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• Imagine a ML engineer building a recommendation system


• Underpowered: quality of service improvement < 2%

- Business impact can nevertheless be big!

Configuration    1    2     …   K    

Goal: help users grow their  
          professional network

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Experimentation (prediction  decision)⇒



Adaptivity

• Adaptivity improves power => more testable hypotheses

- Vast literature: Thompson (’33), Chernoff (’59), Robbins & Lai (’52, ’85) + 1000s others


• Assumes unit-level continual reallocation 


• Algo design guided by theory

- Regret guarantees hold as # reallocation epochs 


- Changes to the objective requires ad hoc changes to algo
T → ∞



Batched Feedback

Practical setting: a few, large batches 

(think  batches with  users per batch)T = 7 n = 100,000

Due to delayed feedback or operational efficiency



Disclaimers

• This talk is about adaptive experiments, not continual 
interactions with an environment.


• As such, we don’t care about 


• For bandit experts

- Forget sublinear regret as T grows

- It’s all about constants! We want 20% gains in experiment efficiency. 

T → ∞



Non-stationarity
• Treatment effects change over day-of-the-week



ASOS Dataset

• Fashion retailer with > 26m active customers


• 78 real experiments with two arms and up to four metrics

- Means and variances recorded every 12 or 24-hours

- Duration range from 2~132 recorded intervals


• We generate 241 unique benchmark settings

- Added additional arms (total 10 arms) with similar gaps as real ones



Non-stationarity

Best arm changes every day



Vignette: Thomson sampling

• TS: Select arms with P(Arm optimal | History)

- Sample parameter , pick best arm under  

• Top-two TS: Same, but w.p.  redraw  until different arm selected

- Equal to TS if , less greedy as 


- Contextual variant: Explicitly model non-stationarity

θ ∼ Posterior(History) θ

λ θ
λ = 0 λ → 1

Russo (2020), Russo & Qin (2023)



• Contextual policies 
explicitly model time-
varying trends


• Batch size = 100K and 
horizon T = 10


• Bandit algos worse 
than a static A/B test 

• Overfits on initial, 
temporary performance

(Russo & Qin, 2023)

(Russo, 2020)

Vignette: Thomson sampling
180K different problem instances



Why is this happening?

• I didn’t follow the instruction 
manual


• Algo only gets T = 10 chances to 
update policy; not much adaptivity


• When algo gets to update per 
person, performs really well!

Best of batched 
contextual TS 

and TTTS
Uniform Fully sequential 

contextual TTTS



People want different things
• Best Arm Identification: I want the best treatment (simple regret).


• Top 5 Arm Identification: Actually, I just want top-5 arms.


• Personalization: Learn a policy that assigns treatments to users.


• Multiple Metrics: Find best arm in a primary metric that’s not worse 
than control in another guardrail metric.



Constraints
• Sample Coverage: I want at least 10% of samples for my control arm


• Budget Constraint: I can’t give too many discounts.


• Quality of Service: I don’t want a regression in this metric during the 
experiment (with 95% probability).


• Pacing: I want to use my budget of samples efficiently as possible 
over the experiment.



Problem
What is a good algorithmic design principle for…

Top 5 arm identification +


Batched Feedback + 


Non-stationarity +


Sample coverage constraints + …

…that will actually materialize into practical performance?



Current art
• Step 1: Hire a person in this room for 1-2 years


• Step 2: Develop a variant of Thomson sampling or UCB adapted  
            to the particular problem instance you have


• Step 3: Prove a nice regret bound for the said algorithm 



• Step 1: Hire a person in this room for 1-2 years


• Step 2: Develop a variant of Thomson sampling or UCB adapted  
            to the particular problem instance you have


• Step 3: Prove a nice regret bound for the said algorithm 

• When infeasible, apply some algo not designed for your instance

- Brittle performance: often even worse than uniform


Current art



Mathematical Programming




          subject to    


• Write down in a modeling language (e.g., CVX)


• Call a generic solver to get approximate solution (e.g., Gurobi)


• Good solvers should perform well across a wide set of problem 
instances, rather than focus only on a particular problem

minimizeπ Objective(π)

Constraint(π) ≤ B



Why do we design  

problem-specific algos?



Batched Experiments
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Two Treatment Arms: For    in :t range(T)
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Batched Experiments

Users xt

Treatments at

Rewards Rt

Sampling

Allocation πt

1 0 0

πt

Features ϕ ϕ( , )

0 1

ϕ( , ) ϕ( , ) ϕ( , ) ϕ( , )

Two Treatment Arms: For    in :t range(T)

30% 70%



Adaptive experimentation as dynamic program

           


 

             subject to               


                                            


minimizeπt(Ht) 𝔼 [
T

∑
t=0

Objectivet(πt, Ht)]
Cost(πt; Ht) ≤ ct

πt(Ht) ∈ Simplex

Reward/outcome distribution  unknownR ∼ ν( ⋅ )



Bayesian MDP
• Adopt Bayesian principles to reason through uncertainty on 


• Let  be posterior on  given the history 


ν

𝖰t ν Ht

           


 
             subject to               


                                            


minimizeπt(Ht,Qt) 𝔼 [
T

∑
t=0

Objectivet(πt, Ht, Qt)]
Cost(πt; Ht, Qt) ≤ ct

πt(Ht, Qt) ∈ Simplex



Bayesian MDP

• States

- Observed data ; dimension = no. users


- Posterior distribution ; infinite dimensional in general


• Requires a Bayesian model for how each user behaves


• Even computing state transitions (posterior update) is a challenge

Ht

𝖰t



Bayesian MDP



Simplifying the Bayesian MDP

• Assume parametric model for mean rewards with true param 


• Examples


• Finite armed MAB:  = average reward across arms


• Contextual model

- Linear rewards: 


- Logistic model: 

θ⋆

θ⋆

𝔼[R ∣ X = x, A = a] = ϕ(x, a)⊤θ⋆
a

logistic(R) = ϕ(x, a)⊤θ⋆
a



Simplifying the Bayesian MDP

• Within each batch t, central limit theorem says  
 
       maximum likelihood estimator    

• 99% of statistics; everyone uses this to calculate p-values


• CLT compress entire batch to sufficient statistic 

̂θ t ∼ N(θ⋆, n−1g(πt))

̂θ t



Bayesian Principle Over Batches

           ̂θ t ∼ N(θ⋆, n−1g(πt))

Likelihood

Batch compressed to sufficient statistic

           θ⋆ ∼ N(β0, Σ0)

Prior

           θ⋆ ∼ N(β1, Σ1)

Posterior

Governed by posterior mean and variance (βt, Σt)
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Bayesian Principle Over Batches

           ̂θ t ∼ N(θ⋆, n−1g(πt))

Likelihood

           θ⋆ ∼ N(β0, Σ0)

Prior

           θ⋆ ∼ N(β1, Σ1)

Posterior

Governed by posterior mean and variance (βt, Σt)

• Computationally, closed-form posterior state transitions

- Posterior update formula for Gaussian conjugate family

- Differentiable dynamics



Batch Limit Dynamic Program

           


 
             subject to               


                                            


• State dimension = 

minimizeπt(βt,Σt) 𝔼 [
T

∑
t=0

Objectivet(πt, βt, Σt)]
Cost(πt; βt, Σt) ≤ ct

πt(βt, Σt) ∈ Simplex

O(d2)



Batch Limit Dynamic Program

• Models any objective and constraint that can be written as a 
function of posterior states

- Cumulative- and simple-regret, top-k regret

- Budget constraints, minimum allocation constraints

- Above applied to any number of rewards/outcomes/metrics




Residual Horizon Optimization
• At every epoch, given posterior state , solve for the optimal 

static sampling allocations

• Resolve every batch, based on new information

(β, Σ)
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πt(βt, Σt) ∈ Simplex
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Residual Horizon Optimization
• At every epoch, given posterior state , solve for the optimal 
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Residual Horizon Optimization

           


 

           subject to                         


                                            


• Closed-form dynamics means  can be expressed explicitly


• Use stochastic gradients to optimize allocations!

minimizeπt 𝔼 [
T

∑
t=s

Objectivet(πt, βt, Σt) ∣ βs, Σs]
Cost(πt; βt, Σt) ≤ ct t ≥ s

πt ∈ Simplex

(βt, Σt)



Residual Horizon Optimization

• Use stochastic gradients to optimize allocations!



Why planning? Calibrate exploration to horizon

Residual Horizon Optimization



MPC Design Principle

Why? The algorithm is Policy Iteration on Static Designs

  Theorem: RHO achieves a smaller Bayesian regret than any static policy


• For any time horizon 


• For any constraints


• For any objective


• For any time non-stationarity

T



(Russo & Qin, 2023)

(Russo, 2020)

Back to non-stationarity

Contextual = model 
time-varying trends


Batch size = 100K 


Horizon T = 10


Benchmarking results over 180K different instances
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Encoding different objectives




 

subject to              ,       

• Natural candidate for : # in experiment / # affected by treatment


• Unlike TS-based policies, easy to balance within-experiment 
(simple) vs. post-experiment (cumulative) regret

minimizeπt 𝔼 [
T−1

∑
t=0

Within-exp. Rewardst(πt, βt, Σt) + λ ⋅ Post-exp Rewards(πT, βT, ΣT)]
Cost(πt; βt, Σt) ≤ ct πt ∈ Simplex

λ



Encoding different objectives Batch size n = 100, Horizon T = 5




Summary

• Optimization-based planning for adaptive experimental design

- Flexibly handles batches, objectives, constraints, and non-stationarity

- Robustness guarantees against static A/B tests


• Normal approximations universal in statistical inference also delivers 
a tractable way to directly optimize experiments


• Intellectual foundation: sequential CLT

- All quantities depend on previous observations; theory requires great care



Papers
• Mathematical Programming For Adaptive Experiments 
 
arXiv:2408.04570            with E. Che, D. Jiang, J. Wang


• AExGym: Benchmarks and Environments for Adaptive 
Experimentation 
 
arXiv:2408.04531       github.com/namkoong-lab/aexgym     with J. Wang, E. Che, D. Jiang


• Adaptive Experimentation at Scale: A Computational Framework 
for Flexible Batches 
 
arXiv:2303.11582            with E. Che

hsnamkoong.github.io

http://hsnamkoong.github.io

