 0.6	98.1 ± 0.0	77.4 ± 0.6	87.2 ± 0.4	67.7 ± 0.4	53.1 ± 0.5	34.0 ± 0.1	68.4
Mixup	58.4 ± 0.2	98.0 ± 0.0	78.7 ± 0.4	86.4 ± 0.2	68.5 ± 0.5	52.9 ± 0.3	40.3 ± 0.3	69.0
MLDG	58.4 ± 0.2	98.0 ± 0.1	77.8 ± 0.4	86.8 ± 0.2	67.4 ± 0.2	52.4 ± 0.3	42.5 ± 0.1	69.1
CORAL	57.6 ± 0.5	98.2 ± 0.0	77.8 ± 0.1	86.9 ± 0.2	68.6 ± 0.4	52.6 ± 0.6	42.1 ± 0.1	69.1
MMD	63.4 ± 0.7	97.9 ± 0.1	78.0 ± 0.4	87.1 ± 0.5	67.0 ± 0.2	52.7 ± 0.2	39.8 ± 0.7	69.4
DANN	58.3 ± 0.2	97.9 ± 0.0	80.1 ± 0.6	85.4 ± 0.7	65.6 ± 0.3	51.6 ± 0.6	38.3 ± 0.1	68.2
C-DANN	62.0 ± 1.1	97.8 ± 0.1	80.2 ± 0.1	85.7 ± 0.3	65.6 ± 0.3	51.0 ± 1.0	$\textbf{38.9} \pm \textbf{0.1}$	68.7

•	ERM	is	very	good
---	-----	----	------	------

Model selection methods matter

Some more questions

- Data augmentation pipeline
- "Right" dataset?

Thanks for listening!