Causal inference using invariant prediction: identification and confidence intervals

Feb 13th Zilin Jing

Broad Idea

- Causal Discovery:
 - Discover causal structures given data collected from different environments
- Property: Assume no hidden confounders, target y, all direct parents x.
 - P(y|x) remain identical given any interventions other than y
- Research question: Can we efficiently find a set x2 such that P(y|x2) remain identical. And it is highly possible that x2 is similar to X

Background – Structural Equation Models

• Linear Gaussian SEMs

Let the first block of data (e = 1) always correspond to an "observational" (linear) Gaussian SEM. Here, a distribution over $(X_1^1, \ldots, X_{p+1}^1)$ is said to be generated from a Gaussian SEM if

$$X_{j}^{1} = \sum_{k \neq j} \beta_{j,k}^{1} X_{k}^{1} + \varepsilon_{j}^{1}, \qquad j = 1, \dots, p+1,$$
(19)

- Noise variables ε:
- Variables X
- Environment: e
- Based on causal graph, we have PA(j), DE(j), AN(j)...
- Different interventions -> Different causal graphs
 - Do-interventions
 - Noise interventions

environment $e = 1$: (X_5)
(X_2) (X_4)
Y
(X_3)

Invariance Definition

Assumption1: γ* and S* are identical across all environments

Assumption 1 (Invariant prediction) There exists a vector of coefficients $\gamma^* = (\gamma_1^*, \ldots, \gamma_p^*)^t$ with support $S^* := \{k : \gamma_k^* \neq 0\} \subseteq \{1, \ldots, p\}$ that satisfies

> for all $e \in \mathcal{E}$: X^e has an arbitrary distribution and $Y^e = \mu + X^e \gamma^* + \varepsilon^e, \quad \varepsilon^e \sim F_{\varepsilon} \text{ and } \varepsilon^e \perp X^e_{S^*},$ (3)

where $\mu \in \mathbb{R}$ is an intercept term, ε^e is random noise with mean zero, finite variance and the same distribution F_{ε} across all $e \in \mathcal{E}$.

- Remark:
 - No causality assumption
 - S* is not necessarily unique. Consider only one environment
 - P(Y|X) are identical across environments

Relation to causality

Consider Linear SEMs

Let the first block of data (e = 1) always correspond to an "observational" (linear) Gaussian SEM. Here, a distribution over $(X_1^1, \ldots, X_{p+1}^1)$ is said to be generated from a Gaussian SEM if

$$X_{j}^{1} = \sum_{k \neq j} \beta_{j,k}^{1} X_{k}^{1} + \varepsilon_{j}^{1}, \qquad j = 1, \dots, p+1,$$
(19)

- All parents of Y form a set S^* : $S^* = PA(1)$, and $\gamma^* = \beta 1$
- Proof Sketch:
 - Intervention doesn't influence y or outside noise variable
 - Noise variable independent over Xs (not true with hidden confounders)

Eg: Gene Relation

• If Y|X are identical across different environments?

Plausible Causal Structures

- Motivation: Identify X that satisfy invariance assumption
- Hypothesis test: for each $S \subseteq \{1,...,p\}$

$$H_{0,\gamma,S}(\mathcal{E}): \quad \gamma_k = 0 \text{ if } k \notin S \quad \text{and} \quad \left\{ \begin{array}{l} \exists F_{\varepsilon} \text{ such that for all } e \in \mathcal{E} \\ Y^e = X^e \gamma + \varepsilon^e, \text{ where } \varepsilon^e \perp X^e_S \text{ and } \varepsilon^e \sim F_{\varepsilon} \end{array} \right.$$

- Plausible causal predictors
 - (i) We call the variables $S \subseteq \{1, \ldots, p\}$ plausible causal predictors under \mathcal{E} if the following null hypothesis holds true:

$$H_{0,S}(\mathcal{E}): \quad \exists \gamma \in \mathbb{R}^p \text{ such that } H_{0,\gamma,S}(\mathcal{E}) \text{ is true.}$$
(5)

(ii) The identifiable causal predictors under interventions \mathcal{E} are defined as the following subset of plausible causal predictors

$$S(\mathcal{E}) := \bigcap_{S: H_{0,S}(\mathcal{E}) \text{ is true}} S = \bigcap_{\gamma \in \Gamma(\mathcal{E})} \{k : \gamma_k \neq 0\}.$$
 (6)

• Remark: $S(E) \subseteq S*$, $S(E1) \subseteq S(E2)$ if $E1 \subseteq E2$

Plausible Causal Structures

• Plausible causal coefficients

Definition 2 (Plausible causal coefficients) We define the set $\Gamma_S(\mathcal{E})$ of plausible causal coefficients for the set $S \subseteq \{1, \ldots, p\}$ and the global set $\Gamma(\mathcal{E})$ of plausible causal coefficients under \mathcal{E} as

$$\Gamma_S(\mathcal{E}) := \{ \gamma \in \mathbb{R}^p : H_{0,\gamma,S}(\mathcal{E}) \text{ is true} \},$$
(7)

$$\Gamma(\mathcal{E}) := \bigcup_{S \subseteq \{1, \dots, p\}} \Gamma_S(\mathcal{E}).$$
(8)

- Remark: $\Gamma(E) * \subseteq \Gamma$. $\Gamma(E1) \supseteq \Gamma(E2)$ if $E1 \subseteq E2$.
- Alternative form of H0

$$eta^{\operatorname{pred},e}(S) \ := \ \operatorname{argmin}_{eta \in \mathbb{R}^p: eta_k = 0 ext{ if } k \notin S} \ E(Y^e - X^e eta)^2$$

$$H_{0,S}(\mathcal{E}): \quad \begin{cases} \exists \beta \in \mathbb{R}^p \text{ and } \exists F_{\varepsilon} \text{ such that for all } e \in \mathcal{E} \text{ we have} \\ \beta^{\operatorname{pred},e}(S) \equiv \beta \text{ and } Y^e = X^e \beta + \varepsilon^e, \text{ where } \varepsilon^e \perp X^e_S \text{ and } \varepsilon^e \sim F_{\varepsilon}. \end{cases}$$
(10)

We conclude that

$$\Gamma_{S}(\mathcal{E}) = \begin{cases} \emptyset & \text{if } H_{0,S}(\mathcal{E}) \text{ is false} \\ \beta^{\text{pred},e}(S) & \text{otherwise.} \end{cases}$$
(11)

Construct Good estimators

Generic method for invariant prediction

- 1) For each set $S \subseteq \{1, \ldots, p\}$, test whether $H_{0,S}(\mathcal{E})$ holds at level α (we will discuss later concrete examples).
- 2) Set $\hat{S}(\mathcal{E})$ as

$$\hat{S}(\mathcal{E}) := \bigcap_{S:H_{0,S}(\mathcal{E}) \text{ not rejected}} S.$$
(12)

3) For the confidence sets, define

$$\hat{\Gamma}(\mathcal{E}) := \bigcup_{S \subseteq \{1, \dots, p\}} \hat{\Gamma}_S(\mathcal{E}), \tag{13}$$

where

$$\hat{\Gamma}_{S}(\mathcal{E}) := \begin{cases} \emptyset & H_{0,S}(\mathcal{E}) \text{ can be rejected at level } \alpha \\ \hat{C}(S) & \text{otherwise.} \end{cases}$$
(14)

Here, $\hat{C}(S)$ is a $(1 - \alpha)$ -confidence set for the regression vector $\beta^{\text{pred}}(S)$ that is obtained by pooling the data.

Good Coverage Guarantee

$$P[\hat{S}(\mathcal{E}) \subseteq S^*] \ge 1 - \alpha.$$
 $P[\gamma^* \in \hat{\Gamma}(\mathcal{E})] \ge 1 - 2\alpha.$

Method1: Regression method

- Observation: For all environments, Regression effects are identical to the causal coefficients $\beta^{\text{pred},e}(S^*) \equiv \gamma^*$ and $\sigma^e(S^*) \equiv \text{Var}(F_{\varepsilon})^{1/2}$.
- For each subset, we iterate through all environments
 - le be the set of observations in current e, ne = |le|. l-e: observations in other environments
 - Train OLS estimator on I-e and generate Y²e.
 - Compute D := Ye Y^e, which follows:

$$\frac{D^t \Sigma_D^{-1} D}{\hat{\sigma}^2 n_e} \sim F(n_e, n_{-e} - |S| - 1),$$

- Reject if $p < \alpha/|E|$
- Follow generic algorithm to get confidence region for S and $\boldsymbol{\gamma}$
- Reject Γ if Γ^S(E) = Ø, and βpred(S) is:

$$(\hat{\beta}^{\operatorname{pred}}(S))_S \pm t_{1-\alpha/(2|S|),n-|S|-1} \cdot \hat{\sigma} \operatorname{diag}((\mathbf{X}_S^t \mathbf{X}_S)^{-1}),$$

Method2: Faster Approach

- Motivation
 - Avoid computing matrix inversion intensively
 - Extend methods to non-linear approach
- Solution: fit one global model to all data and compare the distribution of the residuals in each experimental setting.
- For each subset, we iterate through all environments
 - Fit a linear regression model on all data to get an estimate β^{γ} pred(S).
 - Compute Residual R = Y X β [^]pred (S) for Re and R-e
 - Subtests:
 - T-test for Mean: H0: E(Re) = E(R-e) -> p value p0_e
 - F test for Variance: H0 Var(Re) = Var(-e) -> p value p1_e
 - Bf correction: Divide each p by |E| and summarize across environments.
 - Test if min{p0,p1} < alpha

Empirical Results - Simulation

- Data generated by Linear Gaussian SEMs 100 environment *1000 data
- Test if S^(E) = S* for each environment
- Baselines: Regression, etc.

Empirical Results – Real Data

- Genes Expression Activities:
 - p = 6170 genes.
 - n_obs = 160, n_int = 1479
 - True positive (x1,x2)
 - X1 is a direct parent of X2, if the activities of x2 intervening after X1 change dramatically (1% upper/lower quantile)

Empirical Results – Real Data

• Method II: eight causal effects that are significant at level 0.01 after a Bonferroni correction

			_				
mothod	Method I	Method II	GIES	IDA	marginal corr.		random
method					observ.	pooled	guessing
# of true							2 (95% quantile)
positives	6	6	2	2	1	2	3 (99% quantile)
(out of 8)							$4~(99.9\%~{\rm quantile})$

Identifiability results

• For a linear Gaussian SCM, Plausible causal predictor always give the true parent G(C) = DA(V) = DA(1)

 $S(\mathcal{E}) = \mathbf{PA}(Y) = \mathbf{PA}(1)$

- Constraint: if interventions are do-interventions, t least one single intervention on each variable other than Y
- We can release the constraint if :
 - Only one intervened environment
 - Let X_k0 be a youngest parent of Y, we intervene on X_k0 is enough

What if hidden variables exists - IV

• Motivation: Hidden variables H exists.

- Regressing Y on X does not yield a consistent estimator for γ *.
- Residuals Y Xs* γ is not always independent of causal predictors Xs
- Def of IV: IV variables only affect Y only through the exposure X and it is independent of confounders H

IV solution

- Solution: Define E as two distinct environments by collecting all samples with I (eg: I=0 vs I=1)
- Construct a weaker hypothesis

 $H_{0,S,hidden}(\mathcal{E}): \exists \gamma \in \mathbb{R}^p \text{ such that } \gamma_k = 0 \text{ if } k \notin S \text{ and}$ the distribution of $Y^e - X^e \gamma$ is identical for all $e \in \mathcal{E}$.

• Estimator

$$\hat{S}(\mathcal{E}) = igcap_{S:H_{0,S,hidden}(\mathcal{E})} igcap_{ ext{not rejected}} S.$$

• Great Coverage

Proposition 2 Consider model (23) and let $S^* = \{k : \gamma_k^* \neq 0\}$. Suppose the test for $H_{0,S,hidden}(\mathcal{E})$ is conducted at level α and \hat{S} is defined as in (26). Then

$$P[\hat{S}(\mathcal{E}) \subseteq S^*] \ge 1 - \alpha.$$

Q & A