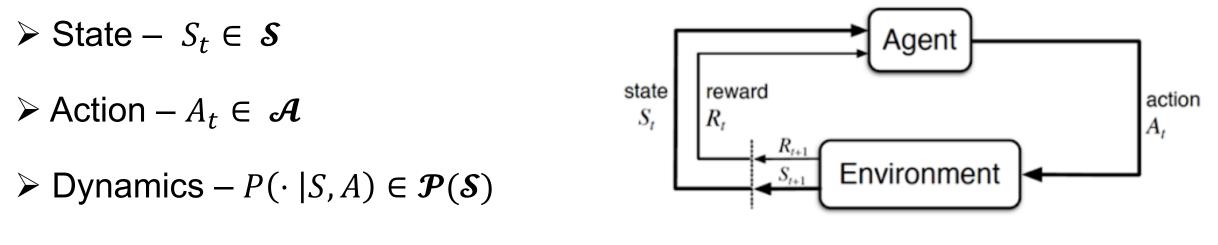
Unified Approach – Bayesian Adaptive MDPs

Markov Decision Processes (MDP)

MDP: framework for sequential decision making



≻ Reward – $R(S, A) \sim q(\cdot | S, A) \in \mathcal{P}(\mathcal{R})$

 \blacktriangleright MDP $\mathcal{M} = (S, \mathcal{A}, P, q)$ with objective: Maximize $\mathbb{E}(\sum_{t=0}^{T-1} \gamma^t R(S_t, A_t) | S_0 = s)$

Partially Observable MDP

- Complete states are not observable, instead observation O_t is observed at time step t
- ≻ State $S_t \in \mathcal{S}$, Action $A_t \in \mathcal{A}$, Dynamics $P(\cdot | S, A) \in \mathcal{P}(\mathcal{S})$
- ≻ Observation $0 \in O$, where $O_t \sim Ω(\cdot | S_{t+1}, A_t)$
- $\succ \mathsf{POMDP} \, \mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{O}, P, \Omega, q)$

MDP with unknown dynamics

$$\succ$$
 Dynamics – P _{θ} (· |*S*,*A*) with $\theta \sim \mu_0$

- Reformulation as Partially observable MDP
 - ✓ Define a new hyper-state $S' = (\theta, S)$ with observations $O'_t = S_t$

✓ Dynamics over hybrid state

$$P'(S'_{t+1}|A_t, S'_t) = P'(S_{t+1}, \theta | A_t, S_t, \theta) = P_{\theta}(S_{t+1}|A_t, S_t)$$

$$\checkmark \Omega'(O_{t+1}|S'_{t+1}, A_t) = \Omega(O_{t+1}|S_{t+1}, \theta, A_t) = (S_{t+1} \text{ w. p. 1})$$

 $\checkmark \mathsf{POMDP} \, \boldsymbol{\mathcal{M}}' = (\boldsymbol{\mathcal{S}}', \boldsymbol{\mathcal{A}}, \boldsymbol{\mathcal{O}}', P', \Omega', q)$

Bayesian Adaptive MDP

►Let $\mu_t = \mu(\theta | H_t, \mu_0)$ be the posterior over the parameter θ given the history $H_t = (S_0, A_0, \dots, A_{t-1}, S_t)$

➢ Define an MDP as follows

✓ Hyper-state with posteriors $\tilde{S}_t = (S_t, \mu_t)$

✓ Transition dynamics over the hybrid state space $\tilde{P}(\tilde{S}_{t+1}|\tilde{S}_t, A_t)$

 $\tilde{P}(S_{t+1},\mu_{t+1}|S_t,\mu_t,A_t) = \mathbb{1}(\mu_{t+1}|S_{t+1},S_t,A_t,\mu_t) \left(\int P_{\theta}(S_{t+1}|S_t,A_t) d\mu_t(\theta)\right)$

- ✓ Reward function $\tilde{q}(\cdot | \tilde{S}, A) = \tilde{q}(\cdot | S, \mu, A) = q(\cdot | S, A)$
- ✓ Bayesian Adaptive MDP $\widetilde{\mathcal{M}} = (\widetilde{\mathcal{S}}, \mathcal{A}, \widetilde{P}, \widetilde{q})$

Generalizing to unknown reward functions

 \succ Reward $R(S_t, A_t) \sim q_{\alpha}(\cdot | S_t, A_t)$ with $\alpha \sim \nu_0$

> Define $\mu_t = \mu(\theta | H_t, \mu_0)$ and $\nu_t = \nu(\alpha | H_t, \nu_0)$ be the posterior over the parameter θ and α given the history H_t

➢ Define an MDP as follows

✓ Hyper-state with posteriors $\tilde{S}_t = (S_t, \mu_t, \nu_t)$

 $\checkmark\,$ Transition dynamics over the hybrid state space and rewards

 $\tilde{P}(\tilde{S}_{t+1}, R_t | \tilde{S}_t, A_t) = \tilde{P}(S_{t+1}, \mu_{t+1}, \nu_{t+1}, R_t | S_t, \mu_t, \nu_t, A_t)$

 $= \mathbb{1}(\mu_{t+1}|S_{t+1}, S_t, A_t, \mu_t) \left(\int P_{\theta}(S_{t+1}|S_t, A_t) d\mu_t(\theta) \right) \mathbb{1}(\nu_{t+1}|R_t, S_t, A_t, \nu_t) \left(\int q_{\alpha}(R_t|S_t, A_t) d\nu_t(\theta) \right)$ $\checkmark \text{ Bayesian Adaptive MDP } \widetilde{\mathcal{M}} = (\widetilde{\mathcal{S}}, \mathcal{A}, \widetilde{P})$

Connecting back...

Bayesian bandits as an MDP with unknown reward function

- ✓ K arms with means $\alpha = (\alpha_1, \dots, \alpha_K)$ with $\alpha \sim \nu_0$ (Prior)
- ✓ Actions A_t which arm to pull
- ✓ States $S_t = \phi$, with $P(S_{t+1} = \phi | S_t, A_t) = 1$
- $\checkmark \text{ Reward } R_t = q_{\alpha}(\cdot | A_t, S_t) = q_{\alpha}(\cdot | A_t)$

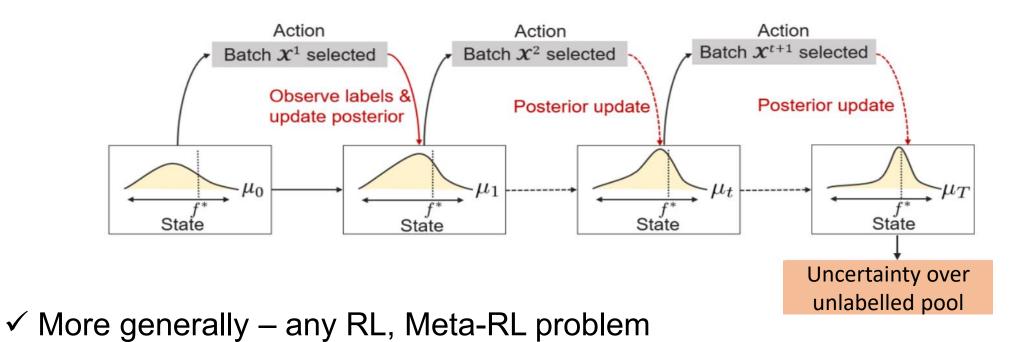
- Bayesian bandits as BAMDP
 - ✓ Maintain a posterior ν over α , and define hyper-state $\tilde{S}_t = (S_t, \nu_t) = \nu_t$
 - $\checkmark \tilde{P}\big(\tilde{S}_{t+1}, R_t \big| \tilde{S}_t, A_t\big) = \mathbb{1}(\nu_{t+1} | R_t, A_t, \nu_t) \big(\int q_\alpha(R_t | A_t) \, d\nu_t(\alpha) \big)$
 - ✓ Bayesian Adaptive MDP $\widetilde{\mathcal{M}} = (\widetilde{\boldsymbol{S}}, \mathcal{A}, \widetilde{P})$

Connecting back...

> Similarly, we can express other decision-making problems as BAMDP

✓ Bayesian Optimization

✓ Adaptive data collection



Conventional Solution Approaches

Offline Value Approximation – (approximately solves BAMDP) – intractable for most domains

➢Online near-myopic value approximation

✓ Bayesian Dynamic Programming: extends Thompson sampling to BAMDP – sample a model θ from μ_t and take best action A_t according to θ (solve MDP θ).

✓ Value of information heuristic: extends knowledge gradient ideas to BAMDP

➢Online Tree search approximation

 \checkmark Perform a forward search in the space of hyper-states.

Two key challenges

- ➢ How to solve the BAMDP?
 - ✓ Continuous state space due to posteriors
 - ✓ Number of possible hyper-states increases exponentially with horizon

- > How to get reliable posteriors?
 - ✓ Posterior updates are intractable for most domains
 - ✓ Further the current UQ methodologies (such as BNN etc.) suffer from following challenges
 - ✓ How much we should sharpen our belief as we see more data points requires learning priors to effectively quantify uncertainty
 - Potential solution: UQ through meta learned sequence models

References

- Active Learning Literature Survey. Burr Settles (2010). <u>https://burrsettles.com/pub/settles.activelearning.pdf</u>
- A Survey on Deep Active Learning: Recent Advances and New Frontiers. Li et. al. (2024) <u>https://arxiv.org/pdf/2405.00334</u>
- > Active Learning: A survey. Aggarwal et. al. <u>https://charuaggarwal.net/active-survey.pdf</u>
- Bayesian Reinforcement Learning: A Survey, Ghavamzadeh et. al. (2016) <u>https://arxiv.org/pdf/1609.04436</u>
- Deep Bayesian Active Learning with Image Data. Gal et. al. (2017) <u>https://arxiv.org/abs/1703.02910</u>