What How Why
CoT Reasoning

Eeking out more from the same LLM



Topics

e What is CoT and how it helps accuracy + robustness.
o Whatis CoT, How does it work? (2022 Wei)
o CoT improves robustness

e How can we make LLMs do more good CoT?

o  Sharpening Mechanism
o And then O1 happened... (Test Time Scaling)

e Why does CoT work? What kind of CoT is good?

o  What types of CoT matters? Structure & Cognitive Patterns
o Somehow, correctness in CoT doesn’t matter
o Bigger Model, Better CoT

e Open Research Questions on Trustworthiness



CoT Prompting Elicits Reasoning in LLM

Did it via few shot prompting CoT
exemplars.

Worked specifically on arithmetic,
commonsense and symbolic reasoning
tasks.

Wei et al, 22. https://arxiv.org/pdf/2201.11903

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The answer is 27. x

Chain-of-Thought Prompting

~—~{ Model Input | \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

\answer is9. /

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

Last Letter C

Q: Take the last letters of the words
in “Lady Gaga” and concatenate
them.

Coin Flip (state tracking)

Q: Acoin is heads up. Maybelle flips
the coin. Shalonda does not flip the
coin. Is the coin still heads up?

SayCan ing a robot)

Human: How would you bring me
something that isn’t a fruit?

Explanation: the user wants
something to eat that isn't a fruit. An
energy bar is not a fruit, so | will bring
the user an energy bar.

Plan: 1. find(energy bar) 2.
pick(energy bar) 3. find(user) 4.
put(energy bar) 5. done().

A: The last letter of “Lady” is “y". The
last letter of “Gaga” is “a”.
Concatenating them is “ya”. So the
answer is ya.

A: The coin was flipped by Maybelle.
So the coin was flipped 1 time, which
is an odd number. The coin started
heads up, so after an odd number of
flips, it will be tails up. So the answer
IS no.

Figure 3: Examples of (input, chain of thought, output) triples for arithmetic, commonsense, and
symbolic reasoning benchmarks. Chains of thought are highlighted. Full prompts in Appendix G.



CoT Prompting Elicits Reasoning in LLM

In their paper, CoT doesn’t work with
models < 100B. (This was 2022).

Small models generate fluent but

illogical reasoning chains.

Types of errors made b
a 62B language model.

Semantic understanding
(628 made 20 errors of this type,
5408 fixes 6 of them)

One step missing
(62B made 18 errors of this type,
5408 fixes 12 of them)

Other
(628 made 7 errors of this type,
5408 fixes 4 of them)

Errors fixed by
scaling from
62B to 540B

Figure 9: Error analysis of 45 problems that PaLLM 62B got incorrect. These errors were categorized
that semantic understanding, one step missing, and other. The other category includes hallucinations,
repetitive outputs, and symbol mapping errors. Scaling PaLM to 540B fixed a substantial portion of

errors in all categories.

Wei et al, 22. https://arxiv.org/pdf/2201.11903

Stephen placed an online
order for groceries. His final
bill came to $40.00.
Because this was through a
delivery vendor, they tacked
on a 25% fee to his final
total and charged him $3.00
in delivery fees. Stephen
also added a $4.00 tip. After
the extra fees, what was the
final price of Stephen's

roceries?
b J

The final price of Stephen's
groceries was $40.00. The delivery
vendor added 25% to the final total,
so the final total was 125% of
$40.00. This means the final total
was 125% * $40.00 = $50.00. The
delivery vendor also charged $3.00
in delivery fees. So the final price of
Stephen's groceries was $50.00 +
$3.00 = $53.00. The answer is

$53.00. (Incorrect: one step
Kmissing error)

540B Model Output

Stephen's bill was $40.00. The
delivery vendor added 25% to the
bill. This means the bill was
increased by 25% of $40.00. This is
0.25 * $40.00 = $10.00. The delivery
fee was $3.00. The tip was $4.00.
So the total bill was $40.00 + $10.00
+ $3.00 + 540b model $4.00 =
$57.00. The answer is 57. (Correct)

PLY J

Question

There are four schools
competing at a basketball
tournament. Each school
has sent a girls’ basketball
team and a boys’ basketball
team and each team has 5
players each. Each school
has also sent a coach for
each team. In total, how

many people have all of the

Qchools sent? / k

There are 4 schools. Each school
has sent a girls’ basketball team and
a boys’ basketball team. Each team
has 5 players each. That means
there are 4 * 2 * 5 = 40 players.
Each team has a coach. That
means there are 40 + 4 = 44
coaches. The answer is 44.
(Incorrect: one step missing

error)

J

540B Model Output

Each school has sent 2 teams, each
with 5 players. This means each
school has sent 2 * 5 = 10 players.
Each school has also sent 2
coaches. This means each school
has sent 10 + 2 = 12 people. There
are 4 schools, so in total all of the
schools have sent4 * 12 = 48
people. The answer is 48. (Correct)

. _J

Figure 10: Examples of semantic understanding and one-step missing errors that were fixed by
scaling PalLM from 62B to 540B.



Least-To-Most Prompting (Decompose)

Break down Problem to Subproblems,

and solve them step by step.

Method Non-football (DROP)  Football (DROP) GSMS8K
Zero-Shot 43.86 51.77 16.38
Standard prompting 58.78 62.73 17.06
Chain-of-Thought 74.77 59.56 60.87
Least-to-Most 82.45 73.42 62.39

Table 11: Accuracies (%) of different prompting methods on GSM8K and DROP (only the subset
containing numerical problems). The base language model is code-davinci-002.

Zhou et al 23, https://arxiv.ora/pdf/2205.10625

Stage 1: Decompose Question into Subquestions

A: To solve “How many times
can she slide before it
closes?’, we need to first
solve: “How long does each
trip take?”

Q: It takes Amy 4 minutes to climb to the top
of a slide. It takes her 1 minute to slide down.
The water slide closes in 15 minutes. How
many times can she slide before it closes?

Language
Model

Stage 2: Sequentially Solve Subquestions

. N

/It takes Amy 4 minutes to climb to the top of a
slide. It takes her 1 minute to slide down. The
slide closes in 15 minutes.

A: It takes Amy 4 minutes to
climb and 1 minute to slide
down. 4 + 1 = 5. So each trip

takes 5 minutes.
A e P

Language
Model
Subquestion 1 ——\Q: How long does each trip take?

ﬁtakes Amy 4 minutes to climb to the top of\
a slide. It takes her 1 minute to slide down.

The slide closes in 15 minutes. A: The water slide closes in

15 minutes. Each trip takes 5

Q: How long does each trip take?
:::;::’;:"del__ A: It takes Amy 4 minutes to climb and 1 LaMnggzlge minutes. So Amy can slide
Subquestion 1 minute to slide down. 4 + 1 = 5. So each trip 15 + 5 = 3 times before it
takes 5 minutes. closes.

N

Subquestion 2 — Q: How many times can she slide before it

@ses? /

Figure 1: Least-to-most prompting solving a math word problem in two stages: (1) query the lan-
guage model to decompose the problem into subproblems; (2) query the language model to sequen-
tially solve the subproblems. The answer to the second subproblem is built on the answer to the first
subproblem. The demonstration examples for each stage’s prompt are omitted in this illustration.



Alice In Wonderland: Robustness

Simple perturbations to questions. CoT improves robustness.

AVEvadations:1-6. Mals Fenale Prigads, AIW Friends, Variations 1-6, Prompt IDs: 577 580 581 582 583 584

1.0
Variation 1; Alice has 3 male friends and she also has 6 female friends. [Correct answer: 7 )
Variation “: Alice has 2 female friends and she also has 4 male friends. [Correct answer: 3]
Varlation 3: Alice has 4 female friends and she also has 1 male friend. [Correct answer:5]
Variation 4: Alice has 4 male friends and she also has 1 female friend. [Correct answer: 2]
Variation 5: Alice has 2 male friends and she also has 3 female friends. [Correct answer: 4 )
Variation &: Alice has 5 female friends and she also has 3 male friends. [Correct answer: 6 )

All mentioned persons are friends with each other and have no other friends aside.
How many femole friends does male friend of Alice have?

0.8

0.6

04 == aiw vl, 577
aiw v2, 580
e aiw v3, 581
we alw v4, 582
0.2 ‘ == aiw v5, 583
| == aiw vb, 584

L ol-preview ol-mini DeepSeek-R1 671B  Claude-3.5S Claude-3 O Llama-3.1 405b Qwen2.5 72b GPT-40

Alice in Wonderland https://openreview.net/pdf?id=MkI7dzjYiW




Takeaway 1:

Instead of:
- <Prompt> <Answer>

This improves accuracy and robustness:
- <Prompt> <Reasoning> <Answer>

Can we finetune LLMs to reason better?

Wei et al, 22. https://arxiv.org/pdf/2201.11903




Self Improvement in LMs: The Sharpening Mechanism

“‘How can a LM improve itself without new external data?”.

An LLM knows what is good by looking at Prob of answer! “Hidden Knowledge” (Hinton 15’).

Sharpening (Self-Improvement) is to extract and distil this knowledge into the LM.

Sharpening

We refer to sharpening as any process that tilts mp.se toward responses that are more certain
in the sense that they enjoy greater self-reward rg . That is, a sharpened model 7 is one that

(approximately) maximizes the self-reward:

7(z) ~ arg max rse1¢(Y | T; Thase)- (1)
yey

Huang et al. https://arxiv.ora/pdf/2412.01951




Self Improvement in LMs: The Sharpening Mechanism

Test Time Sharpening: BoN Sampling.

“Amortized” sharpening by doing
rollouts, finetuning on the better
responses.

- SFT Sharpening
- RLHF Sharpening

Add more method and results

Huang et al. https://arxiv.ora/pdf/2412.01951




DeepSeek-R1-Zero AIME accuracy during training
0.9

0.8

And then, O1/R1 happened "

Accuracy scales with Length of CoT (Test Time Compute)

o
o
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°
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Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample
16 responses and calculate the overall average accuracy to ensure a stable evaluation.

DeepSeek-R1-Zero average length per response during training
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R1 Paper https://arxiv.ora/pdf/2501.12948 Figure 3 | The average response length of DeepSeek-R1-Zero on the training set during the RL

process. DeepSeek-R1-Zero naturally learns to solve reasoning tasks with more thinking time.

OpenAl Learning to Reason with LLM




And then, O1/R1 happened

Given a TrainDataset, we do many rollouts, and we score
the rollouts based on correctness and format.

|.e. Encourage good response, Discourage bad ones.

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is
typically the same size as the policy model, and estimates the baseline from group scores instead.
Specifically, for each question g, GRPO samples a group of outputs {01,02, -+ , 06} from the old
policy mg,,, and then optimizes the policy model 79 by maximizing the following objective:

Jorro(0) = E[q ~ P(Q), {oi}; ~ me,,(0lg)]
—Z( ( 7o(0il9) ————A;, clip M ,1- £,1+£) ) BDg; (Jl'g”?l'ref) )

76,4 (0il9) To,4(0ilg)”

ﬂref(oilq) _ Og ”ref(oilq) _1’ (2)
79 (0ilq) w9 (0ilq)

where ¢ and B are hyper-parameters, and 4; is the advantage, computed using a group of

rewards {ri,r,...,rg} corresponding to the outputs within each group:

—mean({ry,r2,- - ,TG}) &)
std({ri,r2, -+ ,16})

Dk, (7'-'9 | |7[ref) =

-
A= —

R1 Paper https://arxiv.ora/pdf/2501.12948
OpenAl Learning to Reason with LLM

Question: If a > 1, then the sum of the real solutions of ya — va +x = x is equal to

Response: <think>
To solve the equation va — vVa +x = x, let’s start by squaring both - - -
2
(\/a—\/a+x) =x? = a-+Va+x=x2
Rearrange to isolate the inner square root term:
(@-x*?=a+x = ®-2ax*+(x)?=a+x = x*-2ax?-x+(a®-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum canbe - - -

We started with the equation:

Va-+vVa+x=x

First, let’s square both sides:
—-Va+x=x* = Va+tx=a-x

Next, I could square both sides again, treating the equation: - - -

2

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,

allowing us to witness the power and beauty of reinforcement learning.



Takeaway 2:

We can improve LLMs by fine-tuning on good CoT Reasoning.

- Self-Verifying:
- Ask an LLM to judge it's own BoN outputs.

- Supervised Dataset (Math, InstructionFollowing, etc):
- Generate many CoT Rollouts, more of the good, less of the bad.

Wei et al, 22. https://arxiv.org/pdf/2201.11903




What types of CoT Matters

A contrast in behaviors explored by the two models @ 00
12 12
Verifications Subgoal Setting ke ; o o | othsiisid
g Let me CheCk "Letls try to get to a g : :::E:‘er:setchr‘:aginmu g : ::?3‘::&15 Chaining
my answer ..." multiple of 10" g° g e
8_)6 %6
o, g . no behaviors shown
. . o
Backtracking Backward Chaining > 2 5
“Let’s try a different “Working backwards, 24 el N g
approach, what if we ..." is 8 times 3" 0 50 100 150 200 250 0 50 100 150 200 250
PP RL steps RL steps

Many tried replicating R1 results. But Qwen >> Llama.

This paper examined how, and when they did SFT with a dataset of the good CoT
for Llama on the above behaviors, it improved like Qwen.

Gandhi et al 25’ https://arxiv.org/abs/2503.01307
https://x.com/gandhikanishk/status/1896988028893323675




What types of CoT Matters

SFT’ed Llama with different
samples with these behaviors.

RL viewed as learning good CoT
behaviors.

Gandhi et al 25’ hitps://arxiv.org/abs/2503.01307
https://x.com/gandhikanishk/status/1896988028893323675
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Figure 3: Analysis of four key reasoning behaviors with Llama-3.2-3B, Qwen-2.5-3B, and
primed versions of Llama-3.2-3B. Plots show mean frequency of (a) solution verification
steps, (b) problem-solving backtracking instances, (c) explicit subgoal setting, and (d)
backward chaining reasoning approaches across different tasks.



Question: Why SFT on these CoT Blocks instead of RL?

(a) Verifications (b) Backtracking

| tried reward engineering these behaviors
(beyond correctness and format):

average count
average count

E.g. Reward keywords like
“Wait”, “However”, etc.

s ety sttt ittt
50 100 150 200 100 151

RL steps RL steps
(c) Subgoal Setting (d) Backward Chaining

0 200 250

It's hard to get it to improve on
accuracy.

average count
average count

T = = DD S DNy
0 25

280 250 o o 100 150
RL steps

0 5

(Granted it's on Qwen 1B)

Llama Qwen —«— Backtracking and Verification Backtracking and Subgoal Setting

Backtracking and Backward Chaining « Only Backtracking «—  All Strategies

Figure 3: Analysis of four key reasoning behaviors with Llama-3.2-3B, Qwen-2.5-3B, and
primed versions of Llama-3.2-3B. Plots show mean frequency of (a) solution verification
steps, (b) problem-solving backtracking instances, (c) explicit subgoal setting, and (d)
backward chaining reasoning approaches across different tasks.

Gandhi et al 25’ hitps://arxiv.org/abs/2503.01307
https://x.com/gandhikanishk/status/1896988028893323675




. L) Table 2: Effect of trace perturbations on reasoning per-
Stru Ctu re > C O rre Ct n e SS ( L I et a I 2 5 ) formance §4. All models are trained with base Qwen2.5-
" 32B-Instruct. “Olympiad.” is short for “OlympiadBench”.
In particular, we study (1) traces with modified reasoning
step contents: wrong answers, corrupted digits, and removed
. H reasoning keywords, and (2) traces with modified structure:
S etu p . S FT O n COT Reaso n I n g fo r M ath . deleted, inserted, or shuffled steps. We find that structural
perturbations are far more detrimental to model accu-

racy than content perturbations.

e Wrong Answers: Substituted with wrong answers S ——
lympiad. Avg.
e Corrupted Digits: Randomized the numbers in CoT - T ——
Correct 89.2 40.0 715 585 66.3
e Removed Keywords: Removed “Wait”, “Let’'s Check”... e —
rong Answers X A F X 5
e Shuffled reasoning: Shuffle the CoT T W 9y e
70% 85.6 30.0 71.5 54.8 62.0
e Deleted Steps: Delete some CoT 20% B4 300 fs 312 oas
Removed keywords
e Inserted Steps: Insert random CoT s e maoms o owa o
20% 87.2 333 T2:5 56.1 623
Structure Modifications
Original Deleted Steps Inserted Steps Shuffled Steps ?(l)l(l)l@ﬂbl e 81.8 233 70.0 49.1 561
( I believe 1+1=3 ) I believe 1+1=3 )( I believe 1+1=3 ) ik e 2 = 48 o

100% 792 133 60.0 454 49.5

| 1 believe 1+1=3 | 67% 84.2 267 55.0 481 535
33% 88.2 233 80.0 577 623
_ Inserted Steps

100% 770 10.0 50.0 41.1 44.5
67% 81.8 20.0 60.0 46.0 52.0
33% 86.6 333 715 572 63.7

Li et al 25’ https://arxiv.ora/pdf/2502.07374




Takeaway 3: Why CoT Reasoning works is an open-q.

Undeniable that it works very well.
But faithfulness between CoT and
Answer is occasionally lacking.

Q

give me a random number, don't overthink

<think> Okay, the user wants a random number and specifically said not to
overthink it. So | need to come up with a number quickly without any complex
reasoning. Let's just pick a number between 1 and 100, that's a common
range. Hmm, 37. | think 37 is a good random choice. Maybe | could have gone
higher, but the user wants something straightforward. Should | check if it's
truly random? Well, humans aren't great at randomness, but the user
probably doesn't need a cryptographically secure number. Just something
off the top of my head. Yeah, 37 works. Let me make sure | didn't repeat a
previous answer or anything. No, | haven't given 37 recently. Alright, go with
37. </think>

42
(A classic choice from "The Hitchhiker's Guide to the Galaxy" — simple and

iconic!)

O View API



Safety

Chain of thought reasoning provides new opportunities for alignment and safety. We found
that integrating our policies for model behavior into the chain of thought of a reasoning
model is an effective way to robustly teach human values and principles. By teaching the

L] model our safety rules and how to reason about them in context, we found evidence of

e n R e S e a rC h Q S O n Tr u S tWO rt h I n e S S reasoning capability directly benefiting model robustness: ol-preview achieved

substantially improved performance on key jailbreak evaluations and our hardest internal
benchmarks for evaluating our model's safety boundaries. We believe that using a
chain of thought offers significant advances for safety and alignment because (1) it enables
us to observe the model thinking in a legible way, and (2) the model reasoning about safety
rules is more robust to out-of-distribution scenarios.

e What can CoT help on besides Math/Code/IF T/Safety | ————————————

before deployment, in accordance with our Preparedness Framework. We found that chain

o How to make CoT help on subjective domain? sofenaeise eyt bemeon o cing Bealedmeuton
m E.g. Personalization?

e How well does CoT generalize

% Safe completions on harmful prompts ; 0.995

these evaluations can be found in the accompanying System Card.

Standard

o E.g. Training on more math, evaluated on games, etc.

% Safe completions on harmful prompts

Challenging: jailbreaks & edge cases

e (Can we supervise and steer RL'ed CoT?

> Exploitative sexual content

e \Why are reasoning models more calibrated?
e Reasoning in Latent Space (COCOUT)

01 System Card




Chain-of-Thought (CoT) Chain of Continuous Thought (CoconuT)

C O C O N U I Last hidden states are used
output token X | Xl X X; [Answer] [Answer]

i+j as input embeddings
(sampling)

last hidden state . . .

Reasoning in Latent Space.

input embedding . . .
input token [Question] % = Xip1  Xiy2 Xitj [Question] <bot> Seoks

- Directly feed the last hidden
State as th e |n put em b e d d | n g Figure1 A comparison of Chain of Continuous Thought (CoconuT) with Chain-of-Thought (CoT). In CoT, the model

generates the reasoning process as a word token sequence (e.g., [Ti, Zit1, ..., Tit+;] in the figure). COCONUT regards the
. . last hidden state as a representation of the reasoning state (termed “continuous thought”), and directly uses it as the
for the neXt (th In kl ng) to ken next input embedding. This allows the LLM to reason in an unrestricted latent space instead of a language space.

P rese ntl y d O€esS worse th an AfEee (o) [Question] [Step 1] [Step 2] [Step 3] - [Step N] [Answer] [Thought] : continuous thought

(s e [ - 1: sequence of tokens
Language COT <---> : special token
Stage O [Question] <bot> <eot> [Step 1] [Step 2] -+ [Step N] [Answer - : calculating loss

Stage 1 [Question] <bot> [Rfi:11-:14) <eot> [Step 2] [Step 3] --- [Step N] [Answer]

Stage 2 [Question] <bot> W ClT=41d) <eot> [Step 3] -+ [Step N] [Answer]

SEECL MM [Question] <bot> [Thought]I[Thought] lThou ]

Figure 2 Training procedure of Chain of Continuous Thought (CoconuT). Given training data with language reasoning
steps, at each training stage we integrate ¢ additional continuous thoughts (¢ = 1 in this example), and remove one
language reasoning step. The cross-entropy loss is then used on the remaining tokens after continuous thoughts.

https://arxiv.org/abs/2412.06769



Calibration

RL'ed O1 models are more calibrated than Next Token Predicting only models.

https://openai.com/index/introducing-simpleqga/




Why do we need reasoning model?

Direct End-to-End Inference vs Reasoning

 Empirical: scaling generation token lead to better performances
« Some hypothesis:
 Computation power and expressiveness
* Dynamically modify predictive distribution (time time algorithm)

* Representation not entangled



CoT

* A specific reasoning algorithms (i.e decompose problems into sub steps)
 Few shot CoT: leverages ICL to learn CoT from data

 Zero shot CoT: directly tells the model to break down problems into sub steps

~

{ Chain-of-Thought Prompt J LLM
Q: Roger has 5 tennis balls. He buys 2 more cans (e.g., ChatGPT, Gemini, Claude, and Llama)

of balls. Each can has 3 balls.
How many balls does he have now?
[ Output ]

A: Roger started with 5 balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5+ 6 = 11.

The answer is 11. A: The cafeteria had 23 apples. They used 20

Q: The café has 23 apples. They use 20 during for lunch. So they had 23 - 20 = 3. They
lunch and buy 6 more. bought 6 more, so they have 3 + 6 = 9.

How many apples do they have? The answer is 9.




What about other algorithms?

o Self Consistency: majority voting

* Auto Cot: sampling specific questions (cosine similarity) as context for few
shot CoT

* Tree of thought: CoT with a tree search
* Graph of thought: graph based CoT, allows to revisit previous nodes
» | east to Most: divide and conquer

 Many different ways, all add hoc



Best of N style algorithms

Greedy decode
. @ A " This means she uses 3 + 4 =7 eggs every day. h
Chain-of-thought [ Prompt }\_ Language She sells the remainder for $2 per egg, so in .
prompting model total she sells 7 * $2 = $14 per day. \{ The answer is $14. ]
— g ) . The answer is $14. y

Weighted Best-of-N: Aggregate scores across all identical responses and select the
answer with the highest total reward. This approach prioritises high-quality answers by
boosting their scores through repeated occurrences. Mathematically, the weighting

across answers a; Is performed as follows:

N
Qweighted — a8 maa'X; H(az — a') : RM(p7 'Si) 9

N S S/

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
chain-of-thought (CoT) prompting; (2) replace the “greedy decode” in CoT prompting by sampling
from the language model’s decoder to generate a diverse set of reasoning paths; and (3) marginalize
out the reasoning paths and aggregate by choosing the most consistent answer in the final answer set.



More Fancy Best of N

Inference-Aware Fine-Tuning. To address the gap between how LLMs are trained and how they are used
at inference time, we develop inference-aware fine-tuning. During inference, the learned policy x is often
not directly used; rather some inference strategy I : I1 X X +— Ay is applied to it. For example, I can be the
BoN strategy, which samples multiple candidate responses, and selects the best using the score function
of some verifier; or I might be a search mechanism (Lightman et al., 2023) or self-correction (Kumar
et al., 2024). To account for this inference strategy I, we alter the objective SFT and RL objectives to be
“aware" of the inference strategy:

max Ex~p,y~x*(y|x) [10g I(, x) (y)], and (Inference-Aware SFT)
e
mal%(J (1) := Ex~py~1(xx) [R(x,¥)], (Inference-Aware RL)
TE

BoN-Aware Problem Formulation. We begin by defining the BoN strategy. This inference strategy
samples N resposnes from a model with some temperature T, and then selects the best one, based on
some verifier score. Formally, the BoN inference policy can be written as:

I(m,%)(¥) = Toon(YIX; 1,7, N, T) :=arg max r(x,y’), s.t. y; ~ 1(-]x),x € X, (1)
Y €{y1,--»YN}

where ~ is a sample with temperature T, and r : X X Y +— R is a verifier score'. In what follows, when
r,N,T are clear from context, we write ., (y|x; 7). We see that the above strategy defines a class of BoN
policies that is different from the learned policy =, demonstrating the gap between training and inference.



More Fancy Best of N
With a PRM

( Which number is larger, 4.8 or 9.117 J
Step 1: Identify the numbers to compare,
[ 2.2 and 911 0.75 0.75 0.75 0.75
X
Step 2: Compare the whole number
[parts; both are 9, so they are equal . il il Sl
X
Step 3: Compare the decimal parts; 0.8 0.23 023 023 0.23
is greater than 0.11 ' ' ' '
x
[Step 4: Conclude that 9.8 is larger than 5L11] [ o,qq] [o,qq) [o,qq) (ooqq]
step-level .- [ozs) [o.séj (o.qu
sScores
MIN Proo( last



Best of N results
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Search

 Key idea: search as a general
problem solving tool

e Problem: need heuristics /
verifier to evaluate !

 PRM: step level reward model
(\n\n as a step)

 Showing pretty good
performances already

e |ssue: step level verifiers are
not reliable

45

w e
[6)] o

MATH Accuracy (%)
w
o

25

20

MATH Accuracy (%)
N N w w H H
o (6} o (@)} o (6]

-
(&)}

-
o

Are there any more systematic way?

Iteratively Revising Answers at Test-time

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

Compute Optimal Revisions

=== Majority

—— Best-of-N Weighted
® Compute Optimal
® Parallel

Compute Optimal Search

a@= Majority
«=@= ORM Best-of-N Weighted
«=@= PRM Best-of-N Weighted
«@= PRM Compute Optimal

23 2°
Generation Budget

Generation Budget

Relative Improvement in Accuracy
From Test-time Compute (%)

30 +27.8%

N
o

-
o

o

-10

@® Easy Questions

~30 @® Medium Questions
Hard Questions -37.2%
-40
<<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens

Test-time Search Against a PRM Verifier

Relative Improvement in Accuracy
From Test-time Compute (%)

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

20 +19.1%

® Easy Questions
® Medium Questions
Hard Questions -52.9%

<<1 ~=1 >>1

Ratio of Inference Tokens to Pretraining Tokens



Beam Search

®
55 - =
Llama 3.1 8B :

T R N o S— ~ ed step-wise
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>
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---- 0-shot CoT gain. Then
30{  Llapha3.21B .~ —e— Majority .
Best-of-N (weighted)
55 —e— Beam search
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Number of generations per problem



Tree Search: Tree of thoughts

1. How to decompose the intermediate process into thought steps (token /
paragraph / \n\n )

2. How to generate potential thoughts from each state (potential research
question)

* 3. How to heuristically evaluate states (verifier / [Im as judge)

e 4. What search algorithm to use (DFS / BFS)

Input: 491013 | t .
e (a) Propose Prompt Thought Genera tion
_____ wgf'““;;%_ Input: 491013 M 10-4=6(left: 6913)
- 4 #; - +\9= . .
------ o (eFe 1013 13 Possible next steps:
13-6=7 13-9=4 \ (b) Value Prompt ) Thought Evaluation
(left: 7 9) Evaluate if given numbers can X (13 _ 10) *13=3*13 =39 il
reach 24 (sure/likely/impossible) .
=36 Th
m 1014:10 + 14 = 24, sure .M 10+13T13 3.6 ere is no way
4+6=10 46=24 to obtain 24 with these big
(left: 10) : 101313 numbers. impossible




Tree Search: MCTS

e |nstead
select.
e One co

MATH Test Accuracy (%)

40

35

30

25

20

15

10

Comparing PRM Search Methods

== Best-of-N Weighted
«=@= Majority

a@= Beam; M := sqrt(N)
@@= Beam; M =4
«@= 1 Step Lookahead; M := sqrt(N)
«@= 3 Step Lookahead; M := sqgrt(N)
«{»» 3 Step Lookahead; M := 4

23 25 27 29

Generation Budget

the value to



Overview

* A Unified Perspective on Test-Time Computation: Proposer and Verifier

* Can you think of other algorithms®?

Best-of-N

I Generate N full solutions,
selecting the best one with the I
erifier

Question I v |

r_
I.I

Select the best final answer using the verifier

Beam Search

Select the top-N samples
at each step using the
PRM

Question

Select the best final answer using the verifier

Lookahead Search

I e I —_— —_— —_— L] 1

I Beam search, but at each step |
l rollout k-steps in advance, using

I the PRM value at the end of the I
rollout to represent the value for

.l Questlon l the current step I

|
/7
Propag
PRM value
ollout ‘ back t
-steps ep

Continue Search from
the top-N options

lllllllllllllllllllllllllllllllll

Key: r -
I
I | = Apply Verifier

- e

Full Solution

= Intermediate solution step

= Selected by verifier = Rejected by verifier



Scaling Laws

Iteratively Revising Answers at Test-time

Compute Optimal Revisions

. 30
45 == Majority
- Best-of-N Weighted L>)~
® Compute Optimal @ = 20
40 @ Parallel // 83\_,
g /'T.‘::: < 10
Inference scaling (Weighted Majority)
70
%
= 60 -
n
O 50+
C
o
S 40 -
-
V
§ 30-
|_
2 8 32 128 512 2048
Inference FLOPs per question (x10!)
EE -40
15 ¥ o
10

Generation Budget

Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

Inference scaling (Weighted Majority)
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v o ¢
00
= 60 8
O 50
el i ¢
o
§ 40 - ©
: ¢ ok
e ©
$ 30 i !
S | %
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[“Wait”’] What about the verifiers

 We mainly discussed about search algorithms, with the assumption that we
have a good verifier.

 What are good verification algorithms?
 Math: string matching, lean prover
 Code: compiler execution

 Open ended domains: Finance, healthcare, legal?



[“Wait”’] What about the verifiers

 We mainly discussed about search algorithms, with the assumption that we
have a good verifier.

 What are good verification algorithms?
 Math: string matching, lean prover
 Code: compiler execution

 Open ended domains: Finance, healthcare, legal?



LLM as judge

 Pros: Flexible
 Cons: Does not work well :)

| LM as grader: given a ground truth label, and a model generated answer, ask
lIm to check if the two are equivalent.

 Widely used in RL fine tuning tasks



PRM

Let’s verifv step bv step

Let _ Let
2° + 32" — 4 = py(z)pa(z) - - - pr(), z® + 3z — 4 = pi(x)pa(z) - - - pr(),

The denominator of a fraction is 7 less than 3 times the numerator. If the fraction is equivalent to 2/5, what is the numerator of
the fraction? (Answer: ‘ 14)

() () @& Let's call the numerator x.
) () @& So the denominator is 3x-7.
) () & We know that x/(3x-7) = 2/5.

() ) & So 5x = 2(3x-7).

D ® S 5x=6x-14.

T e S N AN S N A N e N AN SN
Multiplying, I get p1(1) + p2(1) +--- + px(1) = 0.
Answer: 0



PRM

Active Learning

4.2 Active Learning

Finally, we investigate the impact of active learning. We train a small-scale
reward model, PRMggector, On a single sample from each problem, and we use
this model to score 1000 samples per problem. To train each of our larger re-
ward models, we select N samples per problem such that 80% are the most
convincing (according to PRMggjector) Wrong-answer samples, and 20% are the
most convincing samples that remain (right- or wrong-answer). We score the
selected samples with PRMja;6e and train on those scores. This process ensures
that all samples are relatively convincing under PRMgelector, that a large frac-
tion are known to contain at least one mistake, and that our overall dataset
is not too heavily biased toward wrong-answer solutions. Performance of this
data labelling scheme is shown in Figure 4a. By comparing the slopes of the
line of best fit with and without active learning, we estimate that this form
of active learning is approximately 2.6x more data efficient than uniform data
labelling. We note that the model trained on the largest active learning dataset
(200 samples per problem) appears to slightly underperform the expected trend
line. Our best explanation for this observation is that 200 samples represents
a significant fraction of the overall selection pool (1000 samples) and that this

o
o

w - S
(92 o (9

% Problems Solved (Best-of-500)

N
U

(a) Four series of reward models
trained using different data collection
strategies, compared across training

9
o

U
o

w
o

PRM + Active Learning
—— PRM (PRM;,ge Supervised)

—— ORM (PRM3/ge supervised)
—— ORM (final-answer supervised)

00 10t 102

Number of solutions labelled per problem

sets of varying sizes.




Scalable Solution?
MATH-SHEPHERD

r

.

Problem: Let p(x) be a monic polynomial of degree 4. Three
of the roots of p(x)are 1, 2, and 3. Find p(0) + p(4).

J

"

Golden Answer: 24

J

(

.

Solution: $ = §4, S5, S3,***, Sk

H Answer: 20 X } (a) Outcome Annotation: y¢ = 0

~

J

s

\

(

- Problem: .... h So1[® S31[ * —» Skg,1 [ ”  Answer: 24 v
S1: Since three of the ,
roots of p(x)are 1, 2, and 52,2 52,2 SK,, 2 Answer: 24 \/
3, we can write : p(x) =
SZ3H SZ3H . ]——P[ SKggH Answer: ZOXJ

L (x-1)(x-2)(x-3)(x-r). )

(b): Process Annotation: y;' =

,yﬁ’f=1

s;: the £th step of the solution S.

s; j- the Fth step of the j-th finalized solution.

Can you
think of
other
ways?



Generative Verifier

LLM-as-a-Judge DPO ~ " Discriminative RM " GenRM 7 GenRM-CoT
Algorithmic Reasoning (2 tasks) Grade-School Math (GSM8K) Transfer to MATH (GSM-Verifiers)
A: 5.0% - 45.3% A: 73.0% - 93.4% A: 28.0% — 44.6%
45%
5 40% 92%
0 43%
S& 32% S 90% oy
c < 5 40%
% -lg 24% -lg 88% -lg
ge . 0 mn 38%
S 16% 86%
35%
0
8% sase] L EE




Self Improvement
Self rewarding LLM

 Most self improvement paper are this flavor

f-Instruction creation Instruction following training
Generated Seed model Generate Generate S
new prompts (for 7=1) responses rewards pairs
v | |
A ! select - raining

Next iteration model



Self Play

SPIN & Rstar

4.1 Self-Play Fine-Tuning (SPIN)

Let us consider a two-player game, where the main player’s o Final selected answer
objective is to distinguish the responses generated by the ___Queston_ Jlos eama s N x e
LLM and those generated by the human. Meanwhile, the [ty | 80 Wi e e g i
opponent’s role is to generate responses that are indistin- how mary sl bags can e ke \_SSr2t00) l_[;s-;n'k;L;;.];'ij:.;;;"' f Cmi;i:t? e gganayesgigzggf:iZ}gg
guishable from the human’s responses. The core of our \2ﬂ%i§i.“.”..?.“.”Tsailiseié?i?i%.we@“S”’ e
method 1s the self-play mechanism, where both the main Figure 2: Our self-play mutual reasoning is a generation-discrimination process: (1) a self-generator

‘£ augments the target SLM to generate candidate reasoning trajectories using MCTS; (2) the discrimi-
P layer and the opponent are the same LLM, but from dit nator uses another SLM to provide unsupervised feedback on each trajectory based on partial hints;

ferent 1terations. More SpCCiﬁC&lly, the opponent 1s the old (3) based on this feedback, the target SLM decides a final reasoning trajectory as the solution.
LLM from the previous iteration, and the main player is the
new LLM to be learned in the current iteration.

o ' |
In 1teration ¢+ 1, the opponent 1s the LLM from the previous A bit contrived

iteration, denoted by pg,, which generates responses y’ for

those prompts x in the SFT dataset according to pg, (:|X). e Can we deSign sth like GAN or
Our method, therefore, consists of the following two steps at Al D ha G O?

iteration £+ 1: (1) training the main player, and (2) updating '

the opponent player.



Why self verification works?
P!=NP?

* Generation Verification Gap

Qwen-1.5 (GSM8K) 50 Qwen-2 (GSM8K) Llama-2 (GS5M8K) Yi-1.5 (GSM8K)
= » o
= || o % : )
@ 10 ¢ o X e o 10° _-
Q bl =
E O* A O * 0
Q O ® ~10 @ O* ® O
o 2 4 6 4 6 8 5 6 50 55 6.0 6.5
loge flops (1e21)

Qwen-1.5 (MATH)‘ Qwen-2 (MATH) o 20 Qwen-2.5 (MATH) . Llama-2 (MATH)
- [
2 e MC ¢ 7 /
2 10 CoTB 7.5 -7 15 »7° d
Q. | ® 27 0”0 4 ’
v @ , @ X | i 2 ’
> o X kg 25 ®_” S - . o~ K % /, 2
B P 3 - * g T e =
v % 0.0 f % 0 fr =KX o %
r 2 4 6 4 6 8 10 20 30 5 6

loge flops (1e21)



Can we do training?

* Training with SFT: fine tuning
with CoT data. This is why
Chatgpt 3.5 starts to produce
longer answers comparing to
3.0. For all models, they include
CoT data in the SFT phase

* |ssue: memorizing everything.
Generalization only happens
when scaling both parameters
and datasize.

 RL generalizes

(00)
o

Success Rate (%)
(@)
)

A— In-Distribution
40 - Out-of-Distribution
® SFT ® RL
20 - J
O - 1 1 1 Y 1 1
0.0 0.3 1.0 1.5 2.0 2.5
Training Computation (GFLOPs) 1le9

Figure 1: A comparative study of RL and SFT on the vi-
sual navigation environment V-IRL (Yang et al., 2024a)
for OOD generalization. OOD curves represent perfor-
mance on the same task, using a different textual action
space. See detailed descriptions of the task in Section 5.1.



Training: RL with Reward Model

* Direct RL with PRM/ORM: reward hacking is a serious issue

 With DPO: hard to handle credit assignment problem. For example, for two
solutions, each has some correct steps and incorrect steps, its hard to
disentangle them.



Training: RL Finetuning

* |nstead of having a parametrized reward model, use a rule based reward
model.

 For R1 or Openai RLF api, user came in with a dataset (X, Y). For each x,
model generates an answer a (extract the final part, can imagine there are
immediate steps), if a =y, then give reward of 1, otherwise 0. This can be
more sophisticated, such as giving partial reward. But all based on rules.

 RL part: the set of initial state is fixed (X). Iteratively sample a x from X, and do
RL on top of that.



Reward Calculation
Rule based reward: String Matching

import re

def format_reward_func(completions, **kwargs):
"""Reward function that checks 1f the completion has a specific format.

pattern = r"~<think>.*?</think><answer>.x?</answer>$"
completion_contents = [completion[@]["content”] for completion in completions]

matches = [re.match(pattern, content) for content in completion_contents]

return [1.0 if match else 0.0 for match in matches]

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.

The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and

<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> answer here </answer>. User: prompt. Assistant:

Table 1 | Template for DeepSeek-R1-Zero. prompt will be replaced with the specific reasoning
question during training.




RL Finetuning: o1 and r1

o Start with a SFT stage, distilling the “thinking” algorithm into the model. But

there Is no specific reasoning algorithm, they model discovers the algorithm
by itself.

2.2.2. Reward Modeling

The reward is the source of the training signal, which decides the optimization direction of RL.

To train DeepSeek-R1-Zero, we adopt a rule-based reward system that mainly consists of two
types of rewards:

* Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

* Format rewards: In addition to the accuracy reward model, we employ a format reward
model that enforces the model to put its thinking process between ‘<think>" and ‘</think>’
tags.



RL Finetuning: o1 and r1

 More synthetic data after RL converges: SFT, alignment (with reward model
for human preferences)

Reasoning data We curate reasoning prompts and generate reasoning trajectories by perform-
ing rejection sampling from the checkpoint from the above RL training. In the previous stage,
we only included data that could be evaluated using rule-based rewards. However, in this stage,
we expand the dataset by incorporating additional data, some of which use a generative reward
model by feeding the ground-truth and model predictions into DeepSeek-V3 for judgment.
Additionally, because the model output is sometimes chaotic and difficult to read, we have
filtered out chain-of-thought with mixed languages, long parapraphs, and code blocks. For

each prompt, we sample multiple responses and retain only the correct ones. In total, we collect
about 600k reasoning related training samples.



RL Finetuning: rO

* Directly start from scratch, no SFT.

» Can still obtain the “aha” moment, but the thinking process is not readable.



RL Finetuning: GRPO

 PPO requires you to load 3-4 models on GPU: policy new, policy old, value
function, and reward model.

 GRPO removes value functions, so it’s purely policy gradient with KL penalty.



GRPO: Optimizing for Efficiency

Algorithm 1 Iterative Group Relative Policy Optimization

Input initial policy model ng._. ; reward models r,,; task prompts D; hyperparameters ¢, B,

1: policy model g « mg,_,
2: foriteration=1,...,1do

3: reference model 7,.r < mg

4. forstep=1,...,Mdo

5: Sample a batch D, from D

6: Update the old policy model mg ,, < g

7: Sample G outputs {ol-}f=1 ~ mg, ., (- | @) for each question q € Dy

8: Compute rewards {r;}, for each sampled output o; by running r,,

9: Compute A;; for the t-th token of o; through group relative advantage estimation.
10: for GRPO iteration =1, ..., u do
11: Update the policy model 7y by maximizing the GRPO objective (Equation 21)
12: Update r,, through continuous training using a replay mechanism.

Output 7g




GRPO: Advantage

Baseline is the average of multiple samples
Per token advantage is the same for the trajectory

4.1.2. Outcome Supervision RL with GRPO

Formally, for each question q, a group of outputs {o1,0,--- ,0¢} are sampled from the old
policy model my ,. A reward model is then used to score the outputs, yielding G rewards
r={ry,r, - ,rg} correspondingly. Subsequently, these rewards are normalized by subtracting
the group average and dividing by the group standard deviation. Outcome supervision provides
the normalized reward at the end of each output o; and sets the advantages A; ; of all tokens in
the output as the normalized reward, i.e., A;; =7; = - _;f(f?rr;(r) , and then optimizes the policy by
maximizing the objective defined in equation (3).




GRPO: Advantage

Baseline is the average of multiple samples
Per token advantage is the same for the trajectory

# Sum the rewards from all reward functions
rewards = rewards_per_func.sum(dim=1)

# Compute grouped-wise rewards

mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)

# Normalize the rewards to compute the advantages
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)

std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
advantages (rewards — mean_grouped_rewards) / (std_grouped_rewards + le-4)

advantages = inputs|["advantages"]
per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)




GRPO: KL

* Previously PPO: Per token KL added into Advantage (why are you able to do
this?):

e

A = advantage(reward — 8 KL)

o  VoJorro(6) = E[q ~ P (Q), {0i}i; ~ 76,,(0lq)]

G loi| -
1 1 . Tref(0it|0i <t) (20) :
£ -y — A+ ( ref L, —1) Vo log mg(0;¢lg,0i <t). -with the
f C ; o] ; | it+P 76 (07 £01 <0) | g log g (0itlq,0i <t)
Tref (0|, 0 Tref (0it|q, 0i
Dy; [ﬂellﬂ'ref] _ ref( l,th l,<t) lOg ref( 1t‘q l<t) 1, (4)
79(0it|q, 0i<t) 76(0it|q, 0i <t)

which is guaranteed to be positive.

of compﬁrisons between outputs on the same question. Also note that, instead of adding KL
penalty in the reward, GRPO regularizes by directly adding the KL divergence between the
trained policy and the reference policy to the loss, avoiding complicating the calculation of A; ;.



GRPO KL: PPO vs GRPO

* PPO: kl = logprobs - ref_logprobs
« Sampling based

 GRPO: per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) -
(ref_per_token_logps - per_token_logps) - 1

 Nonnegative because exp (X) —> 1 + X + 1/2 xA2



GRPO: KL

o Effect: whitening, GAE calculation. GRPO KL separated term

# 4. compute rewards

kl = logprobs - ref_logprobs

non_score_reward = —args.kl_coef *x kl

rewards = non_score_reward.clone()

actual_start = torch.arange(rewards.size(0), device=rewards.device)

actual_end = torch.where(sequence_lengths_pl < rewards.size(1), sequence_lengths_pl, sequence_lengths)
rewards[[actual start, actual _end]] += scores

# 5. whiten rewards

if args.whiten_rewards:
rewards| = masked_whiten(rewards, mask=~padding_mask_pl, shift_mean=False)
rewards = torch.masked_fill(rewards, padding_mask_p1l, 0)

# 6. compute advantages and returns # Compute the KL divergence between the model and the reference model
ref_per_token_logps = inputs["ref_per_token_logps"]
per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1

lastgaelam = 0
advantages_reversed = []
gen_length = responses.shapel[1]

# x — x.detach() allows for preserving gradients from x
for t in reversed(range(gen_length)): advantages = inputs["advantages"]

nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0 per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
delta = rewards[:, t] + args.gamma * nextvalues - values[:, t] per_token_loss = -(per_token_loss — self.beta * per_token_kl)
lastgaelam = delta + args.gamma % args.lam * lastgaelam loss = ((per_token_loss *x completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
advantages_reversed.append(lastgaelam)

advantages = torch.stack(advantages_reversed[::-1], axis=1)

returns = advantages + values

advantages = masked_whiten(advantages, ~padding_mask)

advantages = torch.masked_fill(advantages, padding_mask, 0)

torch.cuda.empty_cache()




GRPO: Putting Together

Algorithm 1 Iterative Group Relative Policy Optimization

Input initial policy model mg. . ; reward models r,; task prompts D; hyperparameters ¢, B,
1: policy model mg « mg_,
2: foriteration=1,...,1do
3: reference model m,.¢ < 7g
forstep=1,...,Mdo
Sample a batch Dy, from D
Update the old policy model mg ,, < 70
Sample G outputs {oi}?=1 ~ mg,,, (- | @) for each question q € Dy
Compute rewards {r;}7, for each sampled output o; by running r,,
Compute A;, for the t-th token of o; through group relative advantage estimation.
for GRPO iteration=1, ..., u do
Update the policy model 7y by maximizing the GRPO objective (Equation 21)

N P O v 00 N Uk

Update r, through continuous training using a replay mechanism.

utput ng

1O

The gradient of Jsrpo(0) is:

VoJorro(0) = E[g ~ Pss(Q), {oi}s, ~ ma,, (Olq)]

|o; |
1 1 . Tref (0i¢]0i,<t)
E E _ E Ajr+ B ( ref CLtL<t) 1)] Vo 108 o (Oi,tlcb 0i,<t)-

ﬂ@(oi,tloi,<t)

(20)




Ok what about PPO

We introduce Open-Reasoner-Zero, the first open source implementation of large-scale
reasoning-oriented RL training focusing on scalability, simplicity and accessibility. Through
extensive experiments, we demonstrate that a minimalist approach, vanilla PPO with GAE
(A =1, y = 1) and straightforward rule-based reward function, without any KL regulariza-
tion, is sufficient to scale up both response length and benchmark performance on reasoning
tasks, similar to the phenomenon observed in DeepSeek-R1-Zero. Notably, our implementation
outperforms DeepSeek-R1-Zero-Qwen-32B on the GPQA Diamond benchmark, while only

requiring 1/30 of the training steps. In the spirit of open source, we release our source code,
parameter settings, training data, and model weights.

 Still not fully leveraging RL (Might also be a trap)



Thinking Template

8 8 8 o

We intentionally limit our constraints to this structural format, avoiding any content-specific
biases—such as mandating reflective reasoning or promoting particular problem-solving strate-

gies—to ensure that we can accurately observe the model’s natural progression during the RL
process.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>

<answer> answer here </answer>. User: prompt. Assistant:

Table 1 | Template for DeepSeek-R1-Zero. prompt will be replaced with the specific reasoning
question during training.



Thinking Length

DeepSeek-R1-Zero average length per response during training
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RL Finetuning: why does it work?

Key Takeaways

» Strong base model, no need to do exploration, the model can generate
correct answers, which provides signals.

* Use rule based rewards for reasoning tasks (or whenever possible). For
nuanced, open ended questions, reward model can provide some signals.



Why previously it didn’t work

* Using Neural reward models
 Model size, base model capabillity

* [raining stability
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Potential Research Question: Credit Assignment

 When doing REINFORCE, you are also reinforcing the incorrect part of the
solution.

 Example: “|[Reasoning Trace 1] Wait, but [Reasoning Trace 2]” [Reasoning
Trace 1] is incorrect, but it was still reinforced

 How to find the correct part responsible for leading to the solutions?

 More general: how to do better credit assignment? (Training value funcs, GAE
estimation (might perform bad on long sequences!))



Distillation
S1

(How many r in raspberry? Question ) Training We perform supervised finetuning on Qwen2.5-
ﬁet's break down the process of counting the letter 'r'in the 32B-Instruct using s1K to obtain our model s1-32B using
word 'raspberry”... ) basic hyperparameters outlined in §D. Finetuning took 26
* First letter: 'r' - Thisisan 'r', count = 1. i .
* Second letter: 'a' - Not an 'r', count remains 1 ... minutes on 16 NVIDIA H100 GPUs with P}’TOI'Ch FSDP.

* Sixth letter: 'e' - Not an 'r', count remains 1.

* Seventh letter: 'r' - This is an 'r', count = 2.

* Eighth letter: 'y' - Not an 'r', count remains 2 ...

The number of 'r's in "raspberry" is 2.

Wait, let's re-read the question carefully. It asks "How many r

in raspberry?" ... *r-a-s-p-b-e-r-r-y..*First'r'...*
Qecond 'r' ... * Third 'r" ... Count = 3 ... Reasoning tracy

My initial answer of 2 was incorrect due to a quick reading of
the word. Final Answer: The final answer is|3 Response

Figure 3. Budget forcing with s1-32B. The model tries to stop
after “...1s 2.”, but we suppress the end-of-thinking token delimiter
instead appending “Wait” leading s1-32B to self-correct its answer.



Applications

February 2, 2025

Introducing deep research

An agent that uses reasoning to synthesize large amounts of online information and

complete multi-step research tasks for you. Available to Pro users today, Plus and Team next.

Booking a Reservation
on Open Table

1. Navigates to the incorrect restaurant 3. Navigates to the correct restaurant

_Foor W EE HELIX: A VISION-LANGUAGE-ACTION
= "™ - MODEL FOR GENERALIST HUMANOID

6. Opens seat se.ection with correct date
7. Cor eryat
|

_ February 20, 2025




The story of r1, chronologically

Tony Chen
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DeepseekMoE

[Jan 2024][efficiency]

A A A ‘, WAL LWL WA AL WWANNSSA L AW “UULO.I. ArWi W/ WA LW \-l- W WA N u-l-.’ hvh-&, S A L 4
h

This architecture manifests two potential issues: (1) Knowledge Hybridity: existing MoE
practices often employ a limited number of experts (e.g., 8 or 16), and thus tokens assigned to a
specific expert will be likely to cover diverse knowledge. Consequently, the designated expert
will intend to assemble vastly different types of knowledge in its parameters, which are hard to
utilize simultaneously. (2) Knowledge Redundancy: tokens assigned to different experts may
require common knowledge. As a result, multiple experts may converge in acquiring shared
knowledge in their respective parameters, thereby leading to redundancy in expert parameters.
These issues collectively hinder the expert specialization in existing MoE practices, preventing
them from reaching the theoretical upper-bound performance of MoE models.
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response, we propose the DeepSeekMOoE architecture towards ultimate expert specialization. It
involves two principal strategies: (1) finely segmenting the experts into mN ones and activating
mK from them, allowing for a more flexible combination of activated experts; (2) isolating K;
experts as shared ones, aiming at capturing common knowledge and mitigating redundancy
in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that
DeepSeekMOE 2B achieves comparable performance with GShard 2.9B, which has 1.5x expert
parameters and computation. In addition, DeepSeekMOoE 2B nearly approaches the performance
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Input Hidden
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Abstract

The rapid development of large language models has revolutionized code intelligence in
software development. However, the predominance of closed-source models has restricted
D ee See k- o d e r extensive research and development. To address this, we introduce the DeepSeek-Coder series,
a range of open-source code models with sizes from 1.3B to 33B, trained from scratch on 2
trillion tokens. These models are pre-trained on a high-quality project-level code corpus and
[J a n 20 2 4] [re a S o n i n g] employ a fill-in-the-blank task with a 16K window to enhance code generation and infilling.
Our extensive evaluations demonstrate that DeepSeek-Coder not only achieves state-of-the-art
performance among open-source code models across multiple benchmarks but also surpasses

existing closed-source models like Codex and GPT-3.5. Furthermore, DeepSeek-Coder models
are under a permissive license that allows for both research and unrestricted commercial use.

® Key: d at a q u al ity th°" LeetCode Weekly Contest

=== GPT-4-Turbo: 41.8
=== GPT-3.5-Turbo: 23.3

30 28.9

2. Data Collection

&

Java Bash ®
v

wv

[

a

The training dataset of DeepSeek-Coder is composed of 87% source code, 10% English code-

15 133
related natural language corpus, and 3% code-unrelated Chinese natural language corpus. The " o4
English corpus consists of materials from GitHub’s Markdown and StackExchangeH which are ‘o
used to enhance the model’s understanding of code-related concepts and improve its ability ’
to handle tasks like library usage and bug fixing. Meanwhile, the Chinese corpus consists of YY o« o
. . . . . . ’ . . . . . eScri N X e\

high-quality articles aimed at improving the model’s proficiency in understanding the Chinese Typesrpt R R

. . . . . .. o CodeGeeX2-6B o— StarCoder-16B _\_La(é(' de\p“\ ) d_gode \U(,od
language. In this section, we will provide an overview of how we construct the code training e CodeLlama-138 e CodeLlama-348 W co W e e
data. This process involves data crawling, rule-based filtering, dependency parsing, repository- 7O DecpScelcCoderT® | T DeepsecicCoder338

level deduplication, and quality screening, as illustrated in Figure 2, In the following, we will
describe the data creation procedure step by step.

Data Rule Dependency Repo-level Quality
Crawling Filtering - Parsing . Deduplication - Screening -
_ — e’ > NS e — —»VI

Figure 2 | The Procedure of Dataset Creation



2.3. Repo-Level Deduplication

Recent studies have demonstrated the significant performance improvements that can be
achieved by deduplicating training datasets for Large Language Models (LLMs). Lee et al. (2022)
e e p S e e e O e r have shown that language model training corpora often contain numerous near-duplicates, and
the performance of LLMs can be enhanced by removing long repetitive substrings. Kocetkov
et al. (2022) have applied a near-deduplication method to training data, resulting in dramatic
improvements, and they emphasize that near-deduplication is a crucial preprocessing step for

- achieving competitive performance on code benchmark tasks. In our dataset, we have also
a n re a S O n I n g employed near-deduplication. However, there is a distinction in our approach compared to

previous works. We perform deduplication at the repository level of code, rather than at the file
level, as the latter approach may filter out certain files within a repository, potentially disrupting
the structure of the repository. Specifically, we treat the concatenated code from the repository
level as a single sample and apply the same near-deduplication algorithm to ensure the integrity
of the repository structure.

e Exam p|e fi lter| ng rules 2.4. Quality Screening and Decontamination

In addition to applying the filtering rules mentioned in Section 2.1, we also employ a compiler
and a quality model, combined with heuristic rules, to further filter out low-quality data. This
includes code with syntax errors, poor readability, and low modularity. We provide the statistical
summary of source code in Table 1, which includes a total of 87 languages, detailing the disk

Firstly, we filter out files with an average line length exceeding 100 characters or a maximum size, number of files, and percentage for each language. The total data volume is 798 GB with

line length surpassing 1000 characters. Additionally, we remove files with fewer than 25% 603 million files. To ensure that our code training data is not contaminated by information
alphabetic characters. Except for the XSLT programming language, we further filter out files from the test set, which may be present on GitHub, we’ve implemented an n-gram filtering
where the string "<?xml version=" appeared in the first 100 characters. For HTML files, we process. This process inv.olves the.re.moval of'any code s.egments that ¥natch specific criteria.
consider the ratio of visible text to HTML code. We retain files where the visible text constitutes isgﬁiﬁ}éxﬁ: f(]gflreﬁitt gifszfgll;?ﬁlggpdcz‘f:;gﬁse’tq;?;&%: zn;hzgg ?g:;bfzog ;ﬁfggi)s:rfg
at leaSt 20% Of the COde and 1S nO leSS than 100 CharaCterS. For ]SON and YAML fﬂeS, WhiCh MATH (Hendrycks et al., 2021). For the ﬁ]tering criteria, we apply the followmg rules: if a
typically contain more data, we OIﬂy keep files that have a character count rangjng from 50 to piece of code includes a 10-gram string identical to any in the test data, it is excluded from our

training data. In cases where the test data comprises strings that are shorter than 10-grams but

5000 characters. This effectively removes most data-heavy files. > tha
no less than 3-grams, we use an exact match approach for filtering.

Algorithm 1 Topological Sort for Dependency Analysis

e N et o dencies, updating "graphs" and "inDegree" accordingly. Next, it identifies any disconnected
= i U0 subgraphs within the overall dependency graph. For each subgraph, the algorithm employs a
f ot modified topological sort. Unlike the standard approach that selects nodes with zero in-degrees,
f[f[:]%({f[{c: ey this algorithm selects nodes with minimal in-degrees, which allows it to handle cycles within
o edir the graph. Selected nodes are added to a "results" list, and the in-degrees of their connected
I e i) ity s i nodes are decreased. This process continues until a topologically sorted sequence is generated
fj;ém{)m?”ﬁ(;”” for each subgraph. The algorithm concludes by returning a list of these sorted sequences, and
T each sequence’s files are concatenated to form a single training sample. To incorporate file path
S information, a comment indicating the file’s path is added at the beginning of each file. This

end for

- method ensures that the path information is preserved in the training data.

: end procedure




Deepseek math
[Apr 2024][reasoning][efficiency]

Mathematical reasoning poses a significant challenge for language models due to its complex
and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pre-
training DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common
Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an
impressive score of 51.7% on the competition-level MATH benchmark without relying on
external toolkits and voting techniques, approaching the performance level of Gemini-Ultra
and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH.
The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First,
we harness the significant potential of publicly available web data through a meticulously
engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization
(GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning
abilities while concurrently optimizing the memory usage of PPO.

1. Better base policy with better dat
quality

e 2. More efficient RL with GRPO

e Still used a reward model

Reference )
Model

- v PPO

We conduct RL based on DeepSeekMath-Instruct 7B. The training data of RL are chain-of-
thought-format questions related to GSM8K and MATH from the SFT data, which consists

Policy | Model
. Model  val \
of around 144K questions. We exclude other SFT questions to investigate the impact of RL Maclllel
on benchmarks that lack data throughout the RL phase. We construct the training set of =

Reward

Trained
Models

reward models following (Wang et al., 2023b). We train our initial reward model based on the
DeepSeekMath-Base 7B with a learning rate of 2e-5. For GRPO, we set the learning rate of the

policy model as 1e-6. The KL coefficient is 0.04. For each question, we sample 64 outputs. The Reference r A

max length is set to 1024, and the training batch size is 1024. The policy model only has a single Sodc Iy - E
update following each exploration stage. We evaluate DeepSeekMath-RL 7B on benchmarks @_{ Policy 0, Reward T2 4,
following DeepSeekMath-Instruct 7B. For DeepSeekMath-RL 7B, GSM8K and MATH with Model hoc Model ) .. Computation ...
chain-of-thought reasoning can be regarded as in-domain tasks and all the other benchmarks 0g Te Ag

can be regarded as out-of-domain tasks.

GRPO

KL

~

Frozen
Models




Deepseek prover
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Generate statements -> Generate B — o D— Fr_ — Gt e ) — [

proof -> validate -> finetune on mis o5 Prover et S-prover

correct samples ( I ) € @

; Synthesized Data ,
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_____________________________________________

Figure 1: An overview of our approach.
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DeepseekCoder v2
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 Used GRPO for RLHF with compiler
feedback

In the alignment phase, we first construct an instruction training dataset that includes code
and math data from DeepSeek-Coder (Guo et al., 2024) and DeepSeek-Math (Shao et al., 2024), as
well as general instruction data from DeepSeek-V2 (DeepSeek-Al, 2024). This dataset is used to
fine-tune the base model. Then, in the reinforcement learning phase, we employ Group Relative
Policy Optimization (GRPO) algorithm to align its behavior with human preferences. Preference
data is collected in the coding domain using compiler feedback and test cases, and a reward
model is developed to guide the training of the policy model. This approach ensures that the
model’s responses are optimized for correctness and human preference in coding tasks. To
enable the model to support code completion after alignment, we also utilize Fill-In-Middle
approach (Guo et al., 2024) during the fine-tuning of the base model with 16B parameters.
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Reward Modeling Reward models play crucial roles in the RL training. In terms of mathemat-
ical preference data, we obtain them using the ground-truth labels. In terms of code preference
data, although the code compiler itself can already provide 0-1 feedback (whether the code pass
all test cases or not), some code prompts may have a limited number of test cases, and do not
provide full coverage, and hence directly using 0-1 feedback from the compiler may be noisy
and sub-optimal. Therefore, we still decide to train a reward model on the data provided by the
compiler, and use the reward model to provide signal during RL training, which is more robust

and has better generalization ability, in comparison with raw compiler signal. As illustrated in
Figure|3, in our in-house test sets (Leetcode and Leetcode-zh), using a reward model to provide
RL training signal clearly outperforms using raw compiler signal. Hence, we use reward model
signal rather than compiler signal in all subsequent experiments.

LeetCode-Pass@1 LeetCode-zh-Pass@1

—— Compiler Signal —— Compiler Signal
Reward Model Signal Reward Model Signal
—— SFT Model 0161 — SFT Model

0.14 A

T@;)‘ ]
£ 0.161 /\ 0.12 /\/\/\
e N 0.10 - o /
N
0.12 w / \/
100

100 200 300 400 500 600

Pass@1

200 300 400 500 600
Steps Steps

Figure 3 | Performances of Different Methods
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* Training time: SFT + RL with GRPO
* Rule based reward (from compiler

e |nference time: MCTS (nhot used in r

DeepseekProver v1.5

it LG Model Training

import Aesop

set_option maxHeartbeats @
open BigOperators Real Nat Topology Rat

Pre-training

/—— Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3) (x-6)=0%.
Show that it is 7/2.-/
theorem amcl2a_2002_pl (f : € - C) (he : ¥V x, f x =(2 % x + 3) *x (x - 4) +
(2 % x +3) % (x - 6)) (h1 : Fintype (f-2' {0})) :
Yy in (f-2' {@0}).toFinset, y =7 / 2 := by
—— We show that the roots of the polynomial are -3/2 and 5.
have : (f-1' {@}).toFinset = {-(3 /2 : C), (5 : O} := by
ext x
simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage,
Set.mem_setOf, Finset.mem_insert, Finset.mem_singleton]
/- tactic state:
case a
f:C-C
he : V(x : C), fx=(2%xx+3) % (x-4)+ (2%x+3) % (x -6)
hi : Fintype t(f -*' {@})
x : C
FfXxX=0ex=-(3/2)vx=5
-/

Supervised
Fine-tuning

Whole-proof

Completion
Error Message from Lean 4 prover:
rw [hel failed to synthesize
constructor LinearOrder C
+ intro h
— we Solve the emimatine (Pv 2 YTy . 10
have : (2 x x + rw [hel Passed the verification of

by linear_com constructor Lean4 prover Model Inference

—— This gives u intro h
cases' eq_zero_ -- We solve the equation (2x + 3)[2x - 10] = @.
with hl h2 have : (2 x x +3) * (x -4 + x - 6) =0 :=
+ —— Case 1: 2x by linear_combination h
left -- This gives us two cases to solve.
linarith cases' eq_zero_or_eq_zero_of_mul_eq_zero this
+ —— Case 2: 2x with hl h2
right + — Case 1: 2x + 3 = 0
linarith left
+ —— We check tha linear_combination (1 / 2) * hl
rintro (rfl | r + — Case 2: 2x - 10 = @
-- Now we compute t right
rw [this] linear_combination (1 / 2) * h2
norm_num + — We check that -3/2 and 5 are indeed roots.
rintro (rfl | rfl) <;> norm_num
-- Now we compute the sum of the roots.
rw [this]
norm_num

Reinforcement
Learning

Single-pass
Sampling

Monte-Carlo
Tree Search
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S I g n al Figure 3 | Illustration of our Multi-Token Prediction (MTP) implementation. We keep the
complete causal chain for the prediction of each token at each depth.

® Tra| N | N g SySte m eﬁl C | en Cy Pre-Training: Towards Ultimate Training Efficiency

e We design an FP8 mixed precision training framework and, for the first time, validate the
feasibility and effectiveness of FP8 training on an extremely large-scale model.

e Through the co-design of algorithms, frameworks, and hardware, we overcome the
communication bottleneck in cross-node MoE training, achieving near-full computation-
communication overlap. This significantly enhances our training efficiency and reduces the
training costs, enabling us to further scale up the model size without additional overhead.

e At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of
DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model.
The subsequent training stages after pre-training require only 0.1M GPU hours.
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Question: If a > 1, then the sum of the real solutions of va — vVa +x = x is equal to

Response: <think>
To solve the equation \/ a—va+x = x, let’s start by squaring both - - -

(\/a—\/m)2=x2 — a—+Va+x=x%

Rearrange to isolate the inner square root term:
(a-x?)?=a+x = a®-2ax*+(x*)?=a+x = x*-2ax*-x+(a®*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va-+vVa+x=x

First, let’s square both sides:
a—-Va+x=x> = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,

allowing us to witness the power and beauty of reinforcement learning.
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2.2.2. Reward Modeling

The reward is the source of the training signal, which decides the optimization direction of RL.

To train DeepSeek-R1-Zero, we adopt a rule-based reward system that mainly consists of two
types of rewards:

* Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

* Format rewards: In addition to the accuracy reward model, we employ a format reward

model that enforces the model to put its thinking process between ‘<think>" and ‘< /think>’
tags.

* Problem: Poor readability

* |n paper, data distribution isn't mentioned
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* Finally, distilled r1 into smaller open-
sourced models

* Qutperform / on par with o

' Reasoning Oriented RL | |

. (Accuracy, Formatting) | |

GPQA  LiveCode

Model AIME 2024 MATH-500 Diamond  Bench CodeForces

pass@l cons@64 pass@1 pass@1 pass@1 rating
GPT-40-0513 9.3 13.4 74.6 49.9 32.9 759
Claude-3.5-Sonnet-1022 16.0 26.7 78.3 65.0 38.9 717
OpenAl-o1-mini 63.6 80.0 90.0 60.0 53.8 1820
QwQ-32B-Preview 50.0 60.0 90.6 54.5 41.9 1316
DeepSeek-R1-Distill-Qwen-1.5B 289 52.7 83.9 33.8 16.9 954
DeepSeek-R1-Distill-Qwen-7B 55.5 83.3 92.8 49.1 37.6 1189
DeepSeek-R1-Distill-Qwen-14B 69.7 80.0 93.9 59.1 53.1 1481
DeepSeek-R1-Distill-Qwen-32B 72.6 83.3 94.3 62.1 57.2 1691
DeepSeek-R1-Distill-Llama-8B 50.4 80.0 89.1 49.0 39.6 1205
DeepSeek-R1-Distill-Llama-70B 70.0 86.7 94.5 65.2 57.5 1633
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