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Broad ldea

* Causal Discovery:

* Discover causal structures given data collected from different
environments

* Property: Assume no hidden confounders, target y, all direct parents x.

* P(y|x) remain identical given any interventions other than y
environment e = 1:

* Research question: Can we efficiently find a set x2 such that P(y|x2) @\
remain identical. And it is highly possible that x2 1s similar to X @\ /
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Background — Structural Equation Models

* Linear Gaussian SEMs

Let the first block of data (e = 1) always correspond to an “observational” (linear) Gaus-
sian SEM. Here, a distribution over (X{,..., X; 1) is said to be generated from a Gaussian
SEM if

environment e = 1:

Xj=Y BxXi+e),  j=1...,p+1, (19) @

k#j
N
* Noise variables e: @
* Variables X \®/
* Environment: e

Y
* Based on causal graph, we have PA(j), DE(j), AN()... @

* Different interventions -> Different causal graphs
* Do-interventions
* Noise interventions



Invariance Definition

* Assumptionl: y* and S* are identical across all environments

Assumption 1 (Invariant prediction) There exists a vector of coefficients v* = (77, . .. ,fy;)t
with support S* := {k : v} # 0} C {1,...,p} that satisfies

foralle € £: X° has an arbitrary distribution and
Ye=p+ X"+ €°~F,;ande® 1L X5., (3)

where p € R is an intercept term, €® is random noise with mean zero, finite variance and
the same distribution F. across all e € £.

* Remark:
* No causality assumption
* S*x is not necessarily unique. Consider only one environment
* P(Y|X) are identical across environments



Relation to causality

e Consider Linear SEMs

Let the first block of data (e = 1) always correspond to an “observational” (linear) Gaus-

sian SEM. Here, a distribution over (X7,..., X; 1) is said to be generated from a Gaussian
SEM if
Xj=> BixXp+ej, j=1...p+1, (19)
ki

* All parents of Y form a set S*: S = PA(1), and y* = 31
* Proof Sketch:

* Intervention doesn’t influence y or outside noise variable
* Noise variable independent over Xs (not true with hidden confounders)



Eg: Gene Relation

* If Y|X are identical across different environments?
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Plausible Causal Structures

* Motivation: Identify X that satisfy invariance assumption

« Hypothesis test: foreach S € {1,...,p}

JF such that for all e € £
H, E)it =0ifk¢ S d
0,775( ) 7](5 1 ¢ an { Ye — Xe,y + 66, Whel'e 66 _”_ Xg’ and Ee Y FE'

* Plausible causal predictors

(i) We call the variables S C {1,...,p} plausible causal predictors under £ if the fol-
lowing null hypothesis holds true:

Hos(€): 3y €RP such that Ho 5(E) is true. (5)

(i) The identifiable causal predictors under interventions £ are defined as the following

subset of plausible causal predictors

S(€) := N S = () {k:yw#0} (6)

S:Hy g(E) is true v€eL(€)

* Remark: S(E) € S, S(E1) € S(E2) if E1 S E2



Plausible Causal Structures

e Plausible causal coefficients

Definition 2 (Plausible causal coefficients) We define the set I's(€) of plausible causal
coefficients for the set S C {1,...,p} and the global setT'(E) of plausible causal coefficients

under € as
Is(€) == {yeRP: Hy, (&) is true}, (7)
reE) = |J rs@). (8)
SC{1,...,p}

e Remark: [(E) * CT. T(E1)2(E2)ifE1 < E2.

e Alternative form of HO

BPee(S) = argmingegp.g,—0 it kgs E(Y® — X°B)°

38 € RP and 3F; such that for all e € £ we have
HO?S(g) : red,e — e e e e e e (10)
prrede(S) = B and Y€ = X5 + €, where ¢ 1L X§ and €° ~ F.
We conclude that
0 if Hy g(€) is false
I's(€) = ’ 11
s(€) { BPrede(S)  otherwise. (11)



Construct Good estimators

Generic method for invariant prediction

1) For each set S C {1,...,p}, test whether Hy g(£) holds at level a (we will discuss
later concrete examples).

2) Set S(€) as A
SE) = N S. (12)

S:Hp, s (&) not rejected

3) For the confidence sets, define

SC{1,...,p}
where

(14)

i €) = 0 Hj (&) can be rejected at level o
5 ] C(S) otherwise.

Here, C(S) is a (1 — a)-confidence set for the regression vector AP™4(S) that is

obtained by pooling the data.

Good Coverage Guarantee

P[SE)CS]> 1-a. Ply*ef(€)] > 1-2a




Method1: Regression method

* Observation: For all environments, Regression effects are identical to the causal coefficients
prrede(S§*) = 4* and  0°(S*) = Var(F;)"2.
* Foreach subset, we iterate through all environments
* |le be the set of observations in current e, ne = |le|. |-e: observations in other environments

e Train OLS estimator on I-e and generate Y'e.
 Compute D :=Ye - Y"e, which follows:

D'Y,'D

A2

~ F(ne,n_e —|S|—1),
22 ~ F(ne,n-c—|5| - 1)

* Rejectif p<oa/|E|
* Follow generic algorithm to get confidence region for S andy
* Reject INif I"S(E) = @, and Bpred(S) is:

(Bpred(S))Sitl_a/@lsl)’n_|S|_1-a‘ dlag((XgXS)_l)a



Method2: Faster Approach

* Motivation
* Avoid computing matrix inversion intensively
* Extend methods to non-linear approach

e Solution: fit one global model to all data and compare the distribution of the
residuals in each experimental setting.

* For each subset, we iterate through all environments
 Fit a linear regression model on all data to get an estimate B pred(S).
 Compute Residual R=Y - X B"pred (S) for Re and R-e
* Subtests:
* T-test for Mean: HO: E(Re) = E(R-e) -> p value p0_e
 F test for Variance: HO Var(Re) = Var(-e) -> p value p1_e
 Bf correction: Divide each p by |E| and summarize across environments.

e Test if min{p0,p1} < alpha



SUCCESS PROBABILITY

Empirical Results - Simulation

Baselines:

Regression, etc.
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Empirical Results — Real Data

observational training data interventional training data interventional test data point
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Empirical Results — Real Data

* Method II: eight causal effects that are significant at level 0.01 after a Bonferroni

correction
method Method I Method II GIES DA — reinal corr. random
observ. pooled guessing
# of true 2 (95% quantile)
positives 6 6 2 2 1 2 3 (99% quantile)
(out of 8) 4 (99.9% quantile)




|dentifiability results

* For alinear Gaussian SCM, Plausible causal predictor always give the true

parent
S(€) = PA(Y) = PA(1)

* Constraint: if interventions are do-interventions, t least one single
intervention on each variable other thanY

* We can release the constraintif :

* Only one intervened environment
* Let X_kO be ayoungest parent of Y, we intervene on X_kO is enough



What if hidden variables exists - IV

* Motivation: Hidden variables H exists.

H)

SN e

@ —D v- X+ g(He),

~_

* Regressing Y on X does not yield a consistent estimator for yx*.
* Residuals Y - Xs*y is not always independent of causal predictors Xs

* Def of IV: IV variables only affect Y only through the exposure X and itis
independent of confounders H



IV solution

Solution: Define E as two distinct environments by collecting all samples with | (eg:
1=0 vs I=1)

Construct a weaker hypothesis

Ho s hidden(€) :  Fy € RP such that v, =0if k£ ¢ S and
the distribution of Y — Xy is identical for all e € £.

Estimator

S(€) = N S.

S:Ho, s, hidden(€E) not rejected

Great Coverage

Proposition 2 Consider model (23) and let S* = {k : v} # 0}. Suppose the test for
Ho s hidden(E) is conducted at level o and S is defined as in Q26D. Then

A

PIS(E)C S8 > 1-a.



Q&A



