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The Bandit

Figure: Multi-Armed Bandit.

Time 1 2 3 4 5 6 7 8 9
Arm 1 $1 $0 $1 $1 $0
Arm 2 $1 $0

Which arm to pull next?
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Motivation

Many real-world problems can be modeled as multi-armed bandit problems:

Clinical trials
Online advertising
Recommender systems

...
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Mathematical Formulation

Consider a bandit problem with K arms. At each time step t = 1, 2, ...,
The agent selects an arm At ∈ {1, 2, ...,K}.
The agent receives a reward Xt ∼ PAt from the selected arm, where
Pk is the distribution of rewards for arm k .

Remark:
P1, ...,Pk are unknown to the agent. For simplicity, we assume that
Pk is stationary.
Common distributional assumptions are: Bernoulli, Gaussian,
subgaussian, supported on [0, 1], etc.
We usually care about the expected reward, i.e., µk = E[Xt |At = k] is
the expected value of distribution Pk .
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Objective

Want to maximize
T∑
t=1

E[Xt ],

where the expectation is taken over the randomness of the arm selection
(policy) and the reward distributions. Equivalently, want to minimize the
regret:

R(T ) =
T∑
t=1

µ∗ − E[Xt ] = Tµ∗ −
T∑
t=1

E[Xt ],

where µ∗ = maxk µk is the expected reward of the best arm. A low bar for
the regret is to achieve R(T ) = o(T ).

Lower Bound
Minimax: R(T ) = Ω(

√
KT ).
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Exploration vs. Exploitation

At each time step, we can either:
Explore: Select an arm that we have not tried enough yet to gather
more information about its reward distribution.
Exploit: Select the arm that we believe has the highest expected
reward based on the information we have gathered so far.

Trade-off:
If we explore too much, we may pull suboptimal arms for too many
times and incur high regret.
If we exploit too much, we may miss out on better arms and incur
high regret.

Goal
Try various actions while progressively favor high-reward actions.
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Explore-Then-Commit

Algorithm:
Pull each arm m times (assume mK < T ).
Compute the empirical mean of each arm µ̂k .
For t = mK + 1, ...,T , select the arm with the highest empirical mean
(ties broken arbitrarily).

Analysis:
Larger m means more exploration.
Suppose K = 2. If T is known in advance, under some conditions we
can choose m to obtain R(T ) = O(T 2/3).
If optimality gap is also known, can obtain R(T ) = O(

√
T ).
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Explore-Then-Commit

Problems:
Really is a “greedy” algorithm.
Need to know T in advance, not adaptive.
Not optimal if optimality gap is unknown.
Better approaches exist, but Explore-Then-Commit is often a good
place to start when analyzing a bandit problem.

Takeaway
We should explore adaptively.
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Epsilon-Greedy

Algorithm:
Input ϵ ∈ (0, 1).
For t = 1, 2, ...:

With probability ϵ, select a random arm At ∼ Uniform(1, 2, ...,K ).
With probability 1 − ϵ, select the arm with the largest µ̂t(k).
Pull arm At and observe reward Xt .
Update µ̂t(k).

This is really easy to implement!
Intuition clear! Trade-off controlled by a single parameter ϵ.
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Epsilon-Greedy

Analysis:
We’re always exploring, so R(T ) is linear.
Tuning ϵ is nontrivial.

So, let’s decay ϵ over time. Choose

ϵt = min

{
1,

CK

d2(t + 1)

}
,

where d is the smallest optimality gap and C is a large constant. Then, we
can show that roughly R(T ) = O

(
K
d logT

)
(this is instance-dependent

optimal).
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Epsilon-Greedy

Problems:
Need to know d in advance.
If d is small, the regret constant is large.

Intuitively, the exploration is inefficient because we allocate exploration
effort equally, even if empirical expected rewards may be very different
across arms.

Takeaway
We should use past information to inform our exploration.

The more uncertain we are about an action’s reward, the more important it
is to explore that action, as it could turn out to be the best action. But
how to quantify uncertainty?
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Optimism in the Face of Uncertainty
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Upper Confidence Bound (UCB)

Idea/Algorithm:
Construct an upper-confidence Ut(k) for each arm k s.t.

µk ≤ µ̂t(k) + Ut(k) with high probability.

Ut(k) bounds the uncertainty and depends on Nt(k):

larger Nt(k) =⇒ smaller Ut(k).

Select the arm with the largest upper confidence bound:

At = argmax
k

{µ̂t(k) + Ut(k)} .

µ̂t(k) represents the exploitation and Ut(k) represents the exploration.
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Upper Confidence Bound (UCB)

Analysis:
If Pk ’s are 1-subgaussian, one choice for Ut(k) is:

Ut(k) =

√
2 log(1/δ)
Nt(k)

for δ ∈ (0, 1),

because (abuse of notation)

P

(
µk >

1
n

n∑
t=1

Xt +

√
2 log(1/δ)

n

)
≤ δ.

If we choose δ = 1
1+t log2(t)

, can show that R(T ) = Õ(
√
KT ), which

is minimax optimal (can also show instance-dependent optimality).
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Upper Confidence Bound (UCB)

Intuition: say k = 1 is the optimal arm. For large t, with high
probability,

µ̂t(k) + Ut(k) ≤ µ1 ≤ µ̂t(1) + Ut(1) for all k ̸= 1.

Other distributional assumption + similar concentration inequalities
lead to similar results (e.g., bounded support + Hoeffding).
In practice, can start by pulling each arm once.

Takeaway
Using past information to inform our exploration is a good idea.

What else can we do?
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Thompson Sampling

Let’s put on our Bayesian hats. Consider the Beta-Bernoulli bandit:
Pk = Ber(θk).
Prior θk ∼ Beta(αk , βk) (if αk = βk = 1, we have U[0, 1]).
If we choose arm k , we observe Xt ∈ {0, 1} and update the posterior:

θk ∼ Beta(αk + Xt , βk + 1 − Xt).

At any time t, the posterior distribution of θk captures all the information
we have about arm k , including the expected reward and uncertainty. This
leads to an algorithm.
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Thompson Sampling

Algorithm:
Initialize α0(k), β0(k) for all arms k .
For t = 0, 1, 2, ...

Sample θ̂t(k) ∼ Beta(αt(k), βt(k)) for all arms k .
Pull arm At = argmaxk{θ̂t(k)} and observe reward Xt

Update the posterior:

αt+1(At) = αt(At) + Xt , βt+1(At) = βt(At) + 1 − Xt .

For all k ̸= At , αt+1(k) = αt(k) and βt+1(k) = βt(k).
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Thompson Sampling

General Algorithm:
Initialize prior for each arm k .
For t = 0, 1, 2, ...

Sample θ̂t(k) from the posterior distribution of arm k .
For each arm, calculate the expected reward given the sampled θ̂t(k).
Pull the arm with the highest expected reward and observe reward Xt .
Update the posterior distribution of the selected arm based on Xt .
For all other arms, keep the posterior distribution unchanged.
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Thompson Sampling

Analysis:
The Bayesian regret BR(T ) is defined as the expected R(T ) over the
prior.
Under some conditions, for Beta-Bernoulli bandits can show that
BR(T ) = O(

√
KT logT ) (optimal up to log factors).

Can consider many other specifications. E.g.,
Gaussian-Gaussian bandit: Pk normal with known variance, unknown
mean follows normal prior.
Log-Gaussian: Pk log-normal with known variance, unknown mean
follows log-normal prior.
Pk is in 1-dim exponential family with Jeffreys prior.

Usually, Thompson Sampling is at least near-optimal.
When posterior sampling is intractable, use numerical methods like
Gibbs sampling, Langevin Monte Carlo, etc.
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Thompson Sampling

Why does it work? Back to Beta-Bernoulli bandits.

Beta distributions with
(α1, β1) = (601, 401),
(α2, β2) = (401, 601),
(α3, β3) = (2, 3).

Prob of pulling the arms are:
0.82, 0, 0.18 ⇐⇒ prob that the

random estimate drawn for the action
exceeds those drawn for others.

Discard the arm for which we’re quite confident that it is not the best.
Encourage exploration.

Wu Bandits April 10, 2025 20 / 31



Thompson Sampling

Intuition. Two equivalent ways to view Thompson Sampling:
We select an arm according to the posterior probability that the arm is
optimal.
We sample an environment from the posterior and play the optimal
action in that environment.

Formally,
P(A∗ = · |Ft−1) = P(At = · |Ft−1),

i.e., the conditional distribution of the optimal arm given the history is the
same as the conditional distribution of the selected arm given the history.

Takeaway
By sampling actions according to the posterior probability that they are
optimal, we continue to sample all actions that could plausibly be optimal,
while shifting sampling away from those that are unlikely to be optimal.
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Contextual Bandits

In many problems, we may have additional information that can help us
predict the rewards of the arms. Consider personalized recommendation:

User features may include historical activities, demographics.
Content features may include genre, length, etc.

We can call the combination of user and content features the context.

Exploration-exploitation trade-off =⇒ maximizing user satisfaction in the
long run v.s. gathering information about the goodness of match between
user and content.
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Contextual Bandits

Formulation:
Let C denote the set of contexts.
At time t, the agent observes context ct ∈ C , selects an arm
At ∈ {1, 2, ...,K}, and receives a reward Xt = r(ct , k) + ηt , where
r(ct , k) is the (deterministic) reward function and ηt is the noise.

The regret is defined as:

R(T ) = E

[
T∑
t=1

max
k

r(ct , k)−
T∑
t=1

Xt

]
.

Naively, we can set an arm for each context-action pair. However, |C | can
be large. So, need some structure.
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Linear Bandits

Suppose we have a feature map ψ(c , a) ∈ Rd , and for some unknown
θ∗ ∈ Rd , we have:

r(c , a) = ⟨θ∗, ψ(c , a)⟩ , for all c , a.

Equivalently, at time t, we can define action set At ⊆ Rd to be

At = {ψ(ct , k) : k = 1, 2, ...,K} .

Then, the reward is given by r(At) = ⟨θ∗,At⟩ for At ∈ At . The regret is

R(T ) = E

[
T∑
t=1

max
a∈At

⟨θ∗, a⟩ −
T∑
t=1

Xt

]
,

i.e., all that matters is the feature vector that results from choosing a given
action and not the action itself.
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Linear Bandits

What algorithms can we use?
ϵ-greedy? Not efficient, especially if At is large. =⇒ often used as a
baseline.
UCB =⇒ LinUCB.
Thompson Sampling =⇒ LinTS.

Lower Bound
Usually, with some assumptions on At ,

R(T ) = Ω
(
d
√
T
)
.

Before, with K arms, we had R(T ) = Ω(
√
KT ).
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LinUCB

To extend UCB to linear bandits, we need to be able to estimate θ∗ and
construct a confidence set for it. One way is to use Ridge regression:

θ̂t = argmin
θ

t−1∑
s=1

(Xs − ⟨θ,As⟩)2 + λ ∥θ∥2
2 ,

where λ > 0 is a regularization parameter. The solution is:

θ̂t = V−1
t

t−1∑
s=1

XsAs ,

where

V0 = λI , Vt = V0 +
t−1∑
s=1

AsA
T
s .
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LinUCB

The following holds with high probability:

θ∗ ∈ Et =
{
θ ∈ Rd : ||θ − θ̂t ||2Vt

≤ βt

}
for some increasing sequence βt and ||x ||A for A ≻ 0 is

√
xTAx . Using Et

as the confidence set, the algorithm goes by solving

(At , ·) = argmax
(a,θ)∈At×Et

⟨θ, a⟩ .

If At is finite, can solve

At = argmax
a∈At


〈
θ̂t , a

〉
+
√
βt ||a||V−1

t︸ ︷︷ ︸
like Ut

 .

Can show R(T ) = Õ(d
√
T ).
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LinUCB

Takeaway:
Extending UCB to LinUCB is like extending mean estimation to linear
regression.
The (technically) hard part is to construct the confidence set Et .
Depending on the structure of At , the bilinear optimization may also
be hard.

Now comes LinTS...
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LinTS

The procedure is the same as before. All that’s different is that the prior
and the posterior are now multivariate.

Choose a prior for θ∗.
For t = 1, 2, ...

Sample θt from the posterior.
Choose At = argmaxa∈At

⟨θt , a⟩ and observe reward Xt .
Update the posterior of θ∗ based on Xt .

Under some conditions, can show that BR(T ) = Õ(d
√
T ).
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LinTS

Discussion:
Provided that we can do posterior sampling, the optimization problem
is very simple compared to LinUCB.
For more abstract settings (like texts), it’s not often clear what a
confidence set looks like. In that sense, Thompson Sampling is more
flexible than the optimism principle.
Empirically, Thompson Sampling is also quite strong.

Takeaway
Keep the Bayesian hat on?
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