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Part 0:

Introduction to Uncertainty 
Quantification in ML: 

An Empiricist’s Perscpective



Effective UQ enables downstream decision-makers and users to 
trust predictions made by large, opaque neural networks

Why Quantify Uncertainty?

In high-risk domains like medicine, education, and law, it is essential that we can 
quantify the uncertainty in the predictions of a machine learning model.

ML Model 70% probability 
of melanoma

Should I 
trust this?

Patient Image



Machine learning models are usually evaluated based on their accuracy.

→ e.g., error rate at predicting “will this patient develop a diease?”

For a trustworthy system, must also know:

● How confident am I in this prediction?
● How does the quality of this prediction compare to other ones?
● Are there some predictions that should be ignored?
● Is there an unacceptably high likelihood of very bad outcomes?

Why Quantify Uncertainty?



Machine learning models are usually evaluated based on their accuracy.
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● How confident am I in this prediction?
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Besides concerns about copyright, fairness, robustness, alignment, etc.

Why Quantify Uncertainty?



Types of Uncertainty



Data

● Missing
● Ambiguous
● Difficult
● etc.

Sources of Uncertainty

Model

Modelling decisions affect uncertainty 
estimates

● Architecture
● Ensembling
● etc.
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Part 1:

Uncertainty Quantification in 
(Image) Classification



Image 
Classification

Source: ImageNet

Image classification 
has driven much 
(most?) progress in 
deep learning



For each image x in a k-class problem, model produces:

● Feature representation (h)
● (Unnormalized) logits (z)
● Normalized class probabilities (p)

Image Classification Models

Encoder W
(dxk)

h
(1xd)

z
(1xk)

d = hidden dimension
k = number of classes

Feature 
Vector Logits

p
(1xk)

Class 
Probabilities



Estimating Uncertainty with Image Models

For a given test instance (and without any additional data), how can we estimate 
(quantify) the uncertainty in the model’s prediction?

→ First, what makes a good uncertainty estimate?

● Higher scores for examples more likely to be wrong
● Lower scores for examples more likely to be correct

Given uncertainty scores and labels of whether or not the prediction is correct, how 
can we measure the quality of (unscaled) uncertainty estimates? 

● E.g., AUROC



Estimating Uncertainty with Image Models

Baseline: Prediction Entropy

Network W
(dxk)

h
(1xd)

z
(1xk)

p
(1xk)



Estimating Uncertainty with Image Models

Baseline: Top-class Confidence

Network W
(dxk)

h
(1xd)

z
(1xk)
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Estimating Uncertainty with Image Models

Baseline: Top-class Confidence

Network W
(dxk)

h
(1xd)

z
(1xk)

p
(1xk)

“Confidence”



In machine learning, calibration typically refers to the quality 
where

prediction confidence matches the 
probability of correctness.

Then, e.g.,

for a well-calibrated ML model, 80% confidence 
implies 80% chance of correct prediction.

Calibration



Calibration

Uncalibrated 
Classifier

Calibrated 
Classifier

85% probability 
of melanoma

0.85 risk score

Expected Outcome

Disease in 
85% of cases

???????

Prediction
Patient Image



Calibration

Definition: A model is perfectly calibrated if

Or…

In other words, prediction confidence should match probability of 
correctness.



Measuring (Mis)calibration

Expected calibration error measures the expected difference between prediction 
confidence and correctness over the data distributuon

Accuracy Conf.



Measuring (Mis)calibration

Expected calibration error measures the expected difference between prediction 
confidence and correctness over the input distributuon.

● Must estimate, typically via binning
○ Order by confidence estimate
○ Group by boundaries or mass
○ Calculate difference b/w average confidence and accuracy in each bin
○ Combine



Visualizing 
(Mis)calibration

Reliability diagrams plot 
confidence vs. accuracy

→ Perfect calibration lies on 
x=y line

src: https://arxiv.org/abs/1706.04599 
and https://arxiv.org/abs/2410.05407 

Confidence Confidence

https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/2410.05407


ECE can be trivially minimized by predicting marginal class probabilities

e.g., always predict class at base rate.

Also helpful to consider some proper scoring rules:

● Brier score
● NLL

Measuring (Mis)calibration



Recalibration

Sometimes, we have some extra target data lying around that we can use to 
recalibrate our model post-hoc

→ Make the confidence scores more closely align with expected correctness

Usually this is a small amount of data, since if we had a lot we would do further 
fine-tuning

→ Recalibration methods are typically simple and low-dimensional



Recalibration: Scaling

Platt scaling: learns sigmoidal scaling of the prediction confidence

Tempature scaling: learns “temperature” for scaling logits



Recalibration: Binning

Histogram binning: 

● predictions assigned to bins (based on confidence ordering)
● all predictions in a bin share a score

src: https://dl.acm.org/doi/10.5555/645530.655658 

https://dl.acm.org/doi/10.5555/645530.655658


Recalibration: Other Methods

Isotonic Regression: strict generalization of histogram binning in which the bin

boundaries and bin predictions are jointly optimized.

Bayesian Binning into Quantiles: marginalizes out all possible binning schemes.

Many others… (e.g., based on KDEs)



Recalibration: Empirical Effectiveness

In general, recalibration with IID data improves miscalibration over pretrained 
model (exception is when ECE is already very low, <1-2%).

No “best” method (but I like temp. scaling and hist. binning).

src: On Calibration of Modern Neural Networks

https://arxiv.org/abs/1706.04599


On Calibration of Neural 
Networks

Canonical paper in calibration for deep 
learning

● Finds that advances in accuracy 
have come at the expense of 
increased miscalibration

● Also introduces temperature scaling

src: https://arxiv.org/abs/1706.04599

https://arxiv.org/abs/1706.04599


On Calibration of Neural Networks

Find that deep, wide networks with normalization and weight decay (i.e., basically 
all modern networks) are more miscalibrated than networks without those qualities



Revisiting the Calibration of Neural Networks

Revisits findings of On 
Calibration:

● Find no tradeoff between 
accuracy and calibration

● Given temperature scaling, 
most accurate is (nearly) 
most calibrated

● Architecture matters

Now, generally accepted that supervised deep learning models will be 
pretty well-calibrated in the IID setting*** src: https://arxiv.org/abs/2106.07998 

https://arxiv.org/abs/2106.07998


Selective Prediction

In selective prediction the goal is to build predictive systems that know when they 
should abstain from making a prediction

● Improve performance on 
remaining examples

● Ideal for human 
in-the-loop

○ Enhance trust of 
decision-makers

○ Efficiently allocate 
human/AI resources

src: https://arxiv.org/abs/2208.12084 

https://arxiv.org/abs/2208.12084


Selective Prediction

In selective prediction the goal is to build predictive systems that know when they 
should abstain from making a prediction

Baseline: Uncertainty scores

● Predictive entropy
● Top confidence

Also: LR on embeddings



SelectiveNet

Jointly optimize predictor f and selector g, so that system is 
optimal for covered domain

src: https://arxiv.org/abs/1901.09192 

Selective risk

Coverage

https://arxiv.org/abs/1901.09192


SelectiveNet

Learn with soft constraint, find threshold with validation set…



SelectiveNet



Learning to Defer

Train selection model to consider not only what the ML model 
knows, but also what the expert in the loop knows

Use

Defer

src: https://arxiv.org/abs/1711.06664 

https://arxiv.org/abs/1711.06664


Selective Recalibration

Since many recalibrators are simple functions, can benefit from ignoring some 
complexity in input space, especially if jointly optimized with selector

src: https://arxiv.org/abs/2410.05407 

https://arxiv.org/abs/2410.05407


Out-of-Distribution Detection

● Similar in spirit to selective prediction
○ Same baselines

● Aims to reject all examples that are OOD, vs. a pre-set 
percentage



Distribution-Free Uncertainty Quantification

Family of UQ methods gaining increasing popularity in the DL community.

Uncertainty quantification performed on the population/distribution level, e.g.:

● 90% probability the correct class will be in prediction set
● 95% proability toxicity will be below some chosen threshold

Distribution-free means:

● does not depend on the underlying model
● does not depend on the underlying distribution
● just need i.i.d. samples from target distribution (valid in finite samples)



Conformal prediction

● Simple framework for creating distribution-free prediction sets that come with 
rigorous statistical guarantees on coverage.

○ Prediction set: for a k-class problem, return m predictions, 1<=m<=k
○ e.g. produce sets that contain ground truth class 90% of the time.

● When the model is less certain, reflect that with larger prediction sets.
● Simple, effective algorithms using softmax output of classifier.

src: https://arxiv.org/abs/2107.07511 

https://arxiv.org/abs/2107.07511


Forming Conformal Prediction Sets

1) Compute Scores 2) Get Threshold 3) Form Prediction Sets

Non-conformity score:
1 - (top confidence)



Adaptive Prediction Sets

● Typical CP uses (one minus) softmax response as non-conformity score
● In APS, classes are included from most to least likely until their cumulative 

softmax output exceeds the quantile.
○ Performs favorably on conditional coverage

src: https://arxiv.org/abs/2006.02544 

https://arxiv.org/abs/2006.02544


Learn Then Test

● Test finite set of hypotheses for control (high-prob. risk bound below some 
threshold) of a general loss function

● Multiple hypothesis testing
● Returns a set of “safe” predictors (possibly empty)

src: https://arxiv.org/abs/2110.01052 

https://arxiv.org/abs/2110.01052


More General Risk Control: Quantile-Based Measures

More recent work has extended these high-probability bounds to cover 
important tail quantities like VaR and CVaR… 

src: https://arxiv.org/abs/2212.13629 

https://arxiv.org/abs/2212.13629


More General Risk Control: Dispersion Measures

…as well as statistical dispersion measures, such as the Gini coefficient or 
difference in median loss between groups

src: https://arxiv.org/abs/2309.13786

https://arxiv.org/abs/2309.13786


Bayesian Approaches

Popular Bayesian approaches to UQ in neural networks:

● Bayesian neural networks
● MC-Dropout
● Deep Ensembles



Bayesian Neural Networks

● Place probability distributions over weights, allowing direct uncertainty 
estimation.

● Inference usually requires approximate methods (e.g., variational inference, 
Monte Carlo Dropout, Markov Chain Monte Carlo) due to computational 
intractability of exact Bayesian inference.

Strength: principled uncertainty estimates.

Weaknesses: higher computational complexity and sensitivity to choice of priors.



Bayesian Neural Networks

Some popular works:

● Evidential Deep Learning to Quantify Classification Uncertainty
○ https://arxiv.org/abs/1806.01768

● Predictive Uncertainty Estimation via Prior Networks
○ https://arxiv.org/abs/1802.10501

● Epistemic Neural Networks
○ https://arxiv.org/abs/2107.08924

https://arxiv.org/abs/1806.01768
https://arxiv.org/abs/1802.10501
https://arxiv.org/abs/2107.08924


Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 
Learning https://arxiv.org/abs/1506.02142

● Cast dropout training in deep neural networks (NNs) as approximate Bayesian 
inference in deep Gaussian processes.

● Algorithm:
○ Perform dropout at training and test time
○ During test, ensemble over repeated samplings with dropout
○ In practice, this is equivalent to performing stochastic forward passes through the network and 

averaging the results.

Monte-Carlo Dropout

https://arxiv.org/abs/1506.02142


Deep Ensembles

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 
https://arxiv.org/abs/1612.01474

● Deep Ensembles can be viewed as drawing multiple “samples” from a model 
space—mirroring the idea of placing distributions over parameters in Bayesian 
approaches.

● Each network in the ensemble is trained independently, avoiding 
computationally demanding techniques often seen in Bayesian neural 
networks.

● Empirically, Deep Ensembles often outperform alternative uncertainty 
quantification methods (e.g., MC Dropout), delivering better calibration and 
predictive accuracy in both classification and regression tasks.

https://arxiv.org/abs/1612.01474


Deep Ensembles



Part 1: Summary

Uncertainty quantification in image classification models

● Why quantify uncertainty?
● Estimating uncertainty
● Calibration and recalibration
● Selective prediction
● Distribution-free uncertainty quantification
● Bayesian approaches
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Part 2:

Uncertainty Quantification in 
Large Language Models



Uncertainty in Natural Language

Given some input context to a language model, there are usually many possible valid 
responses.

● Input may be reasonably interpreted to have multiple different meanings. 
○ Vague (“She watched the man with binoculars”)
○ Complex (as some reading comprehension questions are, even for humans)
○ Contain spelling or other errors.

● Some queries are inherently open-ended and allow for many reasonable responses. 
○ request to complete a fictional story, tell a joke, or give a position on some political or social issue. 

● For fixed input interpretation, equivalent answers may be expressible in many ways. 
○ For example, given the input context “What is the capital of Rwanda?”...

■ “Kigali is the capital of Rwanda” and “The capital of Rwanda is Kigali” 
○ …offer semantically equivalent answers with different surface forms

src: https://arxiv.org/abs/2307.15703 

https://arxiv.org/abs/2307.15703


Uncertainty in Natural Language

Training

● Dataset is small or not sufficiently 
general.

● Data may include errors, such as 
“The capital of Rwanda is Berlin.”

● Large amount of ambiguous 
language. 

● Also: conflicting or outdated 
information.

Test

● Queries could be ambiguous.
● Tasks or instructions could be 

open-ended or under-prescribed.
● Relevant information could be 

excluded from the context.
● Users may produce input errors.



Why is UQ Harder in LLMs?

● Image clf. models give us direct access to their (task) predictive distribution.
● LLMs make a sequence of classification decisions over tokens to produce 

strings of arbitrary length:

● Comprehensively measuring the uncertainty in language model generations 
may require knowledge of the distribution over all possible sequences.

● Often a disconnect between token prediction task and actual task being 
performed.



Naive Approach: Token Probabilities

● LLMs make a sequence of classification decisions over tokens:

● Probability assigned to each token reflects its plausibility as the next word 
given the context under the training distribution.

● Joint probability can give uncertainty score for a given response.
○ Possibly length normalized

However, this may not be the “uncertainty” that we’re interested in…



Plausibility vs. correctness

Given the context

Question: What is the shape of the earth? 

the completion

Answer: The shape of the earth is flat.

● may be plausible under training distribution scraped from the internet.
● should be assigned (near) zero probability as correct answer in QA task.

We need some notion of task uncertainty.



Unc. Score 

LLMQuery Response

Task UQ

Given the query and task definition, is the LLM response likely to be 
“correct”?

● Notion of “correct” depends on the application, domain, and even user.
○ There may be many correct answers.

● Given good task uncertainty scores, we can do recalibration, selection, OOD 
detection, etc.

Task 
uncertainty



Sampling and self-consistency

Repeated samples can be drawn from LLM 
and compared to estimate uncertainty in a 
given reponse.



Semantic Uncertainty

Repeated samples can be drawn from LLM 
and compared to estimate uncertainty in a 
given reponse.

For each input example:

● Produce many samples from LLM
● Cluster samples that map to same 

answer
● Compute entropy/confidence using 

distribution over answer clusters

Semantic Entropy, Kuhn et al. 2022

Question: What is the capital of France?

src: https://arxiv.org/abs/2302.09664 

https://arxiv.org/abs/2302.09664


Semantic Entropy

src: https://arxiv.org/abs/2302.09664 

https://arxiv.org/abs/2302.09664


Token Relevance

Methods that use token probs 
(including baselines and semantic 
entropy) treat all tokens equally

→ However, can we do better by 
focusing on the probabilities of 
important tokens?

src: https://arxiv.org/abs/2307.01379 

https://arxiv.org/abs/2307.01379


Shifting Attention to Relevance



Looking Inside the Model

We’ve mostly focused on logits 
and token probs, what about 
embeddings?

● Compute the covariance 
matrix of embeddings of 
multiple generated 
answers to the same 
query.

● Use the log determinant 
(EigenScore) of this 
covariance matrix to 
capture semantic 
divergence.

src: https://arxiv.org/abs/2402.03744

https://arxiv.org/abs/2402.03744


Looking Inside the Model

We’ve mostly focused on logits 
and token probs, what about 
embeddings?

● Compute the covariance 
matrix of embeddings of 
multiple generated 
answers to the same 
query.

● Use the log determinant 
(EigenScore) of this 
covariance matrix to 
capture semantic 
divergence.

src: https://arxiv.org/abs/2402.03744

https://arxiv.org/abs/2402.03744


Calibration in LLMs

● Baselines and semantic entropy do not give probabilistic scores
● Could draw many samples and measure self-consistency, but:

○ Expensive
○ Difficult in free-form settings

● How can we effectively and efficiently get probabilistic estimates of task 
correctness?



Calibration in LLMs

● Baselines and semantic entropy do not give probabilistic scores
● Could draw many samples and measure self-consistency, but:

○ Expensive
○ Difficult in free-form settings

● How can we effectively and efficiently get probabilistic estimates of task 
correctness?

Just ask the LLM!!!



An LLM can be prompted to verbalize its confidence in a given response, 
for example by instructing model to:

● Multiple choice: e.g., predict if a given answer is true or false.

● Verbalization: estimate its confidence using marker words (e.g. probably, 
definitely) or numbers (e.g. 70%, 1-5 scale).

Verbalizing confidence

Kadavath et al., 2022

src: https://arxiv.org/abs/2207.05221 

https://arxiv.org/abs/2207.05221


Verbalizing Confidence

Kadavath et al., 2022

src: https://arxiv.org/abs/2305.14975 

● Top left: baseline
● Top right: linguistic 

markers associated with 
confidence levels

● Bottom: direct 
confidence 
verbalization, with one 
(left) or multiple (right) 
guess(es)

https://arxiv.org/abs/2305.14975


An LLM can be prompted to verbalize its confidence in a given response, 
however:

● One study suggests LLMs mimic observed language use, rather than 
truly reflecting epistemic uncertainty. (Zhou, Jurafsky, Hashimoto, 2023)

● Calibration achieved via verbalized confidence is often trivial
○ If a model is 85% accurate, and predicts 90-95% confidence for every 

example, ECE is low but confidence estimates are not useful

Limitations to Verbalizing Confidence



Learning to Reject

Build selective prediction 
into the post-trianing 
process

● Identify instruction 
tuning data examples 
with facts unknown to 
the LLM

● Replace preferred 
response with “I don’t 
know”

src: https://arxiv.org/abs/2311.09677 

https://arxiv.org/abs/2311.09677


Handling Ambiguous Queries

Unlike image 
classification models, 
LLMs can ask for 
more information 
when they are 
uncertain!

src: https://arxiv.org/abs/2212.07769 

https://arxiv.org/abs/2212.07769


Selective Clarification for Ambiguous Questions



Selective Clarification for Ambiguous Questions

Empirically, this is helpful…

Can think of this as another sort of 
test-time compute…



LLMs and Distribution-Free Uncertainty Quantification

Lots of interest in LLMs

         Lots of interest in DFUQ



LLMs and Distribution-Free Uncertainty Quantification

Lots of interest in LLMs

      + Lots of interest in DFUQ

     Lots of interest in LLMs+DFUQ!



LLMs and Distribution-Free Uncertainty Quantification

Lots of interest in LLMs

      + Lots of interest in DFUQ

     Lots of interest in LLMs+DFUQ!

But it’s not always an easy fit…



Conformal LLMs

● Conformal Language Modeling
○ Generate samples until a stopping rule is met, filter for diversity and quality
○ https://arxiv.org/abs/2306.10193

● Language Models with Conformal Factuality Guarantees
○ Ensure high probability of factuality in a single generation using back-off
○ https://arxiv.org/abs/2402.10978

● Mitigating LLM Hallucinations via Conformal Abstention
○ Score with self-consistency, use conformal techniques to calibrate rejecting threshold
○ https://arxiv.org/abs/2405.01563

https://arxiv.org/abs/2306.10193
https://arxiv.org/abs/2402.10978
https://arxiv.org/abs/2405.01563


Prompt Risk Control

Prompt selection is a leverage point for managing performance/behavior trade-offs.

● Prompt risk control is a lightweight framework for selecting a prompt based 
on high-probability bounds on families of informative risk measures.

Goals:

● Move beyond selecting prompts based on an average empirical performance.
● Manage trade-offs inherent in LLM behavior (e.g., helpfulness vs. 

harmlessness, usefulness vs. safety) in a principled and rigorous manner.

src: https://arxiv.org/abs/2212.07769 

https://arxiv.org/abs/2212.07769


Prompt Risk Control

Prompt Risk Control → lightweight framework to select a prompt based on 
rigorous upper bounds on families of informative risk measures in order to:

● Move beyond selecting prompts based on an average empirical score.
● Manage trade-offs inherent in LLM behavior, like helpfulness vs. 

harmlessness, or usefulness vs. safety.
○ First guarantee safety, and then pick the most useful prompt left 

standing



Input: Candidate prompts, validation data 
(i.i.d.), loss function, risk measure, threshold

Output: Set of prompts that (with high 
probability) bound risk at acceptable level

Prompt Risk Control



Framework fits naturally as the initial step in a 2-stage prompt selection 
pipeline. 

1. Prompt Risk Control uses validation data to identify prompts unlikely to 
incur an unacceptably bad outcome according to risk and loss fns. 

2. Using the same data, risk controlling prompts can be scored on 
performance metric for final prompt selection.

Note: because PRC treats LLM as black box and only requires outputs from the 
model, this framework can be used with a proprietary model held behind an 
API (e.g., GPT-4).

2-Step Pipeline Including PRC



PRC Example Application

An organization plans to deploy an LLM chat application, where the goal is to provide helpful 
answers to user-provided queries. 

● They have concerns about the model including toxic content in its output, and decide that:
○ with 95% likelihood (δ = 0.05) 
○ at least 90% of generations (Value-at-Risk, β = 0.90) 
○ must have toxicity score less than α = 0.05. 

● Want to consider 5 system prompts and 5 one-shot exemplars → 25 candidate prompts

Using validation set, LLM generations, and toxicity scores, PRC will return the prompts that control 
the risk at an acceptable level. 

● Then, using the same validation data and the set of prompts returned by PRC, the final 
prompt might be chosen according to the average helpfulness score (often known as the 
“reward”) across the validation set. 



Epistemic Uncertainty in LLMs

To Believe or Not to Believe Your LLM https://arxiv.org/abs/2406.02543

● Iterative prompting to measure epistemic uncertainty

https://arxiv.org/abs/2406.02543


Identifying Epistemic Uncertainty in LLMs

● Fine-Tuning Language Models via Epistemic Neural Networks
○ Train epistemic NN to quantify uncertainty of LLM, use to select fine-tuning data
○ https://arxiv.org/abs/2211.01568

● Decomposing Uncertainty for LLMs through Input Clarification Ensembling
○ Uses re-prompting to separate epistemic and aleotoric uncertainty
○ https://arxiv.org/abs/2311.08718

https://arxiv.org/abs/2211.01568
https://arxiv.org/abs/2311.08718


Reducing Uncertainty Using Natural Language

Adaptive Elicitation of Latent Information Using Natural Language                           
Jimmy Wang, Tom Zollo, Rich Zemel, Hongseok Namkoong     
https://openreview.net/forum?id=63c2erbMoc

● The performance of many valuable services and systems depends on the 
ability to efficiently elicit information and reduce uncertainty about a 
previously unseen latent entity. 

○ Assess a new student’s skills
○ Understand underlying health of patient upon intake

● To achieve efficiency, these strategies must be adaptive, dynamically tailoring 
subsequent queries based on the information gained so far. 

○ For student assessment might start with a broad question covering multiple skills 
○ If the student gets a question wrong, the system would then drill down into each skill 

individually, asking questions of varying difficulty to determine the limits of their proficiency

https://openreview.net/forum?id=63c2erbMoc


Reducing 
Uncertainty 
Using 
Natural 
Language



Reducing Uncertainty Using Natural Language

Can LLMs help with this? Not out of the box!

● UQ is not a top priority in LLM training and fine-tuning algorithms
● Lack mechanisms for strategically gathering information

Our algorithm

● Meta-learns a predictive language model from historical question–answer data
● Uses this model to quantify uncertainty about future or unobserved answers
● Dynamically adapts question selection to reduce uncertainty about the latent 

entity



Reducing Uncertainty Using Natural Language

Goal: Select questions (and observe answers) that will allow the model to predict 
answers to held-out questions



Reducing Uncertainty Using Natural Language

When does this help? identifying features of the latent which are relatively rare in 
the population. 

e.g., while many students may have overlapping weaknesses, it can be harder to 
learn that a particular student is struggling where other students generally do not.



Part 2: Summary

Uncertainty quantification in LLMs

● Not as easy as classification
● Baseline: Token probabilities
● Advanced approaches to UQ in LLMs

○ Semantic Entropy
○ Verbalized Confidence
○ Learning to reject
○ Asking for more information
○ LLMs+DFUQ
○ “Bayesian” approaches
○ Reducing latent concept uncertainty with LLMs
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Part 3:

Future Directions and 

Closing Thoughts



Limitations

● Experiments in limited settings.  
○ Experiments are usually performed on tasks like trivia question answering, which can be 

answered via a single token, word, or short phrase  
○ Tasks under study also often assume that there is only one right answer

● Expensive
○ Inference costs are already soaring, and many of these methods require repeated sampling

● Verbalized uncertainty is suspect (at least for now)
○ Good evidence exists that any correlation between accuracy and verbalized expressions of 

confidence is simply a result of spurious features in training data

● Largely unsuitable for long-form and open-domain problems



Current Status

● Overall, it is not clear that any advanced method for quantifying LLM 
uncertainty in the zero-shot setting robustly outperforms a baseline normalized 
sequence entropy score calculated using token probabilities.  

● However, these scores are often not available for black-box LLMs held behind 
an API.

● It is difficult to imagine how best to exploit probabilities taken directly from the 
language model, as these probabilities do not necessarily relate to the task at 
hand.



Future Directions

● Explore how uncertainty can be better quantified and addressed across the 
entire model development and deployment pipeline, and how interventions 
and measurements at different points in the pipeline interact and affect 
downstream outcomes.

● Understand how techniques for selecting, mixing, and filtering training data 
affect the ability to accurately estimate the model's confidence on 
downstream tasks, whether via token probabilities or verbalizations.  

● As new architectures and pretraining recipes emerge, they should be 
benchmarked for calibration, not only accuracy.

● Fine-tuning algorithms, whether supervised or RL, have been shown to worsen 
the UQ characteristics of models, and this phenomena must be kept in focus 
as the community iterates on these methods.



Future Directions

src: https://arxiv.org/abs/2412.15584 
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…but LLMs (and other modern models/systems) 
can be used to seek out their own missing data!



Closing Thought(s)…

This problem is not getting scaled away

Algorithmic innovation is needed



Thank you!!!!!!
 reach me at tpz2105@columbia.edu


