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Part 1
• A typical RL setting
• Making a case for preference-based learning.
• Choice Models: BTL
• (Deep) Learning from human preferences and PbRL paper



Success of Reinforcement Learning

Game playing, robotics, online shopping

Inventory management, Resource management/Queuing 



A (typical) RL instance
1. Large but tractable set of state and 

actions

2. Markovian transitions.

• (Largely) offline problem

• Past data = {𝑠1, 𝑎1, 𝑠2, 𝑎2, … 𝑠𝑇 , 𝑎𝑇}. 

• Potential goals

• (Task learning) reach a goal state fast

• (Long-term decision making) prioritize reaching certain “good” states often.

• Train a loss function that emphasizes the desired goal(s) and finds a good policy.
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• Past data = {𝑠1, 𝑎1, 𝒓𝟏, 𝑠2, 𝑎2, 𝒓𝟐 … 𝑠𝑇 , 𝑎𝑇 , 𝒓𝑻}. 
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• Past data = {𝑠1, 𝑎1, 𝒓𝟏, 𝑠2, 𝑎2, 𝒓𝟐 … 𝑠𝑇 , 𝑎𝑇 , 𝒓𝑻}. 

• Define Value function 𝑉𝜋 = 𝐸𝑎∼𝜋,𝑠∼𝑃[σ𝑡≥1 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)] , 0 < 𝛾 ≤ 1.

• Find 𝜋 such that 𝑉𝜋∗
− 𝑉𝜋 ≤ 𝜖, 𝑉𝜋∗

= max
𝜋′

𝑉𝜋′.

• Reward feedback can be provided by human labelers, machine etc. 

• Primary difference that we consider is that there is trajectory level preference feedback.

1. Large but tractable set of state and 

actions

2. Markovian transitions and rewards



A case for Preference based learning
Typical RL instance requires significant reward-engineering, domain knowledge and definition of a 

compact reward function.

• Reward hacking

• Example: Say a robotic vacuum cleaner learns to hide dirt instead of actually, removing the dirt.

• Designing “unhackable” reward functions.

‘’ A Survey of Preference-Based Reinforcement Learning Methods’’, JMLR 2017.
“Defining and Characterizing reward hacking”, NeurIPS 2022.
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A case for Preference based learning
Typical RL instance requires significant reward-engineering, domain knowledge and definition of a 

compact reward function.

• Reward hacking

• Example: Say a robotic vacuum cleaner learns to hide dirt instead of actually, removing the dirt.

• Designing “unhackable” reward functions.

• Reward shaping

• Example: robot picking a glass what is a good reward function? Goal “image” of glass in air? What if 

the glass has a dark liquid or background changes?

• Multi-objective reward

• Example: Economic policies that prioritize economic growth without letting inflation grow too much.

‘’ A Survey of Preference-Based Reinforcement Learning Methods’’, JMLR 2017.
“Defining and Characterizing reward hacking”, NeurIPS 2022.



A case for Preference based learning
Preference-based learning

• 𝜏1 =  {𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝑡 , 𝑎𝑡} and 𝜏2 =  {𝑠′1, 𝑎′1, 𝑠′2, 𝑎′2, … , 𝑠′𝑡 , 𝑎′𝑡}. Typical feedback {𝜏1≥ 𝜏2}.

• Can utilize expert feedback, non-expert “common-sense” feedback

• Comparing two options is often easier than generating an expert trajectory (Imitation learning) or 

finding a reward function first from human demonstrations (Inverse RL) to train an agent.

‘’ A Survey of Preference-Based Reinforcement Learning Methods’’, JMLR 2017.
“Defining and Characterizing reward hacking”, NeurIPS 2022.



Preference modeling example

• There are 30 basketball teams in the NBA, each playing 82 games in the regular season (so there 

are 1230 total games). 

• We observe, at the end of the regular season, which two teams (𝑖, 𝑗) played in each game, and 

whether team i or team j won. 

• How can we rank the teams and/or determine the strength of each team?

‘’https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture24.pdf”
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Preference modeling example

• There are 30 basketball teams in the NBA, each playing 82 games in the regular season (so there 

are 1230 total games). 

• We observe, at the end of the regular season, which two teams (𝑖, 𝑗) played in each game, and 

whether team i or team j won. 

• How can we rank the teams and/or determine the strength of each team?

• The simplest strategy might be to compare the number of games won by each team. 

• However, the NBA season is structured so that every team plays every other team a different 

number of times (between 2 and 4). 

• The teams have different “strengths of schedule”, meaning that some teams play stronger 

opponents more frequently than do other teams. 

• These teams might have worse win-loss records, but in fact be better than other teams that won 

more games against weaker opponents.

‘’https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture24.pdf”



Bradley-Terry Model (BTL)

• Let 𝛽𝑖 ∈ 𝑅, denote the strength of team 𝑖. 

• Let the outcome of the game between teams 𝑖, 𝑗 be determined by 𝛽𝑖 − 𝛽𝑗.

• Then Bradley Terry Model assumes the outcome as an independent Bernoulli random variable with 

distribution Bernoulli(𝑝𝑖𝑗), where the log-odds corresponding to the probability 𝑝𝑖𝑗 that the team 𝑖 

beats team 𝑗 is modeled as,

 log
𝑝𝑖𝑗

1−𝑝𝑖𝑗
= 𝛽𝑖 − 𝛽𝑗.

𝑝𝑖𝑗 =
𝑒𝛽𝑖−𝛽𝑗

1 + 𝑒𝛽𝑖−𝛽𝑗
=

𝑒𝛽𝑖

𝑒𝛽𝑖 + 𝑒𝛽𝑗
.

‘’https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture24.pdf”
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• Let 𝛽𝑖 ∈ 𝑅, denote the strength of team 𝑖. 

• Let the outcome of the game between teams 𝑖, 𝑗 be determined by 𝛽𝑖 − 𝛽𝑗.

• Then Bradley Terry Model assumes the outcome as an independent Bernoulli random variable with 

distribution Bernoulli(𝑝𝑖𝑗), where the log-odds corresponding to the probability 𝑝𝑖𝑗 that the team 𝑖 

beats team 𝑗 is modeled as,

 log
𝑝𝑖𝑗

1−𝑝𝑖𝑗
= 𝛽𝑖 − 𝛽𝑗.

𝑝𝑖𝑗 =
𝑒𝛽𝑖−𝛽𝑗

1 + 𝑒𝛽𝑖−𝛽𝑗
=

𝑒𝛽𝑖

𝑒𝛽𝑖 + 𝑒𝛽𝑗
.

• Invariant under constant scaling, outcomes independent of non-competing teams

• Model can be enhanced by parametrizations and link functions 𝛽𝑖 ← 𝜎 𝑓 𝛽𝑖 .

‘’https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture24.pdf”
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Part 2
• PPO algorithm
• RLHF 
• DPO algorithm



A primer to the (Proximal Policy Optimization) PPO algorithm: Non-RL view

Minorize-Maximization (MM) Algorithm

How to optimize a function like 𝑓 𝜃 =  𝑉𝜋𝜃?

Steps in MM algorithm 

• The algorithm proceeds in iteration 𝑖 = 1,2,3, …

• Let 𝑀𝑖 = 𝑔 𝜃 𝜃𝑖) be a surrogate which be minorized version of the objective function 𝑓 𝜃 , 

satisfying

• 𝑔 𝜃 𝜃𝑖 ≤ 𝑓 𝜃 ∀ 𝜃.

• 𝑔 𝜃𝑖 𝜃𝑖 = 𝑓 𝜃𝑖 .

• The algorithm maximizes 𝑔 𝜃 𝜃𝑖  instead:

• 𝜃𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑔 𝜃 𝜃𝑖 .

The above method guarantees that 𝑓 𝜃𝑖  converges to a local optima or saddle point as 𝑖 → ∞.

𝑓 𝜃𝑖+1 ≥ 𝑔 𝜃𝑖+1 𝜃𝑖 ≥ 𝑔 𝜃𝑖 𝜃𝑖 = 𝑓 𝜃𝑖 .

“https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12”
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A primer to the PPO algorithm: Non-RL view
• If 𝑔 𝜃 = 𝑓 𝜃 , that is if we optimize 𝑉𝜋𝜃 directly then we get the family of the policy gradient 

algorithms.

• Examples include REINFORCE [Williams 1988, Williams 1992] , DQN [2016], among others

• Practical implementations still involved formulations (e.g. Baseline trick) and engineering heuristics 

(DQN for Atari)

• Susceptible to learning rate schedule, large policy changes

𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠

“https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12”



A primer to the PPO algorithm: Non-RL view
• If 𝑔 𝜃 = 𝑓 𝜃 , that is if we optimize 𝑉𝜋𝜃 directly then we get the family of the policy gradient 

algorithms.

• Examples include REINFORCE [Williams 1988, Williams 1992] , DQN [2016], among others

• Practical implementations still involved formulations (e.g. Baseline trick) and engineering heuristics 

(DQN for Atari)

• First order methods assume the Value function surface to be flat. High curvature can be bad for 
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A primer to the PPO algorithm: 
• Choice of 𝒈 𝜽  that minorizes 𝒇(𝜽)

• Key idea: We find 𝜋′ that locally improves 𝐽 𝜋′  when compared to 𝐽(𝜋𝑜𝑙𝑑) for some 𝜋𝑜𝑙𝑑.

• Suppose the objective is max
𝜋′

𝐽 𝜋′  = 𝐸𝑎~𝜋′,𝑠~𝑃[σ𝑡≥1 𝛾𝑡𝑟𝑡]

• We only care about the argmax policy

• So instead consider the objective f 𝜃 =  max
𝜋′

𝐽 𝜋′  − 𝐽(𝜋)

• We will find a function 𝑔 𝜃  that minorizes f(𝜃) : [result of the famous TRPO 2015 paper]

• Choice of 𝐿𝜋(𝜋′) is very specific. 

• Key point M is non-negative therefore we have monotonic improvement

“https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12”
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A primer to the PPO algorithm

• Approximate the expected 
advantage function locally 
around the current policy.

• The accuracy decreases 
when the new policy and the 
current policy diverge from 
each other. 

• KL term acts as an upper 
bound for the error.



The PPO algorithm [2017]
• The two variants of the PPO algorithm
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The PPO algorithm [2017]
• The PPO algorithm is easy to implement in practice and works well.

• Only a few lines of code change from the vanilla policy gradient algorithm (clipped version works 

well)

• Paper shows it to perform better or similar than contemporary algorithms on variety of tasks.

• TRPO[2015]  introduced the idea of using a surrogate loss to optimize the value function. PPO 

simplifies the implementation with stronger performance.



RLHF Pipeline and DPO

“https://web.stanford.edu/class/cs234/CS234Spr2024/slides/dpo_slides.pdf”

• Key takeaway from PPO: we have a surrogate reward function that approximately 
minorizes the reward function of our interest, we optimize the surrogate reward function 
instead.

• Foundation models may not have “human-need-aligned” output therefore they need to be 
fine-tuned to satisfy ethics/safety/security constraints or for a specific use-case.

• RLHF in the context of foundation model fine-tuning refers to a 3 step process, where PPO 
is used in the 3rd step.

• Direct Preference Optimization (DPO) is an efficient way of combining the 2nd and the 3rd 
steps of the RLHF pipeline.

Slides from Rafael Rafailov Archit Sharma Eric Mitchell



Direct Preference 
Optimization: 

A New RLHF Approach

Rafael Rafailov Archit Sharma Eric Mitchell



RLHF: Reinforcement Learning From Human Feedback



Training language models to follow instructions with human feedback, Ouyang et. al. 2022
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Training language models to follow instructions with human feedback, Ouyang et. al. 2022

RLHF: Learning a policy that optimizes the reward
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RLHF: Learning a policy that optimizes the reward
Now we have a reward model       that represents* goodness according to humans

Now, learn a policy       achieving high reward while staying close to original model

Want high reward… …but keep KL to original model small!Sample from policy
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Direct Preference Optimization 

RLHF Objective
any reward function

Closed-form 
Optimal Policy

with

(get high reward, stay close 
to reference model)

(write optimal policy as 
function of reward function; 

from prior work)

Rearrange
(write any reward function as 

function of optimal policy)

Ratio is positive if policy likes response 
more than reference model, negative if 

policy likes response less than ref. model

Note intractable sum over possible 
responses; can’t immediately use this
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Derived from the Bradley-Terry model of human preferences:



RLHF Pipeline and DPO

“https://web.stanford.edu/class/cs234/CS234Spr2024/slides/dpo_slides.pdf”

• Key takeaway: Direct Preference Optimization (DPO) fits an implicit reward function and 
optimizes for a good policy.

• DPO has a better performance than PPO ( PPO + explicit reward function fitting)
• DPO is more robust to reward hacking as compared to PPO (PPO + explicit reward function 

fitting)



Part 3
• Limitations
•Practical aspects: the optimal design problem and credit assignment
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• BTL model

• Does not allow non-transitive preferences 

Some may like apples over bananas, oranges over apples but bananas over oranges.

• Even if individuals have transitive preferences, then the expected preferences may not be transitive.

How to aggregate preferences over a population but still personalize.
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Limitations
• BTL model

• Does not allow non-transitive preferences 

• Even if individuals have transitive preferences, then the expected preferences may not be transitive.

• RLHF pipeline/DPO pipeline

• Success depends heavily on the choice of 𝜋𝑟𝑒𝑓

• Hard to quantify how good is the optimized policy wrt 𝜋𝑟𝑒𝑓

• About Data acquisition

• Which contexts/prompts need fine tuning and what token sequences to offer to humans to label?

• The human labeling is costly and slow.



Limitations
The issue of Hindsight Credit assignment: Broader limitation with preference modeling. 

Slides from “https://runzhe-yang.science/princeton-cs/demo/hindsight_credit_assignment.pdf”
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Part 4
• Conclusion and after thoughts



Conclusion and After-thoughts
Summary

• Preference feedback is powerful way of awarding rewards in RL.

• PPO is a good, policy gradient style algorithm.

• RLHF in the context of LLMS refer to a pipeline of three step procedure useful in fine-tuning the 

foundation model for a specific task

• DPO is an efficient way of combining the steps 2 and 3 of RLHF for LLM.


