Invariant Risk Minimization

Authors: Martin Arjovsky, L´eon Bottou, Ishaan Gulrajani, David Lopez-Paz

February 21, 2025

Authors: Martin Arjovsky, L´eon Bottou, Isha

Invariant Risk Minimization

February 21, 2025

ML training is done via minimizing some training loss

Figure: Task: Classification of cows vs camels

Motivation

The problem

(a) Grassy background

(b) Sandy background

Figure: Training data contains biases

Camel?

Authors: Martin Arjovsky, L´eon Bottou, Isha

Invariant Risk Minimization

Correlations-vs-causations Minimizing training error leads machines into recklessly absorbing all the correlations found in training data. Spurious correlations (landscape, contexts) are unrelated to causal explanations of interest (animal shapes) **Causation** Correlations that are stable (invariant) across training environments.

Invariant Risk Minimization (IRM) principle To learn invariances across environments, find a data representation such that the optimal classifier on top of that representation matches for all environments.

1. IRM training objective to learn invariance features across different **training** environments

2. After achieving the desired invariance and a model with low error across training environments, we want to know:

a. When do these conditions imply invariance across all environments

b. When do these conditions lead to low error across **all** environments (basically, OOD generalization)

c. Connect invariance and OOD generalization to theory of causation

Datasets $D_e := \{(x_i^e, y_i^e)_{i=1}^{n_e} \text{ under multiple environments } e \in \mathcal{E}_{tr}$ A large set of unseen but related environments $\mathcal{E}_{all} \supset \mathcal{E}_{tr}$ Intuitive goal: Learn predictor $Y \approx f(X)$ that performs well across \mathcal{E}_{all} Denote

$$R^{e}(f) := \mathbb{E}_{X^{e}, Y^{e}}[\ell(f(X^{e}), Y^{e})]$$

is risk under environment e

Take $\ell = MSE$ or cross-entropy, then the *optimal predictors* can be written as conditional expectations.

Take $\ell = MSE$ or cross-entropy, then the *optimal predictors* can be written as conditional expectations.

We say a data representation $\Phi : \mathcal{X} \to \mathcal{H}$ elicits an invariant predictor across environment \mathcal{E} if and only if

$$\mathbb{E}[Y^e \mid \Phi(X^e) = h] = \mathbb{E}[Y^{e'} \mid \Phi(X^{e'}) = h]$$

 $\forall h \in \cap_{e \in \mathcal{E}} \operatorname{supp} (\Phi(X^e))$

Take $\ell = MSE$ or cross-entropy, then the *optimal predictors* can be written as conditional expectations.

We say a data representation $\Phi : \mathcal{X} \to \mathcal{H}$ elicits an invariant predictor across environment \mathcal{E} if and only if

$$\mathbb{E}[Y^e \mid \Phi(X^e) = h] = \mathbb{E}[Y^{e'} \mid \Phi(X^{e'}) = h]$$

 $\forall h \in \cap_{e \in \mathcal{E}} \operatorname{supp} (\Phi(X^e))$

Formal Def Say data representation Φ elicits an invariant predictor $w \circ \Phi$ across \mathcal{E} if there is a classifier $w : \mathcal{H} \to \mathcal{Y}$ simultaneously optimal $\forall e \in \mathcal{E}$:

 $w \in \arg\min_{\bar{w}} R^e(\bar{w} \circ \Phi)$ (optimization constraint)

$$\begin{split} & \min_{\substack{\Phi:\mathcal{X}\to\mathcal{H}\\w:\mathcal{H}\to\mathcal{Y}}} & \sum_{e\in\mathcal{E}_{\mathrm{tr}}} R^e(w\circ\Phi) \\ & \text{subject to} & w\in\arg\min_{\bar{w}:\mathcal{H}\to\mathcal{Y}} R^e(\bar{w}\circ\Phi), \text{ for all } e\in\mathcal{E}_{\mathrm{tr}}. \end{split}$$
(IRM)

Instantiate IRM into the practical version (derived in the paper):

$$\min_{\Phi:\mathcal{X}\to\mathcal{Y}}\sum_{e\in\mathcal{E}_{tr}}R^{e}(\Phi)+\lambda\cdot\|\nabla_{w|w=1.0}R^{e}(w\cdot\Phi)\|^{2}, \quad (\mathsf{IRMv1})$$

w = 1 is a scalar and fixed "dummy" classifier, $\lambda \in [0, \infty)$ is a regularizer balancing between predictive power and the invariance of the predictor $1 \cdot \Phi$

Estimate the objective IRMv1 using mini-batches for stochastic gradient descent (unbiased),

$$\sum_{k=1}^{b} \left[\nabla_{w|w=1.0} \ell(w \cdot \Phi(X_k^{e,i}), Y_k^{e,i}) \cdot \nabla_{w|w=1.0} \ell(w \cdot \Phi(X_k^{e,j}), Y_k^{e,j}) \right],$$

where $(X^{e,i}, Y^{e,i})$ and $(X^{e,j}, Y^{e,j})$ are two random mini-batches of size *b* from environment *e*.

1. Phrasing the constraints as a penalty

$$L_{\rm IRM}(\Phi, w) = \sum_{e \in \mathcal{E}_{\rm tr}} R^e(w \circ \Phi) + \lambda \cdot \mathbb{D}(w, \Phi, e) \tag{1}$$

 $\mathbb{D}(w, \Phi, e)$ measures how close w is to minimizing $R^e(w \circ \Phi)$, and $\lambda \in [0, \infty)$ is a hyper-parameter balancing predictive power and invariance.

Going from IRM to IRMv1

2. Choosing a penalty $\mathbb D$ for linear classifiers w

Consider learning an invariant predictor $w \circ \Phi$, where w is a linear-least squares regression, and Φ is a nonlinear data representation.

Figure: Different measures of invariance lead to different optimization landscapes. The naïve approach of measuring the distance between optimal classifiers $\mathbb{D}_{\rm dist}$ leads to a discontinuous penalty (solid blue unregularized, dashed orange regularized). In contrast, the penalty $\mathbb{D}_{\rm lin}$ does not exhibit these problems.

3. Fixing the linear classifier w

We recognize that when optimizing over (Φ, w) using \mathbb{D}_{lin} , a pair $(\gamma \Phi, \frac{1}{\gamma}w)$ can pick $\gamma \approx 0$ to drive \mathbb{D}_{lin} towards zero without touching the risk term. Similarly, note:

$$w \circ \Phi = \underbrace{\left(w \circ \Psi^{-1}
ight)}_{\widetilde{w}} \circ \underbrace{\left(\Psi \circ \Phi
ight)}_{\widetilde{\Phi}}.$$

 \rightarrow Can always re-parametrize our invariant predictor w and restrict it to be some non-zero value \tilde{w} of our choosing. This turns (1) into a relaxed version of IRM, where optimization only happens over Φ :

$$\mathcal{L}_{\mathrm{IRM},w=\tilde{w}}(\Phi) = \sum_{e \in \mathcal{E}_{\mathrm{tr}}} R^{e}(\tilde{w} \circ \Phi) + \lambda \cdot \mathbb{D}_{\mathrm{lin}}(\tilde{w}, \Phi, e).$$
(2)

Going from IRM to IRMv1

Scalar fixed classifiers \tilde{w} are sufficient to monitor invariance

Theorem

For all $e \in \mathcal{E}$, let $R^e : \mathbb{R}^d \to \mathcal{R}$ be convex differentiable cost functions. A vector $v \in \mathbb{R}^d$ can be written $v = \Phi^\top w$, where $\Phi \in \mathbb{R}^{p \times d}$, and where $w \in \mathbb{R}^p$ simultaneously minimize $R^e(w \circ \Phi)$ for all $e \in \mathcal{E}$, if and only if $v^\top \nabla R^e(v) = 0$ for all $e \in \mathcal{E}$. Furthermore, the matrices Φ for which such a decomposition exists are the matrices whose nullspace $\operatorname{Ker}(\Phi)$ is orthogonal to v and contains all the $\nabla R^e(v)$.

 \rightarrow Any linear invariant predictor can be decomposed as linear data representations of different ranks.

 \rightarrow can restrict our search to matrices $\Phi \in \mathbb{R}^{1 \times d}$ and let $\tilde{w} \in \mathbb{R}^1$ be the fixed scalar 1.0. This translates (2) into:

$$L_{\text{IRM},w=1.0}(\Phi^{\top}) = \sum_{e \in \mathcal{E}_{\text{train}}} R^{e}(\Phi^{\top}) + \lambda \cdot \mathbb{D}_{\text{lin}}(1.0, \Phi^{\top}, e).$$
(3)

IRM: promotes low error and invariance across training environments \mathcal{E}_{tr}

 $\stackrel{?}{\rightarrow} \mathsf{Invariance} + \mathsf{low} \; \mathsf{error} \; \mathsf{across} \; \mathcal{E}_{\mathsf{all}}$

Invariance $\stackrel{?}{\leftrightarrow}$ causality $\stackrel{?}{\leftrightarrow}$ OOD generalization

1. Environments \circ The data from all the environments share the same underlying Structural Equation Model C := (S, N) over the feature and outcome vector (X_1, \ldots, X_d, Y)

$$\mathcal{S}: X_i \leftarrow f_i(\mathsf{PA}(X_i), N_i)$$

• Then $\mathcal{E}_{all}(\mathcal{C})$ indexes all the interventional distributions $P(X^e, Y^e)$ obtainable by valid interventions e

1. Environments \circ The data from all the environments share the same underlying Structural Equation Model C := (S, N) over the feature and outcome vector (X_1, \ldots, X_d, Y)

 $S: X_i \leftarrow f_i(\mathsf{PA}(X_i), N_i)$

 \circ Then $\mathcal{E}_{\mathsf{all}}(\mathcal{C})$ indexes all the interventional distributions $P(X^e,Y^e)$ obtainable by valid interventions e

 \circ Intervention *e* is valid if they "do not destroy too much information about the target variable *Y*":

The causal graph remains acyclic,

$$\mathbb{E}[Y^e \mid \mathsf{Pa}(Y)] = \mathbb{E}[Y \mid \mathsf{Pa}(Y)],$$

 $\mathbb{V}[Y^e | Pa(Y)]$ remains within a finite range.

Invariance \leftrightarrow Causation: predictor $v : \mathcal{X} \to \mathcal{Y}$ is invariant on $\mathcal{E}_{all} \Leftrightarrow$ attains optimal $R^{OOD} \Leftrightarrow$ uses only the direct causal parents of Y to predict, $v(x) = \mathbb{E}_{N_Y}[f_Y(Pa(Y), N_Y)]$

$$R^{\text{OOD}} = \max_{e \in \mathcal{E}_{\text{all}}} R^e(f)$$

 \circ Diversity requirement: limits the extent to which the training environments are co-linear

Assumption

A set of training environments \mathcal{E}_{tr} lie in linear general position of degree r if $|\mathcal{E}_{tr}| > d - r + \frac{d}{r}$ for some $r \in$, and for all non-zero $x \in d$:

$$\dim\left(\operatorname{span}\left(\left\{X^{e}\left[X^{e}X^{e}^{\top}\right]x-_{X^{e},\epsilon^{e}}\left[X^{e}\epsilon^{e}\right]\right\}_{e\in\mathcal{E}_{tr}}\right)\right)>d-r.$$

2. Invariant Causal Prediction (ICP) theory (Peters, 2015)

Theorem (Invariant Causal Prediction - ICP)

Consider a (linear) Gaussian SEM with interventions. Then given the identifiable causal predictors $S(\mathcal{E})$ under interventions \mathcal{E} , all causal predictors are identifiable, that is

 $S(\mathcal{E}) = Pa(Y)$

if the interventions are do-interventions, noise interventions or simultaneous noise interventions

 \rightarrow IRM allows for non-Gaussian data, for linear transformation of the variables with stable and spurious correlations, does not require specific types of interventions or the existence of a causal graph

2. Invariant Causal Prediction (ICP) theory (Peters, 2015) **Theorem** (roughly stated): If one finds a representation $\Phi \in \mathbb{R}^{d \times d}$ of rank r eliciting an invariant predictor $w \circ \Phi$ across \mathcal{E}_{tr} , and \mathcal{E}_{tr} satisfying the diversity requirement, then $w \circ \Phi$ is invariant across \mathcal{E}_{all} .

The setting in consideration: • $Y^e = Z_1^e \cdot \gamma + \epsilon^e$, $Z_1^e \perp \epsilon^e$, $\mathbb{E}[\epsilon^e] = 0$. Z_1 : causal variables, Z_2 : non-causal variables

• $X^e = S(Z_1^e, Z_2^e)$, Z_1 component of S is invertible

3. OOD generalization (low error) across \mathcal{E}_{tr} + invariance across $\mathcal{E}_{all} = \mathbf{OOD}$ generalization across \mathcal{E}_{all}

$$\Rightarrow$$
 Invariance \leftrightarrow OOD generalization

Experiments results

Synthetic data generation process.

Figure 3: In our synthetic experiments, the task is to predict Y^e from $X^e = S(Z_1^e, Z_2^e)$.

Along with the following variations

◦ Scrambled (S) observations, where S is an orthogonal matrix, or unscrambled (U) observations, where S = I. ◦ Fully-observed (F) graphs, where $W_{h\rightarrow 1} = W_{h\rightarrow y} = W_{h\rightarrow 2} = 0$, or partially-observed (P) graphs, where $(W_{h\rightarrow 1}, W_{h\rightarrow y}, W_{h\rightarrow 2})$ are Gaussian. ◦ Homoskedastic (O) Y-noise, where $\sigma_y^2 = e^2$ and $\sigma_2^2 = 1$, or heteroskedastic (E) Y-noise, where $\sigma_y^2 = 1$ and $\sigma_2^2 = e^2$. ◦ The 3 training environments are $e \in \{0.2, 2, 5\}$ and we draw 1000 samples from each environment.

Experiments results

Figure 4: Average errors on causal (plain bars) and non-causal (striped bars) weights for our synthetic experiments. The y-axes are in log-scale. See main text for details.

∃ →

Color each image in MNIST with either red or green in a way that correlates strongly (but spuriously) with the class label.

Three environments (two training, one test) formed by:

• Assign a preliminary binary label \tilde{y} based on the digit: $\tilde{y} = 0$ for digits 0-4 and $\tilde{y} = 1$ for digits 5-9, then flip \tilde{y} with probability 0.25 to get the final label y.

• Sample a color ID z by flipping y with probability p_e , which is 0.2 (first environment), 0.1 (second), or 0.9 (test).

 \circ Color each image red if z = 1 or green if z = 0.

Experiments results

Algorithm	Acc. train envs.	Acc. test env.
ERM IRM (ours)	$87.4 \pm 0.2 \\ 70.8 \pm 0.9$	$\begin{array}{c} 17.1\pm0.6\\ \textbf{66.9}\pm\textbf{2.5} \end{array}$
Random guessing (hypothetical) Optimal invariant model (hypothetical) ERM, grayscale model (oracle)	$50 \\ 75 \\ 73.5 \pm 0.2$	$50 \\ 75 \\ 73.0 \pm 0.4$

Table 1: Accuracy (%) of different algorithms on the Colored MNIST synthetic task. ERM fails in the test environment because it relies on spurious color correlations to classify digits. IRM detects that the color has a spurious correlation with the label and thus uses only the digit to predict, obtaining better generalization to the new unseen test environment.

Figure 5: P(y = 1|h) as a function of h for different models trained on Colored MNIST: (left) an ERM-trained model, (center) an IRM-trained model, and (right) an ERM-trained model which only sees grayscale images and therefore is perfectly invariant by construction. IRM learns approximate invariance from data alone and generalizes well to the test environment.

Authors: Martin Arjovsky, L´eon Bottou, Isha

Invariant Risk Minimization