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© Motivation and Applications
e Bayesian Optimization: Fundamentals

© High dimensional Bayesian Optimization
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Hyperparameters Optimization

@ ML algorithm's performances depend on hyper-parameters.

@ Finding the best hyperparameters for the highest performance.
o
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Traditional Hyperparameters Tuning

o Grid Search:
o Create a list of values for each parameter.

@ Consider all possible combinations of
these values.

@ Exhaustively evaluate the model and
choose the best parameter.

o Random Search:
@ Randomly select a parameter to evaluate.

o Select the best parameter.
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Grid vs Random vs BO

Missed Missed Found
optimum location optimum location optimum location

/

Grid Search Random Search Bayesian Optimization
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Alloy Development

o Alloy composition: X = [% AL, % Co, %Fe, %Cu, %C ...]
o Strength:y
@ Goal: find the best composition X for the highest strength y.
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Trial error

Trial error approach is used for alloy development using expert knowledge.
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@ 1 Alloy Testing = 1 day and 100 dollars.
@ 100 experiments = 3months and 10 000 dollars.

@ Even with 100 experiments, trial-error still can not get the optimum
solution

Trial & Error

better quality

Quality
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Practical Applications of Bayesian Optimization

Hyperparameter Tuning; Robotics and Control:

@ Optimize learning rate, dropout,

. @ Tuning control parameters for
architecture parameters.

bipedal robot design.
@ Systems such as Google Vizier

and Hyperopt are based on BO. @ Learning feedback policies in

uncertain environments.

Experimental Design: Other Examples:

@ Alloy design, chemical synthesis,

x : ) @ Neural architecture search.
or biological experiments.

@ Deep reinforcement learning

@ Reduces time and cost by hyperparameter tuning

selecting experiments wisely.
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Towards Black-Box Optimization

Problem:

x* = argmax f(x)
xeX

where f(x) is unknown and expensive to evaluate.

Black box : only known through evaluation/simulation results: query an
evaluation at x;, observe the result
Question : Where should we evaluate next 7
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Surrogate models in BO

© Surrogate Modeling: Define a prior over f (usually a GP).

@ A surrogate model mimics the behaviour of the true function f as
closely as possible.

© surrogate model should be cheap to evaluate.

& Observation

y=f(x)
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Gaussian Process Surrogate Model

GP Prior:
F(x) ~ GP(m(x), k(x,x)),
with:
@ Mean function: m(x) .
e Covariance function (e.g., RBF kernel):

Ix = X7
k(x,x') = o? exp(—zl2 .
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Rasmussen, C. E. Gaussian processes for machine learning, 2006.
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Posterior Mean and Variance with Noisy Evaluations

Noisy Evaluations:

Yi= f(X,') +¢€i, & NN(O,O’%

Posterior Prediction: Given the data D, = {(x;, y;)}/_;, the GP
posterior at a new point x is a normal distribution:

F(x) | Do ~ N (), 72()).
with

tn(x) = k(X,X)[K—{—O’%/]_ly, o’%(x) = k(x,x)—k(x,X)[K—i—o’%/]_lk(X,x).

The pn(x) represents our best estimate of f(x) given the observed (noisy)
data, while 02(x) quantifies the uncertainty in our prediction at x.
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Bayesian Optimization Algorithm

© Input:
e Domain X
o Initial dataset Do = {(x;, yi)} 1%
Q@ Fort=ng+1,ng+2,..., T do:
® Fit a Gaussian Process (GP) model to the dataset D;_;.
@ Define an acquisition function a(x)
@ Optimize the acquisition function to select

X; = arg max a(x).

@ Evaluate
ye = f(x) + e
@ Update the dataset with the new observation:
Dy < De—1 U{(xe, 1)}

© Output:

x* =arg max
(X’.y)EDT
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Why acquisition function 7

o Based on a GP surrogate above, BO defines an acquisition function
a(x) to select a point for evaluation.

insteadof  x, = argmaxxe@ - Xy = argmax,(E

unsolvable! solvable!

o Optimizing the acquisition function a is cheaper without using
black-box evaluation.

Explore + Exploit
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Expected Improvement (El) : Mokus, 1972

Goal: Maximize expected improvement over current best observed value.
Improvement Function:

I(x) = max (f(x) —f(xt) —¢, 0)
Expected Improvement:

El(x) = E[/(x)] == (1n(x) — f(x) = &) ®(Z) + on(x) (2)

f(x)

El

Intuition: Chooses points with a high chance of improving over the
current best.
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Probability of Improvement (PI) :Krushner, 1997

Goal: Maximize probability of improving over current best observed value.

api(x) = b <un(X) — f(xt) — g)

on(x)

Closed form :

Where:
o ®: CDF of the standard normal distribution
o f(xT) = maxX;<n Yj

@ ¢ > 0: optional exploration parameter

@ Easy to compute and interpret.
o Often overly greedy — tends to ignore uncertainty.

@ Rarely used in practice compared to El or UCB.
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Upper Confidence Bound (UCB) : Srinivas, 2010

Goal: Select points with high mean and/or high uncertainty.

ayce(x) )+ /Bt oa(x)

Theorem 1 Let & S (0,1) and B =
2log(|D|t27%/65).  Running GP-UCB with 5, for
a sample f of a GP with mean function zere and
covariance function k(x,z'), we obtain a regret bound
of O*(\/Tvyrlog |D|) with high probability. Precisely,

PI‘{RT < \/CiTBryr VT > 1} >1-4

where C1 = 8/log(1+ o~2).
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(a) Bayesian Linear Regression

Figure 4. Sample functions drawn from a GP with linear, squared exponential and Matérn kernels (v = 2.5.)

(b) Squared Exponential

(c) Matérn

Var only
,

o o
S &

Mean Average Regret
o
&

40
Iterations:
(a) Squared eaponential

Figure 5. Comparison of performance: GP-UCB and various heuristics on synthetic (a), and sensor network data (b, c).
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Acquisition Strategy: Thompson Sampling (TS)

Goal: Sample functions from the posterior and optimize them directly.

Algorithm:
@ Sample fi(x) ~ GP(pn(x), 02(x))
@ Select:

Xy = arg max fz(x)
xeX

Intuition: Naturally balances exploration and exploitation by randomizing
the acquisition.

Advantages:
@ Simple and effective.
o Competitive theoretical regret bounds.

@ Scales well in batch BO (via multiple independent samples).
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Bayesian regret

Algorithm 2 PIMS

Require: Input space X', GP prior i = 0 and k, and initial dataset Dy
.. do

2 Fit G P to Dy_1

3 Generate a sample path ge ~ p(f|Di-1)

1 fort =

4 g[‘  maXgex Gt
5w amgming ey e

6 Observe y, = f(x4) + & and Dy + Dy_y U (24, 35)
7: end for

BSRTr =E |f(x*) — max f(xt)

| cpucs | mepuc | T | PINS
BOR for [X] < 0o | O(y/T7 1og(X1T)) | O(y/Tr2 108 X)) | * O(y/Trrlog[¥1) | * O(/Trr log X))
BCR for X C (0] | OWTorlogT) | OWTwrlogT) | * OWTorlosT) | * OWTrlogT)

Table 1: Summary of BOR bounds. The first and second rows show the BCR. bounds for the finite and
infinite input domains, respectively, where 7 is the maxinnum information gainfSrinivas et al, 2010], X is
the input domain, s a constan. The BCR bounds of GP-UCB and
IRGP-UCH are shown in Theorem B.1 and Theorems 4.2 and 4.3 in Takeno et al. [2023], espectively. Stars
mean our reslts,

s the input dimension, and
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f(x)

uce
L

Bayesian Optimization with Different Acquisition Functions
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Knowledge Gradient (KG): Definition

Setup: Assume
F(x) | Do ~ N (1n(x), 07(x)),
where D, = {(x1,¥1), ..., (Xn, yn)} is the data so far. Define the
incumbent solution as the point with the largest posterior mean:
Hn = MaX fin(X).
Improvement Function: If we were to take one more sample at x and

update the posterior, the new maximum is

* /
) = max ups1(x").
n+l x'eA " ( )

The improvement due to sampling at x is then

() = max(jir — 15 0)-
Knowledge Gradient: The KG acquisition function is defined as the
expected improvement in the maximal posterior mean,

KGn(x) = En[/ﬁwﬂ — Iin

Xp+1 = X} .
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Simulation-Based Estimation of KG

To estimate KG,(x) via simulation, proceed as follows:

© For a candidate x, repeat for j =1,...,J:

@ Simulate an outcome y,(,jjzl from the predictive distribution at x:

yn+1 NN(NH( ) 5(X))
@ Update the GP posterior by “hallucinating” the observation (x,y,(izl)

to compute
,ugJ)rl(X/) for all x' € A.
O Let
it = max il (x).

@ Compute the simulated |mprovement
AO(x) = ) — iy,
@ Estimate the KG at x by averaging:

1
jZAU)(x).
j=1
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Gradient !

VKGh(x) = Ey [V (Nﬁ-&-l - uﬁ)] .

Algorithm 4 Simulation of unbiased stochastic gradients G with E[G] = VKG,,(z). This stochastic gradicnt
can then be used within stochastic gradient ascent to optimize the KG acquisition function.
for j = 1to J do
Generate Z ~ Normal(0,1)
Ynt1 = fin () + on(2)Z.
Let prys1 (@32, yns1) = pns1 (@i 2, i (@) + 0, (x)Z) be the posterior mean at 2’ computed via (3) with
(%, Yn+1) as the last observation.
Solve max, fr1 (2 2. Y1),
Let G4 be the gradient, of T (i
end for
Estimate VKG,,(z) by G = %Z;:l G,

using L-BFGS. Let 7 be the maximizing z’.
s i () + o (2) Z) with respect to @, holding * fixed.

25/51



Optimizing KG via Multistart Stochastic Gradient Ascent

Procedure:

© Select R starting points x ( ) uniformly from the feasible set A.
@ For each starting point r=1,... R and iterate t =0,1,..., T — 1:

0 =X+ e 6,
where:

° G(Xt(r)) is an unbiased stochastic gradient estimate of V KG,,(Xt(r)),
obtained via infinitesimal perturbation analysis.
° «ay is a stepsize (e.g., a; = ;%; for some parameter a > 0).

@ For each run r, estimate KGn(xs-)) using the simulation-based
method above.

@ Return the best point among all runs:

x* = arg _max KG, (X(Tr)).
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Entropy Search (ES) and Predictive Entropy Search (PES)

Entropy Search (ES):
o ES quantifies uncertainty about the location of the global maximum
x* using differential entropy.
@ |t seeks the point x that produces the largest expected reduction in
the entropy of the posterior over x*.

ESn(x) = H(Pa(x")) = E¢() [H(P,,(x* | f(x)))].

Predictive Entropy Search (PES):
@ PES reformulates the objective using mutual information:

PES(x) = H(Pa(f(x))) — Ex | H(Pa(f(x) | x")) |.
o PES is generally more computationally tractable.

Takeaway: Both ES and PES aim to reduce uncertainty about x* rather
than simply improve the best expected value, and they can be particularly

useful in exotic Bayesian optimization settings.
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Expensive Constrained Optimization Problems (ECOPs)

@ ECOPs: Optimization with computationally or financially expensive
objectives and constraints.

o Formulation: _
min f(x) = (A(x),..., m(x))
st.g(x)>aj,j=1,...,q,
x € X,
where x = (x1,...,xq4), X is the decision space, m objectives, ¢
constraints.
o Challenges: Expensive evaluations, feasible solutions constrained.

o Applications: PID controller tuning, engineering design.
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Constrained Bayesian Optimization (CBO)

e Augmented Lagrangian (AL):
19
: T 2
La(x; A, p) = F(x) + X' c(x) + 2 E max(0, ¢j(x))

Converts constrained to unconstrained problems for Bayesian
Optimization (BO).
e CBO Approaches:
@ Probability of Feasibility: Constrained Expected Improvement (cEl):

cEl(x HPr[cJ(x ) < aj]
j=1

© Expected Volume Reduction: Uncertainty reduction via entropy or
variance.
© Multi-step Look-ahead: Non-myopic, e.g., 2-OPT-C for long-term
reward.
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Surrogate-Assisted Methods and Advances

@ Surrogate-Assisted Constraint Handling:

e Combines BO with evolutionary algorithms.
o Gaussian Processes (GPs) model objectives and constraints separately.

@ Recent Advances:

o AL with slack variables for mixed constraints.

o ADMM-based BO for unknown constraints.

o Predictive Entropy Search (PES) for decoupled constraints.
@ Challenges:

o Nonstationary modeling in AL.
o Brittleness of cEl in highly constrained problems.
e Computational burden in multi-step methods.

30/51



Multi-Fidelity Bayesian Optimization: Motivation

Engineering Design Challenge: Optimize expensive high-fidelity
(HF) functions fy(x), e.g., crash simulations (36-160h) or structural
analysis (23 days) [1].

Limitations: HF evaluations are costly, limiting optimization
iterations under resource constraints.

Solution: Multi-Fidelity Bayesian Optimization (MF BO) leverages
cheap low-fidelity (LF) models to reduce HF evaluations while
maintaining accuracy.

Advantages:

e Incorporates physical/mathematical insights.
o Balances exploration-exploitation trade-off.
o Handles uncertainty and supports parallel computing [1].

Applications: Aerodynamic design, hyperparameter tuning, materials
design.
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Problem Formulation

@ Objective: Solve
xer/\r]ng fH(X)’
where fy(x) is the HF objective, costly to evaluate.
o Multi-Fidelity Setup: Access to T models fi(x),..., fr(x), with f
cheapest (LF) and f1 = fy.
e MF BO Approach:

o Use GP-based MF surrogates to model relationships between fidelities.
o Guide optimization with acquisition functions to select next evaluation
points and fidelities.

@ Goal: Minimize HF evaluations by exploiting LF models’' correlations

[1].
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Kennedy-O'Hagan (KOH) Auto-Regressive Model

e Model: For two fidelities, LF fi(x) and HF £(x) = fy(x):

f]_(X) = (51(X),
fa(x) = p1fi(x) + 62(x),

where 01,2 ~ GP, p1 is a constant scaling factor [1].

e General Form (T fidelities):
ft(x) :pt—lﬁf—l(x)+5t(x)7 t= 27"'7 T.

o Advantage: Captures linear correlations between fidelities.

o Limitation: Assumes constant scaling, may not model complex
relationships.
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Hierarchical and Recursive Models

@ Hierarchical Kriging:
fA(x) = a+ z1(x),
ft(x) = Pt—l,uf,t—l(x) + Zt(x)7 t= 27 SRR Tv
where pif +_1 is the Kriging predictor, z; ~ GP.

@ Recursive Model:

fo(x) = pe-1(x)Ffe—1(x) + 3¢(x),

with p¢_1(x) a spatially varying adjustment, f;_; the GP posterior [1].
o Advantage: Recursive model reduces training cost to
O(T x max{N3}).

@ Use Case: Efficient for multiple fidelities with non-linear
relationships.
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Graphical Multi-Fidelity Gaussian Process (GMGP)

e Model: Represents fidelities as a directed acyclic graph (DAG):

fi(x) = Z Pt,t! 7?t’()() + 0¢(x),

t’ePa(t)

where Pa(t) are parent nodes, f is the GP posterior [1].
o Covariance: Structured via a lower triangular matrix R.

o Advantage: Handles non-hierarchical fidelity relationships, e.g.,
multiple LF models informing HF.

e Training Cost: Recursive GMGP: O(T x max{N3}).
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Bayesian Hierarchical and Deep Gaussian Processes

o Bayesian Hierarchical Model:

fa(x) = p(x)f1(x) + 02(x) + 2(x),
with p(x) ~ GP, &2 ~ N(0,02,).
e Deep Gaussian Process (DGP):

f(x) = fi_1(... A(f(x))),

where each f; ~ GP.

o MF DGP: Fidelities as layers, marginal likelihood computed via
integration [1].

o Challenge: High computational cost for training and inference.
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Input-Augmentation Multi-Fidelity GPs

e Model: Treat fidelity as an input variable in g(t,x), where
fu(x) = g(tr,x).
o Continuous Fidelity:

g() ~ GP(07 "ig((tw X), (tlv Xl)"f’g))a

with kg = ke(t, t')rx(x, X).
o Categorical Fidelity: Use non-continuous covariance functions, e.g.,
hypersphere decomposition [1].

@ Advantage: Flexible for continuous or discrete fidelity levels, widely
used in BO.
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Acquisition Functions in MF BO

e Types for BO [1]:
o Improvement-based: Expected Improvement (El), balances
exploration-exploitation.
e Optimistic: Upper Confidence Bound (UCB), favors uncertainty.
o Information-based: Entropy Search, maximizes information gain.
o Multi-step Look-ahead: Considers future evaluations.
o MF Considerations:
o No-fidelity: Treat all data as HF, inefficient.
e Heuristic: Weight fidelities by cost-accuracy trade-off.
e Sequential Selection: Choose fidelity and point iteratively.

o Portfolio Approach: Combine multiple acquisition functions for
robustness.
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Multi-step Look-ahead Acquisition Functions: Motivation

@ Problem: Single-step acquisition functions (e.g., El, UCB) are
myopic, optimizing only for the immediate next evaluation [1].

o Limitation: May lead to suboptimal long-term decisions, especially in
MF BO with varying fidelity costs and accuracies.

@ Solution: Multi-step look-ahead acquisition functions consider future
evaluations, planning a sequence of points to maximize cumulative
improvement.

e Advantages:

o Improves efficiency by anticipating future information gain.
o Balances short-term gains with long-term optimization goals.
o Critical for MF BO to optimize fidelity selection over multiple steps [1].

o Applications: Resource-constrained settings, e.g., aerodynamic
optimization with limited HF budget.
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Multi-step Look-ahead: Mathematical Formulation

@ Objective: Maximize expected utility over a sequence of K future
evaluations:

ams(x1, ..., xk) =E [U(fH(X*)!D U {(xk; ftk(xk))};’fﬂ)} ,

where U is a utility function (e.g., improvement), D is current data,
tx is the fidelity at step k, and x* is the optimal point [1].
o Formulation: For a two-step look-ahead:

sepl, 1) = | mx B[V ()P U {0, ). (e oG D
o MF Extension: Include fidelity selection t, weighting by cost c,:

amrms(x1, 1) = E [matx E[U|DU {(xl,cﬁ(fc)i, (2, ftz(xz))}]] |

o Challenge: High computational cost due to nested expectations.
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Multi-step Look-ahead: Implementation and Techniques

o Approximation Methods:
e Monte Carlo Sampling: Approximate expectations by sampling possible
future outcomes [1].
e Dynamic Programming: Use Bellman's principle to break down
multi-step problem [1].
o One-shot Multi-step Trees: Precompute decision trees for efficiency [2].
e MF Considerations:
e Optimize both x, and fidelity t; at each step.
e Incorporate cost-accuracy trade-offs in utility function.
o Advantages: Reduces HF evaluations by planning LF-heavy
sequences early, reserving HF for final steps.
o Limitations: Computationally intensive; requires efficient sampling or

approximation [1].

[@ R. Bellman, “On the theory of dynamic programming,” Proc. Natl.
Acad. Sci., vol. 38, pp. 716-719, 1952.

[§ S. Jiang et al., “Efficient nonmyopic Bayesian optimization via
one-shot multi-step trees,” Adv. Neural Inf. Process. Syst., vol. 33,

nn 12N”R0—-12NA0 202N 41/51



Applications and Challenges

e Applications [1]:
o Airfoil Design: Optimize lift/drag using LF (XFOIL) and HF (CFD)
models.
e Materials Design: Ternary alloys via multi-fidelity simulations.
o Hyperparameter Tuning: Use subset training as LF, full dataset as HF.
@ Future Research Topics:
o Constrained optimization: Handle complex constraints.
e High-dimensional optimization: Subspace or additive structure
approaches.
o Optimization under uncertainty: Robust and reliability-based methods.
o Multi-objective optimization: Pareto front exploration [1].
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o Summary: MF BO accelerates optimization of expensive HF
functions by leveraging LF models, using GP-based surrogates and
acquisition functions.

e Key Models: KOH, hierarchical/recursive, GMGP, Bayesian
hierarchical, DGP, input-augmentation.

o Impact: Reduces computational cost, enables real-world applications
in engineering and beyond.

@ Future: Address high-dimensional, constrained, and multi-objective
problems to broaden MF BO's applicability [1].

[{ B. Do and R. Zhang, "Multi-Fidelity Bayesian Optimization: A
Review,” arXiv:2311.13050v2, 2023.
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High-Dimensional BO: Challenges & Motivation

Challenges:

o Exponential Sample Complexity: Sample requirements grow
exponentially with the dimension D.

o Sparsity of Data: Standard Gaussian Process surrogates lose
accuracy when data is sparse.

@ Acquisition Function Landscape: Often very flat with a few narrow
peaks.

Motivation: Develop scalable surrogate models that exploit
low-dimensional structure,
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Random Embedding Methods (REMBO)

Approach: Assume that f(x) varies mainly in a d-dimensional subspace.

Method:
o Define a random projection A : R? — RP, and represent x as

x=Az, zeZcCR
@ Optimize in the low-dimensional space:

z" = argmax f(Az).
zeZ

-
*

Important
&
2%,

Unimportant X,
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Additive Gaussian Process Models

Approach: If f decomposes over variable groups,

M
Fx) = fi(xs),
i=1

Surrogate Construction:
M M
(x) = Z:U*I'(XSI‘): 02(X) = ZU?(XS,');
i=1 i=1

with u;, o2 defined via independent GP posteriors for f;.

46 /51



Trust Region Bayesian Optimization (TuRBO)

Approach: Restrict the search to a local region around the current best.

Method:
@ Define the trust region at iteration t as

Te={x€X:|x—xT| <d:},

where xT is the current best and §; is the radius.
e Optimize the acquisition function (e.g., GP-UCB or El) over T;.

@ Adapt §; based on observed improvements.

e
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Bayesian Neural Network (BNN) Surrogates

Motivation: GP surrogates may become computationally expensive in
high dimensions. BNNs scale better and capture complex structure.

BNN Model: For a deep neural network with weights w and input x:
f(x; w).
Prior and Posterior:

@ Place a prior p(w) on the weights.
@ Given data D, the posterior is

p(w | D) o p(D | w) p(w).
@ Approximate via variational inference with q(w; ) ~ p(w | D).
Predictive Distribution:

pUy 1)~ [ ply | x,w) q(wi ) dw.
often approximated with Monte Carlo sampling.

Advantage: Scales to high dimensions and integrates modern deep
learning methods. 48/51



Other Approaches for High-Dimensional BO

Additional Strategies:

o Dropout Methods: Apply dropout at test time to create an implicit
ensemble, reducing effective dimensions.

@ Deep Ensembles: Train several independent models and aggregate
their predictions:

M
pers(x) = 1 3 F i), 0Bng(x) = 12 D (Fxi wm) — prns())2.

@ Random Embedding with Local Search: Combine REMBO with
local optimization to refine the search in the embedded space.

Take-Away: The aim is to reduce the effective dimensionality (or exploit
low-dimensional structure) while retaining accurate uncertainty estimates.
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Thank You

Thank you for your attention!

Questions?

51/51



	Motivation and Applications
	Bayesian Optimization: Fundamentals
	High dimensional Bayesian Optimization

