
What How Why
CoT Reasoning

Eeking out more from the same LLM



Topics

● What is CoT and how it helps accuracy + robustness.
○ What is CoT, How does it work? (2022 Wei)
○ CoT improves robustness

● How can we make LLMs do more good CoT?
○ Sharpening Mechanism
○ And then O1 happened… (Test Time Scaling)

● Why does CoT work? What kind of CoT is good?
○ What types of CoT matters? Structure & Cognitive Patterns
○ Somehow, correctness in CoT doesn’t matter
○ Bigger Model, Better CoT

● Open Research Questions on Trustworthiness



CoT Prompting Elicits Reasoning in LLM

Did it via few shot prompting CoT 
exemplars.

Worked specifically on arithmetic, 
commonsense and symbolic reasoning 
tasks.

Wei et al, 22. https://arxiv.org/pdf/2201.11903



CoT Prompting Elicits Reasoning in LLM

In their paper, CoT doesn’t work with 
models < 100B. (This was 2022).

Small models generate fluent but 
illogical reasoning chains.

Wei et al, 22. https://arxiv.org/pdf/2201.11903



Least-To-Most Prompting (Decompose)

Break down Problem to Subproblems, 
and solve them step by step.

Zhou et al 23, https://arxiv.org/pdf/2205.10625



Alice In Wonderland: Robustness

Simple perturbations to questions. CoT improves robustness.

Alice in Wonderland https://openreview.net/pdf?id=Mkl7dzjYiW



Takeaway 1:

Instead of:

- <Prompt> <Answer>

This improves accuracy and robustness:

- <Prompt> <Reasoning> <Answer>

Can we finetune LLMs to reason better?

Wei et al, 22. https://arxiv.org/pdf/2201.11903



Self Improvement in LMs: The Sharpening Mechanism

“How can a LM improve itself without new external data?”.

An LLM knows what is good by looking at Prob of answer! “Hidden Knowledge” (Hinton 15’).

Sharpening (Self-Improvement) is to extract and distil this knowledge into the LM. 

Huang et al. https://arxiv.org/pdf/2412.01951



Self Improvement in LMs: The Sharpening Mechanism

Test Time Sharpening: BoN Sampling.

“Amortized” sharpening by doing 
rollouts, finetuning on the better 
responses. 

- SFT Sharpening
- RLHF Sharpening

Add more method and results

Huang et al. https://arxiv.org/pdf/2412.01951



And then, O1/R1 happened 

R1 Paper https://arxiv.org/pdf/2501.12948
OpenAI Learning to Reason with LLM

Accuracy scales with Length of CoT (Test Time Compute)



And then, O1/R1 happened 

R1 Paper https://arxiv.org/pdf/2501.12948
OpenAI Learning to Reason with LLM

Given a TrainDataset, we do many rollouts, and we score 
the rollouts based on correctness and format.

I.e. Encourage good response, Discourage bad ones.



Takeaway 2:

We can improve LLMs by fine-tuning on good CoT Reasoning.

- Self-Verifying: 
- Ask an LLM to judge it’s own BoN outputs.

- Supervised Dataset (Math, InstructionFollowing, etc):
- Generate many CoT Rollouts, more of the good, less of the bad.

Wei et al, 22. https://arxiv.org/pdf/2201.11903



What types of CoT Matters

Many tried replicating R1 results. But Qwen >> Llama. 

This paper examined how, and when they did SFT with a dataset of the good CoT 
for Llama on the above behaviors, it improved like Qwen.

Gandhi et al 25’ https://arxiv.org/abs/2503.01307
https://x.com/gandhikanishk/status/1896988028893323675



What types of CoT Matters

SFT’ed Llama with different 
samples with these behaviors.

RL viewed as learning good CoT 
behaviors.

Gandhi et al 25’ https://arxiv.org/abs/2503.01307
https://x.com/gandhikanishk/status/1896988028893323675



Question: Why SFT on these CoT Blocks instead of RL?

I tried reward engineering these behaviors 
(beyond correctness and format):

E.g. Reward keywords like 
“Wait”, “However”, etc. 

It’s hard to get it to improve on 
accuracy.

(Granted it’s on Qwen 1B)

Gandhi et al 25’ https://arxiv.org/abs/2503.01307
https://x.com/gandhikanishk/status/1896988028893323675



Setup: SFT on CoT Reasoning for Math.

● Wrong Answers: Substituted with wrong answers
● Corrupted Digits: Randomized the numbers in CoT
● Removed Keywords: Removed “Wait”, “Let’s Check”...
● Shuffled reasoning: Shuffle the CoT
● Deleted Steps: Delete some CoT
● Inserted Steps: Insert random CoT

Structure > Correctness (Li et al. 25’)

Li et al 25’ https://arxiv.org/pdf/2502.07374



Takeaway 3: Why CoT Reasoning works is an open-q.
● Undeniable that it works very well.
● But faithfulness between CoT and 

Answer is occasionally lacking.



Open Research Qs on Trustworthiness

● What can CoT help on besides Math/Code/IFT/Safety?
○ How to make CoT help on subjective domain?

■ E.g. Personalization?
● How well does CoT generalize

○ E.g. Training on more math, evaluated on games, etc.
● Can we supervise and steer RL’ed CoT?
● Why are reasoning models more calibrated?
● Reasoning in Latent Space (COCOUT)

O1 System Card



COCONUT

https://arxiv.org/abs/2412.06769

Reasoning in Latent Space.

- Directly feed the last hidden 
state as the input embedding 
for the next (thinking) token

Presently does worse than 
Language CoT



Calibration

RL’ed O1 models are more calibrated than Next Token Predicting only models.

https://openai.com/index/introducing-simpleqa/



Why do we need reasoning model?
Direct End-to-End Inference vs Reasoning

• Empirical: scaling generation token lead to better performances


• Some hypothesis: 


• Computation power and expressiveness


• Dynamically modify predictive distribution (time time algorithm)


• Representation not entangled



CoT

• A specific reasoning algorithms (i.e decompose problems into sub steps)


• Few shot CoT: leverages ICL to learn CoT from data


• Zero shot CoT: directly tells the model to break down problems into sub steps



What about other algorithms?

• Self Consistency: majority voting


• Auto Cot: sampling specific questions (cosine similarity) as context for few 
shot CoT


• Tree of thought: CoT with a tree search


• Graph of thought: graph based CoT, allows to revisit previous nodes


• Least to Most: divide and conquer


• Many different ways, all add hoc



Best of N style algorithms



More Fancy Best of N



More Fancy Best of N
With a PRM



Best of N results



Are there any more systematic way?
Search

• Key idea: search as a general 
problem solving tool


• Problem: need heuristics / 
verifier to evaluate !


• PRM: step level reward model 
(\n\n as a step)


• Showing pretty good 
performances already


• Issue: step level verifiers are 
not reliable



Beam Search

• 1. sample N initial predictions for the first step in the solution


• 2. score the generated steps according to the PRM's predicted step-wise 
reward-to-go estimate (which also corresponds to the total reward from the 
prefix since the reward is sparse in this setting)


• 3. filter for only the top N/Mhighest scoring steps


• 4. now from each candidate, sample M proposals from the next step, 
resulting in a total of N / M \times M = N candidate prefixes again. Then 
repeat steps 2-4 again.



Tree Search: Tree of thoughts
• 1. How to decompose the intermediate process into thought steps (token / 

paragraph / \n\n )


• 2. How to generate potential thoughts from each state (potential research 
question)


• 3. How to heuristically evaluate states (verifier / llm as judge)


• 4. What search algorithm to use (DFS / BFS)



Tree Search: MCTS
• Instead of using current step value, simulate K steps and use the value to 

select.


• One could add in all the other fancy tricks like UCT



Overview
• A Unified Perspective on Test-Time Computation: Proposer and Verifier


• Can you think of other algorithms?



Scaling Laws



[“Wait”] What about the verifiers

• We mainly discussed about search algorithms, with the assumption that we 
have a good verifier. 


• What are good verification algorithms?


• Math: string matching, lean prover


• Code: compiler execution


• Open ended domains: Finance, healthcare, legal?



[“Wait”] What about the verifiers

• We mainly discussed about search algorithms, with the assumption that we 
have a good verifier. 


• What are good verification algorithms?


• Math: string matching, lean prover


• Code: compiler execution


• Open ended domains: Finance, healthcare, legal?



LLM as judge

• Pros:  Flexible


• Cons: Does not work well : )


• LLM as grader: given a ground truth label, and a model generated answer, ask 
llm to check if the two are equivalent.


• Widely used in RL fine tuning tasks



PRM
Let’s verify step by step



PRM
Active Learning



Scalable Solution?
MATH-SHEPHERD

• Can you 
think of 
other 
ways?



Generative Verifier



Self Improvement
Self rewarding LLM

• Most self improvement paper are this flavor



Self Play
SPIN & Rstar

• A bit contrived 


• Can we design sth like GAN or 
AlphaGo?



Why self verification works?
P != NP ?

• Generation Verification Gap



Can we do training?

• Training with SFT: fine tuning 
with CoT data. This is why 
Chatgpt 3.5 starts to produce 
longer answers comparing to 
3.0. For all models, they include 
CoT data in the SFT phase


• Issue: memorizing everything. 
Generalization only happens 
when scaling both parameters 
and datasize.


• RL generalizes



Training: RL with Reward Model

• Direct RL with PRM/ORM: reward hacking is a serious issue


• With DPO: hard to handle credit assignment problem. For example, for two 
solutions, each has some correct steps and incorrect steps, its hard to 
disentangle them.



Training: RL Finetuning

• Instead of having a parametrized reward model, use a rule based reward 
model.


• For R1 or Openai RLF api, user came in with a dataset (X, Y). For each x, 
model generates an answer a (extract the final part, can imagine there are 
immediate steps), if a = y, then give reward of 1, otherwise 0. This can be 
more sophisticated, such as giving partial reward. But all based on rules.


• RL part: the set of initial state is fixed (X). Iteratively sample a x from X, and do 
RL on top of that.



Reward Calculation
Rule based reward: String Matching



RL Finetuning: o1 and r1

• Start with a SFT stage, distilling the “thinking” algorithm into the model. But 
there is no specific reasoning algorithm, they model discovers the algorithm 
by itself.



RL Finetuning: o1 and r1

• More synthetic data after RL converges: SFT, alignment (with reward model 
for human preferences)



RL Finetuning: r0

• Directly start from scratch, no SFT.


• Can still obtain the “aha” moment, but the thinking process is not readable.



RL Finetuning: GRPO

• PPO requires you to load 3-4 models on GPU: policy new, policy old, value 
function, and reward model.


• GRPO removes value functions, so it’s purely policy gradient with KL penalty.



GRPO: Optimizing for Efficiency



GRPO: Advantage
Baseline is the average of multiple samples
Per token advantage is the same for the trajectory 



GRPO: Advantage
Baseline is the average of multiple samples
Per token advantage is the same for the trajectory 



GRPO: KL
• Previously PPO: Per token KL added into Advantage (why are you able to do 

this?): 




• GRPO:



GRPO KL: PPO vs GRPO

• PPO: kl = logprobs - ref_logprobs 


• Sampling based


• GRPO: per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - 
(ref_per_token_logps - per_token_logps) - 1


• Nonnegative because exp (x) —> 1 + x + 1/2 x^2



GRPO: KL
• Effect: whitening, GAE calculation. GRPO KL separated term



GRPO: Putting Together



Ok what about PPO

• Still not fully leveraging RL (Might also be a trap)



Thinking Template



Thinking Length



RL Finetuning: why does it work?
Key Takeaways

• Strong base model, no need to do exploration, the model can generate 
correct answers, which provides signals. 


• Use rule based rewards for reasoning tasks (or whenever possible). For 
nuanced, open ended questions, reward model can provide some signals.



Why previously it didn’t work

• Using Neural reward models


• Model size, base model capability


• Training stability



Potential Research Question: Credit Assignment

• When doing REINFORCE, you are also reinforcing the incorrect part of the 
solution. 


• Example: “[Reasoning Trace 1] Wait, but [Reasoning Trace 2]” [Reasoning 
Trace 1] is incorrect, but it was still reinforced


• How to find the correct part responsible for leading to the solutions?


• More general: how to do better credit assignment? (Training value funcs, GAE 
estimation (might perform bad on long sequences!))



Distillation
S1



Applications



Tony Chen

The story of r1, chronologically 



2 Themes

• Efficiency


• Reasoning



DeepseekMoE
[Jan 2024][efficiency]



Deepseek-Coder
[Jan 2024][reasoning]

• Key: data quality



Deepseek-Coder
[Jan 2024][reasoning]

• Example filtering rules



Deepseek math
[Apr 2024][reasoning][efficiency]

• 1. Better base policy with better dat 
quality


• 2. More efficient RL with GRPO


• Still used a reward model



Deepseek prover
[May 2024][reasoning]

• Generate statements -> Generate 
proof -> validate -> finetune on 
correct samples



Multi-Head Latent Attention
[Jun 2024][efficiency] from DeepSeek-v2 paper



DeepseekCoder v2
[Jun 2024]

• Used GRPO for RLHF with compiler 
feedback



DeepseekProver v1.5
[Aug 2024][reasoning]

• Training time: SFT + RL with GRPO


• Rule based reward (from compiler)


• Inference time: MCTS (not used in r1)



Deepseek v3
[Dec 2024][efficiency]

• Multiple token prediction for denser training 
signal


• Training system efficiency



Deepseek r1
[Jan 2025][reasoning]



Deepseek r1-zero

• Problem: Poor readability


• In paper, data distribution isn't mentioned



Deepseek r1
• Goal: faster RL convergence + user-friendly 

reasoning trace


• Cold start with long CoT SFT


• Language consistency reward


• Towards RL convergence:


• LLM-as-judge for non-ruled based problems


• Non reasoning SFT data


• -> combine to SFT


• Outperform DeepSeek r1-zero



Deepseek r1

• Finally, distilled r1 into smaller open-
sourced models


• Outperform / on par with o1


