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Hyperparameters Optimization

ML algorithm’s performances depend on hyper-parameters.

Finding the best hyperparameters for the highest performance.
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Traditional Hyperparameters Tuning
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Grid vs Random vs BO
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Alloy Development
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Trial error

Trial error approach is used for alloy development using expert knowledge.
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Time and cost

1 Alloy Testing = 1 day and 100 dollars.

100 experiments = 3months and 10 000 dollars.

Even with 100 experiments, trial-error still can not get the optimum
solution
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Practical Applications of Bayesian Optimization

Hyperparameter Tuning:

Optimize learning rate, dropout,
architecture parameters.

Systems such as Google Vizier
and Hyperopt are based on BO.

Experimental Design:

Alloy design, chemical synthesis,
or biological experiments.

Reduces time and cost by
selecting experiments wisely.

Robotics and Control:

Tuning control parameters for
bipedal robot design.

Learning feedback policies in
uncertain environments.

Other Examples:

Neural architecture search.

Deep reinforcement learning
hyperparameter tuning.
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Towards Black-Box Optimization

Problem:
x∗ = argmax

x∈X
f (x)

where f (x) is unknown and expensive to evaluate.

Black box : only known through evaluation/simulation results: query an
evaluation at xi , observe the result
Question : Where should we evaluate next ?

10 / 51



Surrogate models in BO

1 Surrogate Modeling: Define a prior over f (usually a GP).

2 A surrogate model mimics the behaviour of the true function f as
closely as possible.

3 surrogate model should be cheap to evaluate.
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Gaussian Process Surrogate Model

GP Prior:
f (x) ∼ GP

(
m(x), k(x , x ′)

)
,

with:

Mean function: m(x) .
Covariance function (e.g., RBF kernel):

k(x , x ′) = σ2
f exp

(
−∥x − x ′∥2

2l2

)
.
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Posterior Mean and Variance with Noisy Evaluations

Noisy Evaluations:

yi = f (xi ) + εi , εi ∼ N (0, σ2
n)

Posterior Prediction: Given the data Dn = {(xi , yi )}ni=1, the GP
posterior at a new point x is a normal distribution:

f (x) | Dn ∼ N
(
µn(x), σ

2
n(x)

)
,

with

µn(x) = k(x ,X )[K+σ2
nI ]

−1y , σ2
n(x) = k(x , x)−k(x ,X )[K+σ2

nI ]
−1k(X , x).

The µn(x) represents our best estimate of f (x) given the observed (noisy)
data, while σ2

n(x) quantifies the uncertainty in our prediction at x .
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Bayesian Optimization Algorithm

1 Input:
Domain X
Initial dataset D0 = {(xi , yi )}n0i=1

2 For t = n0 + 1, n0 + 2, . . . ,T do:
1 Fit a Gaussian Process (GP) model to the dataset Dt−1.
2 Define an acquisition function a(x)
3 Optimize the acquisition function to select

xt = argmax
x∈X

a(x).

4 Evaluate
yt = f (xt) + εt .

5 Update the dataset with the new observation:

Dt ← Dt−1 ∪ {(xt , yt)}.

3 Output:
x∗ = arg max

(x ,y)∈DT

y .
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Why acquisition function ?

Explore + Exploit
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Expected Improvement (EI) : Mokus, 1972

Goal: Maximize expected improvement over current best observed value.

Improvement Function:

I (x) = max
(
f (x)− f (x+)− ξ, 0

)
Expected Improvement:

EI(x) = E[I (x)] == (µn(x)− f (x+)− ξ) Φ(Z ) + σn(x)ϕ(Z )

Intuition: Chooses points with a high chance of improving over the
current best.

Suggested Image: GP posterior with EI curve showing improvement
regions.
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Probability of Improvement (PI) :Krushner, 1997

Goal: Maximize probability of improving over current best observed value.

Closed form :

aPI(x) = Φ

(
µn(x)− f (x+)− ξ

σn(x)

)
Where:

Φ: CDF of the standard normal distribution

f (x+) = maxi≤n yi

ξ > 0: optional exploration parameter

Easy to compute and interpret.

Often overly greedy — tends to ignore uncertainty.

Rarely used in practice compared to EI or UCB.
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Upper Confidence Bound (UCB) : Srinivas, 2010

Goal: Select points with high mean and/or high uncertainty.

aUCB(x) = µn(x) +
√
βt σn(x)
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Regret
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Acquisition Strategy: Thompson Sampling (TS)

Goal: Sample functions from the posterior and optimize them directly.

Algorithm:

1 Sample ft(x) ∼ GP(µn(x), σ
2
n(x))

2 Select:
xt = argmax

x∈X
ft(x)

Intuition: Naturally balances exploration and exploitation by randomizing
the acquisition.

Advantages:

Simple and effective.

Competitive theoretical regret bounds.

Scales well in batch BO (via multiple independent samples).
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Bayesian regret

BCRTT = E

[
T∑
t=1

(f (x∗)− f (xt))

]
BSRTT = E

[
f (x∗)−max

t≤T
f (xt)

]
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Diffferent acquistions Agree / Disagree ?
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Knowledge Gradient (KG): Definition

Setup: Assume
f (x) | Dn ∼ N

(
µn(x), σ

2
n(x)

)
,

where Dn = {(x1, y1), . . . , (xn, yn)} is the data so far. Define the
incumbent solution as the point with the largest posterior mean:

µ∗
n = max

x∈A
µn(x).

Improvement Function: If we were to take one more sample at x and
update the posterior, the new maximum is

µ∗
n+1 = max

x ′∈A
µn+1(x

′).

The improvement due to sampling at x is then

I (x) = max
(
µ∗
n+1 − µ∗

n, 0
)
.

Knowledge Gradient: The KG acquisition function is defined as the
expected improvement in the maximal posterior mean,

KGn(x) := En

[
µ∗
n+1 − µ∗

n

∣∣∣ xn+1 = x
]
.
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Simulation-Based Estimation of KG

To estimate KGn(x) via simulation, proceed as follows:
1 For a candidate x , repeat for j = 1, . . . , J:

1 Simulate an outcome y
(j)
n+1 from the predictive distribution at x :

y
(j)
n+1 ∼ N

(
µn(x), σ

2
n(x)

)
.

2 Update the GP posterior by “hallucinating” the observation (x , y
(j)
n+1)

to compute

µ
(j)
n+1(x

′) for all x ′ ∈ A.
3 Let

µ
∗(j)
n+1 = max

x′∈A
µ
(j)
n+1(x

′).

4 Compute the simulated improvement:

∆(j)(x) = µ
∗(j)
n+1 − µ∗

n.

2 Estimate the KG at x by averaging:

KGn(x) ≈
1

J

J∑
j=1

∆(j)(x).

Interpretation: As J increases, the Monte Carlo estimate converges to
the true expected improvement in our solution quality.
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Gradient !

∇KGn(x) = En

[
∇
(
µ∗
n+1 − µ∗

n

)]
.

25 / 51



Optimizing KG via Multistart Stochastic Gradient Ascent

Procedure:

1 Select R starting points x
(r)
0 uniformly from the feasible set A.

2 For each starting point r = 1, . . . ,R and iterate t = 0, 1, . . . ,T − 1:

x
(r)
t+1 = x

(r)
t + αt G

(
x
(r)
t

)
,

where:
G (x

(r)
t ) is an unbiased stochastic gradient estimate of ∇KGn

(
x
(r)
t

)
,

obtained via infinitesimal perturbation analysis.
αt is a stepsize (e.g., αt =

a
a+t for some parameter a > 0).

3 For each run r , estimate KGn

(
x
(r)
T

)
using the simulation-based

method above.

4 Return the best point among all runs:

x∗ = arg max
r=1,...,R

KGn

(
x
(r)
T

)
.
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Entropy Search (ES) and Predictive Entropy Search (PES)

Entropy Search (ES):

ES quantifies uncertainty about the location of the global maximum
x∗ using differential entropy.

It seeks the point x that produces the largest expected reduction in
the entropy of the posterior over x∗.

ESn(x) = H
(
Pn(x

∗)
)
− Ef (x)

[
H
(
Pn(x

∗ | f (x))
)]
.

Predictive Entropy Search (PES):

PES reformulates the objective using mutual information:

PESn(x) = H
(
Pn(f (x))

)
− Ex∗

[
H
(
Pn(f (x) | x∗)

)]
.

PES is generally more computationally tractable.

Takeaway: Both ES and PES aim to reduce uncertainty about x∗ rather
than simply improve the best expected value, and they can be particularly
useful in exotic Bayesian optimization settings.
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Expensive Constrained Optimization Problems (ECOPs)

ECOPs: Optimization with computationally or financially expensive
objectives and constraints.

Formulation:
min
x

f (x) = (f1(x), . . . , fm(x))

s.t. cj(x) ≥ aj , j = 1, . . . , q,

x ∈ X ,

where x = (x1, . . . , xd), X is the decision space, m objectives, q
constraints.

Challenges: Expensive evaluations, feasible solutions constrained.

Applications: PID controller tuning, engineering design.
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Constrained Bayesian Optimization (CBO)

Augmented Lagrangian (AL):

LA(x;λ, ρ) = f (x) + λ⊤c(x) +
1

2ρ

q∑
j=1

max(0, cj(x))
2

Converts constrained to unconstrained problems for Bayesian
Optimization (BO).

CBO Approaches:
1 Probability of Feasibility: Constrained Expected Improvement (cEI):

cEI(x) = EI(x)

q∏
j=1

Pr[cj(x) ≤ aj ]

2 Expected Volume Reduction: Uncertainty reduction via entropy or
variance.

3 Multi-step Look-ahead: Non-myopic, e.g., 2-OPT-C for long-term
reward.
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Surrogate-Assisted Methods and Advances

Surrogate-Assisted Constraint Handling:
Combines BO with evolutionary algorithms.
Gaussian Processes (GPs) model objectives and constraints separately.

Recent Advances:
AL with slack variables for mixed constraints.
ADMM-based BO for unknown constraints.
Predictive Entropy Search (PES) for decoupled constraints.

Challenges:
Nonstationary modeling in AL.
Brittleness of cEI in highly constrained problems.
Computational burden in multi-step methods.
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Multi-Fidelity Bayesian Optimization: Motivation

Engineering Design Challenge: Optimize expensive high-fidelity
(HF) functions fH(x), e.g., crash simulations (36-160h) or structural
analysis (23 days) [1].

Limitations: HF evaluations are costly, limiting optimization
iterations under resource constraints.

Solution: Multi-Fidelity Bayesian Optimization (MF BO) leverages
cheap low-fidelity (LF) models to reduce HF evaluations while
maintaining accuracy.

Advantages:
Incorporates physical/mathematical insights.
Balances exploration-exploitation trade-off.
Handles uncertainty and supports parallel computing [1].

Applications: Aerodynamic design, hyperparameter tuning, materials
design.
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Problem Formulation

Objective: Solve
min

x∈X⊆Rd
fH(x),

where fH(x) is the HF objective, costly to evaluate.

Multi-Fidelity Setup: Access to T models f1(x), . . . , fT (x), with f1
cheapest (LF) and fT = fH .

MF BO Approach:
Use GP-based MF surrogates to model relationships between fidelities.
Guide optimization with acquisition functions to select next evaluation
points and fidelities.

Goal: Minimize HF evaluations by exploiting LF models’ correlations
[1].
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Kennedy-O’Hagan (KOH) Auto-Regressive Model

Model: For two fidelities, LF f1(x) and HF f2(x) = fH(x):

f1(x) = δ1(x),

f2(x) = ρ1f1(x) + δ2(x),

where δ1, δ2 ∼ GP, ρ1 is a constant scaling factor [1].

General Form (T fidelities):

ft(x) = ρt−1ft−1(x) + δt(x), t = 2, . . . ,T .

Advantage: Captures linear correlations between fidelities.

Limitation: Assumes constant scaling, may not model complex
relationships.
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Hierarchical and Recursive Models

Hierarchical Kriging:

f1(x) = a+ z1(x),

ft(x) = ρt−1µf ,t−1(x) + zt(x), t = 2, . . . ,T ,

where µf ,t−1 is the Kriging predictor, zt ∼ GP.

Recursive Model:

ft(x) = ρt−1(x)f̂t−1(x) + δt(x),

with ρt−1(x) a spatially varying adjustment, f̂t−1 the GP posterior [1].

Advantage: Recursive model reduces training cost to
O(T ×max{N3

t }).
Use Case: Efficient for multiple fidelities with non-linear
relationships.
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Graphical Multi-Fidelity Gaussian Process (GMGP)

Model: Represents fidelities as a directed acyclic graph (DAG):

ft(x) =
∑

t′∈Pa(t)

ρt,t′ f̂t′(x) + δt(x),

where Pa(t) are parent nodes, f̂t′ is the GP posterior [1].

Covariance: Structured via a lower triangular matrix R.

Advantage: Handles non-hierarchical fidelity relationships, e.g.,
multiple LF models informing HF.

Training Cost: Recursive GMGP: O(T ×max{N3
t }).
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Bayesian Hierarchical and Deep Gaussian Processes

Bayesian Hierarchical Model:

f2(x) = ρ(x)f1(x) + δ2(x) + ε2(x),

with ρ(x) ∼ GP, ε2 ∼ N (0, σ2
ε,2).

Deep Gaussian Process (DGP):

f (x) = fL−1(. . . f1(f0(x))),

where each fl ∼ GP.

MF DGP: Fidelities as layers, marginal likelihood computed via
integration [1].

Challenge: High computational cost for training and inference.
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Input-Augmentation Multi-Fidelity GPs

Model: Treat fidelity as an input variable in g(t, x), where
fH(x) = g(tT , x).

Continuous Fidelity:

g(·) ∼ GP(0, κg ((t, x), (t
′, x′)|ϕg )),

with κg = κt(t, t′)κx(x, x′).

Categorical Fidelity: Use non-continuous covariance functions, e.g.,
hypersphere decomposition [1].

Advantage: Flexible for continuous or discrete fidelity levels, widely
used in BO.
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Acquisition Functions in MF BO

Types for BO [1]:

Improvement-based : Expected Improvement (EI), balances
exploration-exploitation.
Optimistic : Upper Confidence Bound (UCB), favors uncertainty.
Information-based : Entropy Search, maximizes information gain.
Multi-step Look-ahead : Considers future evaluations.

MF Considerations:
No-fidelity : Treat all data as HF, inefficient.
Heuristic : Weight fidelities by cost-accuracy trade-off.
Sequential Selection: Choose fidelity and point iteratively.

Portfolio Approach: Combine multiple acquisition functions for
robustness.
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Multi-step Look-ahead Acquisition Functions: Motivation

Problem: Single-step acquisition functions (e.g., EI, UCB) are
myopic, optimizing only for the immediate next evaluation [1].

Limitation: May lead to suboptimal long-term decisions, especially in
MF BO with varying fidelity costs and accuracies.

Solution: Multi-step look-ahead acquisition functions consider future
evaluations, planning a sequence of points to maximize cumulative
improvement.

Advantages:
Improves efficiency by anticipating future information gain.
Balances short-term gains with long-term optimization goals.
Critical for MF BO to optimize fidelity selection over multiple steps [1].

Applications: Resource-constrained settings, e.g., aerodynamic
optimization with limited HF budget.
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Multi-step Look-ahead: Mathematical Formulation

Objective: Maximize expected utility over a sequence of K future
evaluations:

αMS(x1, . . . , xK ) = E
[
U(fH(x

∗)|D ∪ {(xk , ftk (xk))}
K
k=1)

]
,

where U is a utility function (e.g., improvement), D is current data,
tk is the fidelity at step k , and x∗ is the optimal point [1].

Formulation: For a two-step look-ahead:

α2-step(x1, t1) = E
[
max
x2,t2

E [U(fH(x
∗)|D ∪ {(x1, ft1(x1)), (x2, ft2(x2))})]

]
.

MF Extension: Include fidelity selection tk , weighting by cost ctk :

αMF-MS(x1, t1) = E
[
max
x2,t2

E[U|D ∪ {(x1, ft1(x1)), (x2, ft2(x2))}]
ct1 + ct2

]
.

Challenge: High computational cost due to nested expectations.
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Multi-step Look-ahead: Implementation and Techniques

Approximation Methods:
Monte Carlo Sampling : Approximate expectations by sampling possible
future outcomes [1].
Dynamic Programming : Use Bellman’s principle to break down
multi-step problem [1].
One-shot Multi-step Trees: Precompute decision trees for efficiency [2].

MF Considerations:
Optimize both xk and fidelity tk at each step.
Incorporate cost-accuracy trade-offs in utility function.

Advantages: Reduces HF evaluations by planning LF-heavy
sequences early, reserving HF for final steps.
Limitations: Computationally intensive; requires efficient sampling or
approximation [1].

R. Bellman, “On the theory of dynamic programming,” Proc. Natl.
Acad. Sci., vol. 38, pp. 716–719, 1952.

S. Jiang et al., “Efficient nonmyopic Bayesian optimization via
one-shot multi-step trees,” Adv. Neural Inf. Process. Syst., vol. 33,
pp. 18039–18049, 2020. 41 / 51



Applications and Challenges

Applications [1]:

Airfoil Design: Optimize lift/drag using LF (XFOIL) and HF (CFD)
models.
Materials Design: Ternary alloys via multi-fidelity simulations.
Hyperparameter Tuning : Use subset training as LF, full dataset as HF.

Future Research Topics:
Constrained optimization: Handle complex constraints.
High-dimensional optimization: Subspace or additive structure
approaches.
Optimization under uncertainty: Robust and reliability-based methods.
Multi-objective optimization: Pareto front exploration [1].
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Key notes

Summary: MF BO accelerates optimization of expensive HF
functions by leveraging LF models, using GP-based surrogates and
acquisition functions.

Key Models: KOH, hierarchical/recursive, GMGP, Bayesian
hierarchical, DGP, input-augmentation.

Impact: Reduces computational cost, enables real-world applications
in engineering and beyond.

Future: Address high-dimensional, constrained, and multi-objective
problems to broaden MF BO’s applicability [1].

B. Do and R. Zhang, “Multi-Fidelity Bayesian Optimization: A
Review,” arXiv:2311.13050v2, 2023.
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High-Dimensional BO: Challenges & Motivation

Challenges:

Exponential Sample Complexity: Sample requirements grow
exponentially with the dimension D.

Sparsity of Data: Standard Gaussian Process surrogates lose
accuracy when data is sparse.

Acquisition Function Landscape: Often very flat with a few narrow
peaks.

Motivation: Develop scalable surrogate models that exploit
low-dimensional structure,
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Random Embedding Methods (REMBO)

Approach: Assume that f (x) varies mainly in a d-dimensional subspace.

Method:

Define a random projection A : Rd → RD , and represent x as

x = Az , z ∈ Z ⊂ Rd .

Optimize in the low-dimensional space:

z∗ = argmax
z∈Z

f (Az).
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Additive Gaussian Process Models

Approach: If f decomposes over variable groups,

f (x) =
M∑
i=1

fi (xSi ),

Surrogate Construction:

µ(x) =
M∑
i=1

µi (xSi ), σ2(x) =
M∑
i=1

σ2
i (xSi ),

with µi , σ
2
i defined via independent GP posteriors for fi .
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Trust Region Bayesian Optimization (TuRBO)

Approach: Restrict the search to a local region around the current best.

Method:

Define the trust region at iteration t as

Tt = {x ∈ X : ∥x − x+∥ ≤ δt},

where x+ is the current best and δt is the radius.

Optimize the acquisition function (e.g., GP-UCB or EI) over Tt .
Adapt δt based on observed improvements.
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Bayesian Neural Network (BNN) Surrogates

Motivation: GP surrogates may become computationally expensive in
high dimensions. BNNs scale better and capture complex structure.

BNN Model: For a deep neural network with weights w and input x :

f (x ;w).

Prior and Posterior:

Place a prior p(w) on the weights.
Given data D, the posterior is

p(w | D) ∝ p(D | w) p(w).

Approximate via variational inference with q(w ;λ) ≈ p(w | D).
Predictive Distribution:

p(y | x ,D) ≈
∫

p(y | x ,w) q(w ;λ) dw ,

often approximated with Monte Carlo sampling.

Advantage: Scales to high dimensions and integrates modern deep
learning methods.

Suggested Image: A diagram of a deep neural network with uncertainty
(e.g., weight distributions or multiple forward passes).
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Other Approaches for High-Dimensional BO

Additional Strategies:

Dropout Methods: Apply dropout at test time to create an implicit
ensemble, reducing effective dimensions.

Deep Ensembles: Train several independent models and aggregate
their predictions:

µens(x) =
1

M

M∑
m=1

f (x ;wm), σ2
ens(x) =

1

M

M∑
m=1

(f (x ;wm)− µens(x))
2 .

Random Embedding with Local Search: Combine REMBO with
local optimization to refine the search in the embedded space.

Take-Away: The aim is to reduce the effective dimensionality (or exploit
low-dimensional structure) while retaining accurate uncertainty estimates.
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Thank You

Thank you for your attention!

Questions?
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