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Motivation

ML training is done via minimizing some training loss

Figure: Task: Classification of cows vs camels

Authors: Martin Arjovsky, L´eon Bottou, Ishaan Gulrajani, David Lopez-PazInvariant Risk Minimization February 21, 2025 2 / 23



Motivation

The problem

(a) Grassy background (b) Sandy background

Figure: Training data contains biases

Camel?
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The problem

Correlations-vs-causations Minimizing training error leads machines into
recklessly absorbing all the correlations found in training data.

Spurious correlations (landscape, contexts) are unrelated to causal
explanations of interest (animal shapes) Causation Correlations that are

stable (invariant) across training environments.

Invariant Risk Minimization (IRM) principle To learn invariances
across environments, find a data representation such that the optimal
classifier on top of that representation matches for all environments.
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Outline

1. IRM training objective to learn invariance features across different
training environments
2. After achieving the desired invariance and a model with low error across
training environments, we want to know:
a. When do these conditions imply invariance across all environments
b. When do these conditions lead to low error across all environments

(basically, OOD generalization)
c. Connect invariance and OOD generalization to theory of causation
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Problem formulation

Datasets De := {(xei , y ei }
ne
i=1 under multiple environments e ∈ Etr

A large set of unseen but related environments Eall ⊃ Etr
Intuitive goal: Learn predictor Y ≈ f (X ) that performs well across Eall
Denote

Re(f ) := EX e ,Y e [ℓ(f (X e),Y e)]

is risk under environment e
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Problem formulation

Take ℓ = MSE or cross-entropy, then the optimal predictors can be written
as conditional expectations.

We say a data representation Φ : X → H elicits an invariant predictor
across environment E if and only if

E[Y e | Φ(X e) = h] = E[Y e′ | Φ(X e′) = h]

∀h ∈ ∩e∈E supp (Φ(X e))

Formal Def Say data representation Φ elicits an invariant predictor w ◦ Φ
across E if there is a classifier w : H → Y simultaneously optimal ∀e ∈ E :

w ∈ argmin
w̄

Re(w̄ ◦ Φ) (optimization constraint)
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IRM as optimization problem

min
Φ:X→H
w :H→Y

∑
e∈Etr

Re(w ◦ Φ)

subject to w ∈ arg min
w̄ :H→Y

Re(w̄ ◦ Φ), for all e ∈ Etr.
(IRM)

Instantiate IRM into the practical version (derived in the paper):

min
Φ:X→Y

∑
e∈Etr

Re(Φ) + λ · ∥∇w |w=1.0 R
e(w · Φ)∥2, (IRMv1)

w = 1 is a scalar and fixed “dummy” classifier, λ ∈ [0,∞) is a regularizer
balancing between predictive power and the invariance of the predictor 1 ·Φ
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Implementing IRMv1

Estimate the objective IRMv1 using mini-batches for stochastic gradient
descent (unbiased),

b∑
k=1

[
∇w |w=1.0ℓ(w · Φ(X

e,i
k ),Y e,i

k ) · ∇w |w=1.0ℓ(w · Φ(X
e,j
k ),Y e,j

k )
]
,

where (X e,i ,Y e,i ) and (X e,j ,Y e,j) are two random mini-batches of size b
from environment e.
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Going from IRM to IRMv1

1. Phrasing the constraints as a penalty

LIRM(Φ,w) =
∑
e∈Etr

Re(w ◦ Φ) + λ · D(w ,Φ, e) (1)

D(w ,Φ, e) measures how close w is to minimizing Re(w ◦ Φ), and
λ ∈ [0,∞) is a hyper-parameter balancing predictive power and invariance.
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Going from IRM to IRMv1

2. Choosing a penalty D for linear classifiers w
Consider learning an invariant predictor w ◦ Φ, where w is a linear-least
squares regression, and Φ is a nonlinear data representation.

Figure: Different measures of invariance lead to different optimization landscapes.
The näıve approach of measuring the distance between optimal classifiers Ddist

leads to a discontinuous penalty (solid blue unregularized, dashed orange
regularized). In contrast, the penalty Dlin does not exhibit these problems.
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Going from IRM to IRMv1

3. Fixing the linear classifier w
We recognize that when optimizing over (Φ,w) using Dlin, a pair
(γΦ, 1γw) can pick γ ≈ 0 to drive Dlin towards zero without touching the
risk term. Similarly, note:

w ◦ Φ =
(
w ◦Ψ−1

)︸ ︷︷ ︸
w̃

◦ (Ψ ◦ Φ)︸ ︷︷ ︸
Φ̃

.

→ Can always re-parametrize our invariant predictor w and restrict it to
be some non-zero value w̃ of our choosing. This turns (1) into a relaxed
version of IRM, where optimization only happens over Φ:

LIRM,w=w̃ (Φ) =
∑
e∈Etr

Re(w̃ ◦ Φ) + λ · Dlin(w̃ ,Φ, e). (2)
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Going from IRM to IRMv1

Scalar fixed classifiers w̃ are sufficient to monitor invariance

Theorem

For all e ∈ E , let Re : Rd → R be convex differentiable cost functions. A
vector v ∈ Rd can be written v = Φ⊤w , where Φ ∈ Rp×d , and where
w ∈ Rp simultaneously minimize Re(w ◦ Φ) for all e ∈ E , if and only if
v⊤∇Re(v) = 0 for all e ∈ E . Furthermore, the matrices Φ for which such
a decomposition exists are the matrices whose nullspace Ker(Φ) is
orthogonal to v and contains all the ∇Re(v).

→ Any linear invariant predictor can be decomposed as linear data
representations of different ranks.
→ can restrict our search to matrices Φ ∈ R1×d and let w̃ ∈ R1 be the
fixed scalar 1.0. This translates (2) into:

LIRM,w=1.0(Φ
⊤) =

∑
e∈Etrain

Re(Φ⊤) + λ · Dlin(1.0,Φ
⊤, e). (3)
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When does IRM work?

IRM: promotes low error and invariance across training environments Etr

?→ Invariance + low error across Eall

Invariance
?↔ causality

?↔ OOD generalization
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When does IRM work?

1. Environments ◦ The data from all the environments share the same
underlying Structural Equation Model C := (S,N) over the feature and
outcome vector (X1, . . . ,Xd ,Y )

S : Xi ← fi (PA(Xi ),Ni )

◦ Then Eall(C) indexes all the interventional distributions P(X e ,Y e)
obtainable by valid interventions e

◦ Intervention e is valid if they “do not destroy too much information
about the target variable Y ”:
The causal graph remains acyclic,
E[Y e | Pa(Y )] = E[Y | Pa(Y )],
V[Y e | Pa(Y )] remains within a finite range.
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When does IRM work?

Invariance ↔ Causation: predictor v : X → Y is invariant on Eall ⇔
attains optimal ROOD ⇔ uses only the direct causal parents of Y to
predict, v(x) = ENY

[fY (Pa(Y ),NY )]

ROOD = max
e∈Eall

Re(f )
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When does IRM work?

◦ Diversity requirement: limits the extent to which the training
environments are co-linear

Assumption

A set of training environments Etr lie in linear general position of degree r
if |Etr| > d − r + d

r for some r ∈, and for all non-zero x ∈d :

dim

(
span

({
X e

[
X eX e⊤

]
x −X e ,ϵe [X

eϵe ]
}
e∈Etr

))
> d − r .
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When does IRM work?

2. Invariant Causal Prediction (ICP) theory (Peters, 2015)

Theorem (Invariant Causal Prediction - ICP)

Consider a (linear) Gaussian SEM with interventions. Then given the
identifiable causal predictors S(E) under interventions E , all causal
predictors are identifiable, that is

S(E) = Pa(Y )

if the interventions are do-interventions, noise interventions or
simultaneous noise interventions

→ IRM allows for non-Gaussian data, for linear transformation of the
variables with stable and spurious correlations, does not require specific
types of interventions or the existence of a causal graph
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When does IRM work?

2. Invariant Causal Prediction (ICP) theory (Peters, 2015)
Theorem (roughly stated): If one finds a representation Φ ∈ Rd×d of rank
r eliciting an invariant predictor w ◦ Φ across Etr, and Etr satisfying the
diversity requirement, then w ◦ Φ is invariant across Eall.

The setting in consideration:
◦ Y e = Z e

1 · γ + ϵe , Z e
1 ⊥ ϵe , E[ϵe ] = 0. Z1: causal variables, Z2:

non-causal variables
◦ X e = S(Z e

1 ,Z
e
2 ), Z1 component of S is invertible

3. OOD generalization (low error) across Etr + invariance across
Eall = OOD generalization across Eall

⇒ Invariance ↔ OOD generalization
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Experiments results

Synthetic data generation process.

Along with the following variations
◦ Scrambled (S) observations, where S is an orthogonal matrix, or
unscrambled (U) observations, where S = I .
◦ Fully-observed (F) graphs, where Wh→1 = Wh→y = Wh→2 = 0, or
partially-observed (P) graphs, where (Wh→1,Wh→y ,Wh→2) are Gaussian.
◦ Homoskedastic (O) Y -noise, where σ2

y = e2 and σ2
2 = 1, or

heteroskedastic (E) Y -noise, where σ2
y = 1 and σ2

2 = e2.
◦ The 3 training environments are e ∈ {0.2, 2, 5} and we draw 1000
samples from each environment.
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Experiments results
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Experiments results

Color each image in MNIST with either red or green in a way that
correlates strongly (but spuriously) with the class label.
Three environments (two training, one test) formed by:
◦ Assign a preliminary binary label ỹ based on the digit: ỹ = 0 for digits
0-4 and ỹ = 1 for digits 5-9, then flip ỹ with probability 0.25 to get the
final label y .
◦ Sample a color ID z by flipping y with probability pe , which is 0.2 (first
environment), 0.1 (second), or 0.9 (test).
◦ Color each image red if z = 1 or green if z = 0.
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Experiments results
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