Reinforcement Learning with Human Feedback

Priyank Agrawal IEOR, Columbia University

Presentation

Part 1	Typical RL setting
	Case for preference-based learning
	Choice Models, BTL
	(Deep) Learning from human preferences and PbRL paper
Part 2	RLHF pipeline
	Primer for the PPO algorithm
	PPO algorithm
	DPO algorithm
Part 3	Limitations

Part 4

Conclusion and after thoughts

Part 1

- A typical RL setting
- Making a case for preference-based learning.
- Choice Models: BTL
- (Deep) Learning from human preferences and PbRL paper

Success of Reinforcement Learning

Game playing, robotics, online shopping

Inventory management, Resource management/Queuing

- 1. Large but tractable set of state and actions
- 2. Markovian transitions.

- (Largely) offline problem
- Past data = $\{s_1, a_1, s_2, a_2, \dots s_T, a_T\}$.
- Potential goals
 - (Task learning) reach a goal state fast
 - (Long-term decision making) prioritize reaching certain "good" states often.
- Train a loss function that emphasizes the desired goal(s) and finds a good policy.

- (Largely) offline problem
- Past data = { $s_1, a_1, s_2, a_2, ..., s_T, a_T$ }.
- Potential goals
 - (Task learning) reach a goal state fast
 - (Long-term decision making) prioritize reaching certain "good" states often.
- Train a loss function that emphasizes the desired goal(s) and finds a good policy.

- 1. Large but tractable set of state and actions
- 2. Markovian transitions and rewards

- (Largely) offline problem
- Past data = { $s_1, a_1, r_1, s_2, a_2, r_2 \dots s_T, a_T, r_T$ }.
- Potential goals
 - (Task learning) reach a goal state fast : high reward for the goal state, negative reward for non-goal states.
 - (Long-term decision making) prioritize reaching certain "good" states often: choice of reward selection.
- Train a loss function that emphasizes the desired goal(s) and finds a good policy.

- Large but tractable set of state and actions
- 2. Markovian transitions and rewards

1. Large but tractable set of state and actions

- Past data = { $s_1, a_1, r_1, s_2, a_2, r_2 \dots s_T, a_T, r_T$ }.
- Define Value function $V^{\pi} = E_{a \sim \pi, s \sim P}[\sum_{t \geq 1} \gamma^{t} r(s_{t}, a_{t})], 0 < \gamma \leq 1.$

• Find
$$\pi$$
 such that $V^{\pi^*} - V^{\pi} \leq \epsilon$, $V^{\pi^*} = \max_{\pi'} V^{\pi'}$.

1. Large but tractable set of state and actions

- Past data = { $s_1, a_1, r_1, s_2, a_2, r_2 \dots s_T, a_T, r_T$ }.
- Define Value function $V^{\pi} = E_{a \sim \pi, s \sim P}[\sum_{t \geq 1} \gamma^t r(s_t, a_t)], \ 0 < \gamma \leq 1.$

• Find
$$\pi$$
 such that $V^{\pi^*} - V^{\pi} \leq \epsilon$, $V^{\pi^*} = \max_{\pi'} V^{\pi'}$.

- Reward feedback can be provided by human labelers, machine etc.
- Primary difference that we consider is that there is trajectory level preference feedback.

Typical RL instance requires significant reward-engineering, domain knowledge and definition of a compact reward function.

• Reward hacking

- Example: Say a robotic vacuum cleaner learns to hide dirt instead of actually, removing the dirt.
- Designing "unhackable" reward functions.

Typical RL instance requires significant reward-engineering, domain knowledge and definition of a compact reward function.

• Reward hacking

- Example: Say a robotic vacuum cleaner learns to hide dirt instead of actually, removing the dirt.
- Designing "unhackable" reward functions.
- Reward shaping
 - Example: robot picking a glass what is a good reward function? Goal "image" of glass in air? What if the glass has a dark liquid or background changes?

Typical RL instance requires significant reward-engineering, domain knowledge and definition of a compact reward function.

• Reward hacking

- Example: Say a robotic vacuum cleaner learns to hide dirt instead of actually, removing the dirt.
- Designing "unhackable" reward functions.
- Reward shaping
 - Example: robot picking a glass what is a good reward function? Goal "image" of glass in air? What if the glass has a dark liquid or background changes?

• Multi-objective reward

• Example: Economic policies that prioritize economic growth without letting inflation grow too much.

Preference-based learning

- $\tau_1 = \{s_1, a_1, s_2, a_2, \dots, s_t, a_t\}$ and $\tau_2 = \{s'_1, a'_1, s'_2, a'_2, \dots, s'_t, a'_t\}$. Typical feedback $\{\tau_1 \ge \tau_2\}$.
- Can utilize expert feedback, non-expert "common-sense" feedback
- Comparing two options is often easier than generating an expert trajectory (Imitation learning) or finding a reward function first from human demonstrations (Inverse RL) to train an agent.

Preference modeling example

- There are 30 basketball teams in the NBA, each playing 82 games in the regular season (so there are 1230 total games).
- We observe, at the end of the regular season, which two teams (*i*, *j*) played in each game, and whether team i or team j won.
- How can we rank the teams and/or determine the strength of each team?

Preference modeling example

- There are 30 basketball teams in the NBA, each playing 82 games in the regular season (so there are 1230 total games).
- We observe, at the end of the regular season, which two teams (*i*, *j*) played in each game, and whether team i or team j won.
- How can we rank the teams and/or determine the strength of each team?
- The simplest strategy might be to compare the number of games won by each team.

Preference modeling example

- There are 30 basketball teams in the NBA, each playing 82 games in the regular season (so there are 1230 total games).
- We observe, at the end of the regular season, which two teams (*i*, *j*) played in each game, and whether team i or team j won.
- How can we rank the teams and/or determine the strength of each team?
- The simplest strategy might be to compare the number of games won by each team.
- However, the NBA season is structured so that every team plays every other team a different number of times (between 2 and 4).
- The teams have different "strengths of schedule", meaning that some teams play stronger opponents more frequently than do other teams.
- These teams might have worse win-loss records, but in fact be better than other teams that won more games against weaker opponents.

Bradley-Terry Model (BTL)

- Let $\beta_i \in R$, denote the strength of team *i*.
- Let the outcome of the game between teams *i*, *j* be determined by $\beta_i \beta_j$.
- Then **Bradley Terry Model** assumes the outcome as an independent Bernoulli random variable with distribution Bernoulli (p_{ij}) , where the log-odds corresponding to the probability p_{ij} that the team i beats team j is modeled as,

$$\log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \beta_i - \beta_j.$$
$$p_{ij} = \frac{e^{\beta_i - \beta_j}}{1 + e^{\beta_i - \beta_j}} = \frac{e^{\beta_i}}{e^{\beta_i} + e^{\beta_j}}.$$

Bradley-Terry Model (BTL)

- Let $\beta_i \in R$, denote the strength of team *i*.
- Let the outcome of the game between teams *i*, *j* be determined by $\beta_i \beta_j$.
- Then **Bradley Terry Model** assumes the outcome as an independent Bernoulli random variable with distribution Bernoulli (p_{ij}) , where the log-odds corresponding to the probability p_{ij} that the team i beats team j is modeled as,

$$\log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \beta_i - \beta_j.$$
$$p_{ij} = \frac{e^{\beta_i - \beta_j}}{1 + e^{\beta_i - \beta_j}} = \frac{e^{\beta_i}}{e^{\beta_i} + e^{\beta_j}}.$$

- Invariant under constant scaling, outcomes independent of non-competing teams
- Model can be enhanced by parametrizations and link functions $\beta_i \leftarrow \sigma(f(\beta_i))$.

labels:

$$\operatorname{loss}(\hat{r}) = -\sum_{(\sigma^1, \sigma^2, \mu) \in \mathcal{D}} \mu(1) \log \hat{P} \big[\sigma^1 \succ \sigma^2 \big] + \mu(2) \log \hat{P} \big[\sigma^2 \succ \sigma^1 \big].$$

"Deep Reinforcement Learning from Human Preferences", 2017

Part 2

- PPO algorithm
- RLHF
- DPO algorithm

A primer to the (Proximal Policy Optimization) PPO algorithm: Non-RL view

Minorize-Maximization (MM) Algorithm

How to optimize a function like $f(\theta) = V^{\pi_{\theta}}$?

Steps in MM algorithm

Minorize-Maximization (MM) Algorithm

How to optimize a function like $\eta(\theta) = V^{\pi_{\theta}}$?

Steps in MM algorithm

- The algorithm proceeds in iteration i = 1,2,3, ...
- Let $M_i = g(\theta | \theta_i)$ be a surrogate which be **minorized version** of the objective function $f(\theta)$, satisfying
 - $g(\theta|\theta_i) \leq f(\theta) \forall \theta$.
 - $g(\theta_i|\theta_i) = f(\theta_i).$
- The algorithm maximizes $g(\theta|\theta_i)$ instead:
 - $\theta_{i+1} = argmax_{\theta}g(\theta|\theta_i).$

The above method guarantees that $f(\theta_i)$ converges to a local optima or saddle point as $i \to \infty$. $f(\theta_{i+1}) \ge g(\theta_{i+1}|\theta_i) \ge g(\theta_i|\theta_i) = f(\theta_i).$

- If $g(\theta) = f(\theta)$, that is if we optimize $V^{\pi_{\theta}}$ directly then we get the family of the policy gradient <u>algorithms.</u>
 - Examples include REINFORCE [Williams 1988, Williams 1992], DQN [2016], among others
 - Practical implementations still involved formulations (e.g. Baseline trick) and engineering heuristics (DQN for Atari)

policy gradient (steepest direction to maximize rewards)

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

$$T =
abla_ heta J(\pi_ heta) = \mathop{\mathrm{E}}_{ au \sim \pi_ heta} \left[\sum_{t=0}^\infty \gamma^t
abla_ heta \log \pi_ heta(a_t|s_t) A^{\pi_ heta}(s_t,a_t)
ight]^{-1}$$

$$\theta_{k+1} = \theta_k + \alpha g$$

take a gradient step in updating the policy

- If $g(\theta) = f(\theta)$, that is if we optimize $V^{\pi_{\theta}}$ directly then we get the family of the policy gradient <u>algorithms.</u>
 - Examples include REINFORCE [Williams 1988, Williams 1992], DQN [2016], among others
 - Practical implementations still involved formulations (e.g. Baseline trick) and engineering heuristics (DQN for Atari)

• First order methods assume the Value function surface to be flat. High curvature can be bad for learning

- If $g(\theta) = f(\theta)$, that is if we optimize $V^{\pi_{\theta}}$ directly then we get the family of the policy gradient <u>algorithms.</u>
 - Examples include
 - Practical implem (DQN for Atari)

• Susceptible to learning rate schedule, large policy changes

A primer to the PPO algorithm:

- Choice of $g(\theta)$ that minorizes $f(\theta)$
 - Key idea: We find π' that **locally** improves $J(\pi')$ when compared to $J(\pi_{old})$ for some π_{old} .
 - Suppose the objective is $\max_{\pi'} J(\pi') = E_{a \sim \pi', s \sim P}[\sum_{t \ge 1} \gamma^t r_t]$
 - We only care about the argmax policy
 - So instead consider the objective $f(\theta) = \max_{\pi'} J(\pi') J(\pi)$
 - We will find a function $g(\theta)$ that minorizes $f(\theta)$: [result of the famous TRPO 2015 paper]

$$J(\pi') - J(\pi) \geq \frac{\mathcal{L}_{\pi}(\pi') - C_{\sqrt{\sum_{s \sim d^{\pi}} [D_{\mathcal{KL}}(\pi'||\pi)[s]]}}{\mathsf{M}}$$

- Choice of $L_{\pi}(\pi')$ is very specific.
- Key point M is non-negative therefore we have monotonic improvement

A primer to the PPO algorithm

$$\max_{\pi'} \mathcal{L}_{\pi} (\pi') - C_{\sqrt{\sum_{s \sim d^{\pi_k}} [D_{\mathcal{K}\mathcal{L}}(\pi'||\pi)[s]]}}$$
or
$$\max_{\pi'} \mathcal{L}_{\pi} (\pi')$$
s.t. $\underset{s \sim d^{\pi}}{\to} [D_{\mathcal{K}\mathcal{L}}(\pi'||\pi)[s]] \leq \delta$

A primer to the PPO algorithm

$$\max_{\pi'} \mathcal{L}_{\pi} (\pi') - C_{\sqrt{\sum_{s \sim d^{\pi_k}} [D_{\mathcal{K}L}(\pi'||\pi)[s]]}}$$
or
$$\max_{\pi'} \mathcal{L}_{\pi} (\pi')$$
s.t. $\underset{s \sim d^{\pi}}{\to} [D_{\mathcal{K}L}(\pi'||\pi)[s]] \leq \delta$

- Approximate the expected advantage function locally around the current policy.
- The accuracy decreases when the new policy and the current policy diverge from each other.
- KL term acts as an upper bound for the error.

The PPO algorithm [2017]

• The two variants of the PPO algorithm

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

$$heta_{k+1} = rg\max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{D}_{ extsf{ extsf{KL}}}(heta|| heta_k)$$

by taking K steps of minibatch SGD (via Adam) if $\overline{D}_{KL}(\theta_{k+1}||\theta_k) \ge 1.5\delta$ then $\beta_{k+1} = 2\beta_k$ else if $\overline{D}_{KL}(\theta_{k+1}||\theta_k) \le \delta/1.5$ then $\beta_{k+1} = \beta_k/2$ end if end for

The PPO algorithm [2017]

• The two variants of the PPO algorithm

 $r_t(heta) = \pi_{ heta}(a_t|s_t)/\pi_{ heta_k}(a_t|s_t)$

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

 $heta_{k+1} = rg\max_{ heta} \mathcal{L}^{\mathit{CLIP}}_{ heta_k}(heta)$

by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathop{\mathrm{E}}_{\tau \sim \pi_k} \left[\sum_{t=0}^{T} \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \operatorname{clip}\left(r_t(\theta), 1-\epsilon, 1+\epsilon\right) \hat{A}_t^{\pi_k}) \right] \right]$$

end for

The PPO algorithm [2017]

- The PPO algorithm is easy to implement in practice and works well.
- Only a few lines of code change from the vanilla policy gradient algorithm (clipped version works well)
- Paper shows it to perform better or similar than contemporary algorithms on variety of tasks.
- TRPO[2015] introduced the idea of using a surrogate loss to optimize the value function. PPO simplifies the implementation with stronger performance.

RLHF Pipeline and DPO

- <u>Key takeaway from PPO: we have a surrogate reward function that approximately</u> <u>minorizes the reward function of our interest, we optimize the surrogate reward function</u> <u>instead.</u>
- Foundation models may not have "human-need-aligned" output therefore they need to be fine-tuned to satisfy ethics/safety/security constraints or for a specific use-case.
- RLHF in the context of foundation model fine-tuning refers to a 3 step process, where PPO is used in the 3rd step.
- **Direct Preference Optimization (DPO)** is an efficient way of combining the 2nd and the 3rd steps of the RLHF pipeline.

Slides from Rafael Rafailov Archit Sharma Eric Mitchell

Direct Preference Optimization: A New RLHF Approach

Rafael Rafailov Archit Sharma Eric Mitchell

Stanford University
Step 1

Collect demonstration data, and train a supervised policy.

A prompt is \bigcirc sampled from our Explain the moon prompt dataset. landing to a 6 year old A labeler C demonstrates the desired output behavior. Some people went to the moon... This data is used to fine-tune GPT-3 with supervised learning.

l. BBB

Training language models to follow instructions with human feedback, Ouyang et. al. 2022 Stanford University

Step 2

Collect comparison data, and train a reward model.

Training language models to follow instructions with human feedback, Ouyang et. al. 2022 Stanford University

Step 2

Collect comparison data, and train a reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

olicy

Write a story about frogs

The policy generates an output.

The reward model calculates a reward for

the output.

The reward is used to update the policy using PPO.

Training language models to follow instructions with human feedback, Ouyang et. al. 2022

Step 3 Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

2

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Training language models to follow instructions with human feedback, Ouyang et. al. 2022 Stanford University

Feedback comes as preferences over model samples: $\mathcal{D} = \{x^i, y^i_w, y^i_l\}$

Feedback comes as **preferences over model samples**:

$$\mathcal{D} = \{ x^i, y^i_w, y^i_l \}_{\text{Prompt}}$$

Preferred response

Feedback comes as **preferences over model samples**:

:
$$\mathcal{D} = \{x^i, y^i_w, y^i_l\}$$

Prompt Dispreferred response

Preferred response

Bradley-Terry Model connects rewards to preferences:

Feedback comes as **preferences over model samples**:

$$\mathcal{D} = \{ x^i, y^i_w, y^i_l \}$$
Prompt Dispreferred response

Preferred response

Bradley-Terry Model connects rewards to preferences:

$$p(y_w \succ y_l \mid x) = \sigma(r(x, y_w) - r(x, y_l))$$

Feedback comes as preferences over model samples:

$$\mathcal{D} = \{x^i, y^i_w, y^i_l\}$$

Preferred response

Bradley-Terry Model connects rewards to preferences:

Reward assigned to preferred and dispreferred responses

$$p(y_w \succ y_l \mid x) = \sigma(r(x, y_w) - r(x, y_l))$$

Feedback comes as preferences over model samples:

$$\mathcal{D} = \{x^i, y^i_w, y^i_l\}$$

Preferred response

response

Bradley-Terry Model connects rewards to preferences:

 $p(y_w \succ y_l \mid x) = \sigma(r(x, y_w) - r(x, y_l))$

Train the reward model by **minimizing negative log likelihood:**

Feedback comes as preferences over model samples:

$$\mathcal{D} = \{ x^i, y^i_w, y^i_l \}_{\text{Prompt}}$$

Preferred response

Bradley-Terry Model connects rewards to preferences:

$$p(y_w \succ y_l \mid x) = \sigma(r(x, y_w) - r(x, y_l))$$

Train the reward model by **minimizing negative log likelihood:**

$$\mathcal{L}_R(\phi, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r_\phi(x, y_w) - r_\phi(x, y_l)) \right]$$

Step 2

Collect comparison data, and train a reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

olicy

Write a story about frogs

The policy generates an output.

The reward model calculates a reward for

the output.

The reward is used to update the policy using PPO.

Training language models to follow instructions with human feedback, Ouyang et. al. 2022

Step 2

Collect comparison data, and train a reward model.

Training language models to follow instructions with human feedback, Ouyang et. al. 2022 Stanford University

Now we have a **reward model** r_{ϕ} that represents* **goodness according to humans**

Now we have a **reward model** r_{ϕ} that represents* **goodness according to humans**

Now, learn a policy π_{θ} achieving **high reward**

Now we have a **reward model** r_{ϕ} that represents* **goodness according to humans**

Now, learn a policy π_{θ} achieving **high reward**

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right]$$

Now we have a **reward model** r_{ϕ} that represents* **goodness according to humans**

Now, learn a policy π_{θ} achieving **high reward**

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} [r_{\phi}(x, y)]$$
Sample from policy Want high reward...

Now we have a **reward model** r_{ϕ} that represents* **goodness according to humans**

Now, learn a policy π_{θ} achieving **high reward** while **staying close** to original model π_{ref}

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} [r_{\phi}(x, y)]$$
Sample from policy Want high reward...

Now we have a **reward model** r_{ϕ} that represents* **goodness according to humans**

Now, learn a policy π_{θ} achieving high reward while staying close to original model π_{ref}

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} [r_{\phi}(x, y)] - \beta \mathbb{D}_{\mathrm{KL}} [\pi_{\theta}(y|x) || \pi_{\mathrm{ref}}(y|x)]$$
Sample from policy
Want high reward
but keep KL to original model smaller

...but keep KL to original model small!

Want high reward...

RLHF Objective

(get **high reward**, stay **close** to reference model)

RLHF Objective

(get **high reward**, stay **close** to reference model)

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} (\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$$

any reward function

 $\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x) \right)$

RLHF Objective

(get high reward, stay close to reference model)

any reward function

RLHF Objective

 $\max_{-} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x) \right)$ (get high reward, stay close to reference model)

Closed-form Optimal Policy

(write optimal policy as function of reward function; from prior work)

RLHF Objective

(get high reward, stay close to reference model)

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}}(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$$

Closed-form Optimal Policy

(write **optimal policy** as function of **reward function**; from prior work)

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta} r(x, y)\right)$$

RLHF Objective

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} (\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$$

and real free ations

(get high reward, stay close to reference model)

Closed-form Optimal Policy

(write **optimal policy** as function of **reward function**; from prior work)

$$\pi^{*}(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$

with $Z(x) = \sum_{y} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$

RLHF Objective

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}}(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$$

a maxima way and firm attack

(get high reward, stay close to reference model)

Closed-form Optimal Policy

(write **optimal policy** as function of **reward function**; from prior work)

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$

with $Z(x) = \sum_{y} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$
Note intractable sum over possible responses; can't immediately use this

RLHF Objective

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}}(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$$

a maxima way and firm attack

(get high reward, stay close to reference model)

Closed-form Optimal Policy

(write **optimal policy** as function of **reward function**; from prior work)

$$\pi^{*}(y \mid x) = \frac{1}{Z(x)} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$

with $Z(x) = \sum_{y} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$
 \longrightarrow Note intractable sum over possible responses; can't immediately use this

Rearrange

(write any reward function as function of optimal policy)

RLHF Objective (get high reward, stay close

to reference model)

 $\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}}(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$

Closed-form Optimal Policy

(write **optimal policy** as function of **reward function**; from prior work)

$$\pi^{*}(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$
with $Z(x) = \sum_{y} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$
Note intractable sum over possible responses; can't immediately use this

Rearrange

(write any reward function as function of optimal policy)

$$r(x,y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$$

Je / 1

some parameterization of a reward function

\

RLHF Objective

any reward function $\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}}(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x))$

(get high reward, stay close to reference model)

Closed-form Optimal Policy

(write optimal policy as function of reward function; from prior work)

$$\pi^{*}(y \mid x) = \frac{1}{Z(x)} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$
with $Z(x) = \sum_{y} \pi_{\mathrm{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$
 \longrightarrow Note intractable sum over possible responses; can't immediately use this

Ratio is **positive** if policy likes response more than reference model, negative if policy likes response less than ref. model

`

Rearrange

(write anv reward function as function of optimal policy)

 $r(x,y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{rof}(y \mid x)} + \beta \log Z$

Stanford University

some parameterization of a reward function

A loss function on reward functions

A loss function on reward functions

+

A transformation between <u>reward</u> <u>functions</u> and <u>policies</u>

A loss function on reward functions

A transformation

between <u>reward</u> <u>functions</u> and <u>policies</u>

A loss function on policies
Derived from the Bradley-Terry model of human preferences:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

A loss function on <u>reward functions</u>

A transformation between <u>reward</u> <u>functions</u> and <u>policies</u>

A loss function on policies

Derived from the Bradley-Terry model of human preferences:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

A loss function on reward functions

A transformation between <u>reward</u> <u>functions</u> and <u>policies</u>

$$r_{\pi_{\theta}}(x, y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{\mathrm{ref}}(y \mid x)} + \beta \log Z(x)$$

A loss function on policies

Derived from the Bradley-Terry model of human preferences:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

A loss function on reward functions

A transformation between <u>reward</u> <u>functions</u> and <u>policies</u>

on
rd
policies

$$r_{\pi_{\theta}}(x,y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$$
Reward of
preferred
response

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{ref}) = -\mathbb{E}_{(x,y_w,y_l)\sim\mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{ref}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{ref}(y_l \mid x)} \right) \right]$$

Stanford University

A loss function

on <u>policies</u>

Derived from the Bradley-Terry model of human preferences:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

A loss function on reward functions

A transformation between <u>reward</u> <u>functions</u> and <u>policies</u>

$$r_{\pi_{\theta}}(x, y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{\text{ref}}(y \mid x)} + \beta \log Z(x)$$

When substituting, the log Z term cancels, because the loss only cares about difference in rewards

A loss function
on policies
$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Derived from the Bradley-Terry model of human preferences:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

A loss function on reward functions

A transformation between <u>reward</u> <u>functions</u> and <u>policies</u>

$$r_{\pi_{\theta}}(x, y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{\mathrm{ref}}(y \mid x)} + \beta \log Z(x)$$

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Reward of **preferred** response

Reward of dispreferred response

RLHF Pipeline and DPO

- <u>Key takeaway</u>: Direct Preference Optimization (DPO) fits an implicit reward function and optimizes for a good policy.
- DPO has a better performance than PPO (PPO + explicit reward function fitting)
- DPO is more robust to reward hacking as compared to PPO (PPO + explicit reward function fitting)

Part 3

• Limitations

• Practical aspects: the optimal design problem and credit assignment

- BTL model
 - Does not allow non-transitive preferences

Some may like apples over bananas, oranges over apples but bananas over oranges.

• Even if individuals have transitive preferences, then the expected preferences may not be transitive.

How to aggregate preferences over a population but still personalize.

- BTL model
 - Does not allow non-transitive preferences
 - Even if individuals have transitive preferences, then the expected preferences may not be transitive.
- RLHF pipeline/DPO pipeline
 - Success depends heavily on the choice of π_{ref}

This was the policy of the already fine tuned foundation model.

• Hard to quantify how good is the optimized policy wrt π_{ref}

How useful is the RLHF/DPO pipeline?

- BTL model
 - Does not allow non-transitive preferences
 - Even if individuals have transitive preferences, then the expected preferences may not be transitive.
- RLHF pipeline/DPO pipeline
 - Success depends heavily on the choice of π_{ref}
 - Hard to quantify how good is the optimized policy wrt π_{ref}
- About Data acquisition
 - Which contexts/prompts need fine tuning and what token sequences to offer to humans to label?
 - The human labeling is costly and slow.

The issue of Hindsight Credit assignment: Broader limitation with preference modeling.

Slides from "https://runzhe-yang.science/princeton-cs/demo/hindsight_credit_assignment.pdf"

Value Function Problem

$$V^{\pi}(x) \stackrel{\text{def}}{=} \mathbb{E}_{\tau \sim \mathcal{T}(x,\pi)} \Big[Z(\tau) \Big], \qquad Q^{\pi}(x,a) \stackrel{\text{def}}{=} \mathbb{E}_{\tau \sim \mathcal{T}(x,a,\pi)} \Big[Z(\tau) \Big].$$

"how does the current action affect future outcomes?"

Credit Assignment Problem

$$I(A_t; f(\tau_{t:\infty})|X_t = x) = \mathbb{E}_{\tau \sim \mathcal{T}(x,\pi)} \left[\log \left(\frac{\mathbb{P}(A = A_t | f(\tau) = f(\tau_{t:\infty}), X_t = x)}{\mathbb{P}(A = A_t | X_t = x)} \right) \right]$$

"given an **outcome**, how *relevant* were **past decisions**?"

Credit Assignment Problem - Why is it important?

Rare events require an infeasible number of samples to obtain an accurate estimate.

Issue 1: Variance - low sample efficiency

Issue 2: Partial observability - cannot bootstrap.

Issue 3: Time as a proxy - rely on *time* as the sole metric.

Issue 4: No counterfactuals - only update actions serendipitously occur.

Part 4

• Conclusion and after thoughts

Conclusion and After-thoughts

Summary

- Preference feedback is powerful way of awarding rewards in RL.
- PPO is a good, policy gradient style algorithm.
- RLHF in the context of LLMS refer to a pipeline of three step procedure useful in fine-tuning the foundation model for a specific task
- DPO is an efficient way of combining the steps 2 and 3 of RLHF for LLM.