
Aug 2024, RLC Deployable RL Workshop

Math Programming For
Adaptive Experimentation

Hongseok Namkoong

Columbia Business School

Ethan Che Daniel Jiang Jimmy Wang
Columbia ColumbiaMeta

• Imagine a ML engineer building a recommendation system

• Underpowered: quality of service improvement < 2%

- Business impact can nevertheless be big!

Configuration 1 2 … K

Goal: help users grow their  
 professional network

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Experimentation (prediction decision)⇒

Adaptivity

• Adaptivity improves power => more testable hypotheses

- Vast literature: Thompson (’33), Chernoff (’59), Robbins & Lai (’52, ’85) + 1000s others

• Assumes unit-level continual reallocation

• Algo design guided by theory

- Regret guarantees hold as # reallocation epochs

- Changes to the objective requires ad hoc changes to algo
T → ∞

Batched Feedback

Practical setting: a few, large batches

(think batches with users per batch)T = 7 n = 100,000

Due to delayed feedback or operational efficiency

Disclaimers

• This talk is about adaptive experiments, not continual
interactions with an environment.

• As such, we don’t care about

• For bandit experts

- Forget sublinear regret as T grows

- It’s all about constants! We want 20% gains in experiment efficiency.

T → ∞

Non-stationarity
• Treatment effects change over day-of-the-week

ASOS Dataset

• Fashion retailer with > 26m active customers

• 78 real experiments with two arms and up to four metrics

- Means and variances recorded every 12 or 24-hours

- Duration range from 2~132 recorded intervals

• We generate 241 unique benchmark settings

- Added additional arms (total 10 arms) with similar gaps as real ones

Non-stationarity

Best arm changes every day

Vignette: Thomson sampling

• TS: Select arms with P(Arm optimal | History)

- Sample parameter , pick best arm under  

• Top-two TS: Same, but w.p. redraw until different arm selected

- Equal to TS if , less greedy as

- Contextual variant: Explicitly model non-stationarity

θ ∼ Posterior(History) θ

λ θ
λ = 0 λ → 1

Russo (2020), Russo & Qin (2023)

• Contextual policies
explicitly model time-
varying trends

• Batch size = 100K and
horizon T = 10

• Bandit algos worse
than a static A/B test

• Overfits on initial,
temporary performance

(Russo & Qin, 2023)

(Russo, 2020)

Vignette: Thomson sampling
180K different problem instances

Why is this happening?

• I didn’t follow the instruction
manual

• Algo only gets T = 10 chances to
update policy; not much adaptivity

• When algo gets to update per
person, performs really well!

Best of batched
contextual TS

and TTTS
Uniform Fully sequential

contextual TTTS

People want different things
• Best Arm Identification: I want the best treatment (simple regret).

• Top 5 Arm Identification: Actually, I just want top-5 arms.

• Personalization: Learn a policy that assigns treatments to users.

• Multiple Metrics: Find best arm in a primary metric that’s not worse
than control in another guardrail metric.

Constraints
• Sample Coverage: I want at least 10% of samples for my control arm

• Budget Constraint: I can’t give too many discounts.

• Quality of Service: I don’t want a regression in this metric during the
experiment (with 95% probability).

• Pacing: I want to use my budget of samples efficiently as possible
over the experiment.

Problem
What is a good algorithmic design principle for…

Top 5 arm identification +

Batched Feedback +

Non-stationarity +

Sample coverage constraints + …

…that will actually materialize into practical performance?

Current art
• Step 1: Hire a person in this room for 1-2 years

• Step 2: Develop a variant of Thomson sampling or UCB adapted  
 to the particular problem instance you have

• Step 3: Prove a nice regret bound for the said algorithm 

• Step 1: Hire a person in this room for 1-2 years

• Step 2: Develop a variant of Thomson sampling or UCB adapted  
 to the particular problem instance you have

• Step 3: Prove a nice regret bound for the said algorithm 

• When infeasible, apply some algo not designed for your instance

- Brittle performance: often even worse than uniform

Current art

Mathematical Programming

 subject to

• Write down in a modeling language (e.g., CVX)

• Call a generic solver to get approximate solution (e.g., Gurobi)

• Good solvers should perform well across a wide set of problem
instances, rather than focus only on a particular problem

minimizeπ Objective(π)

Constraint(π) ≤ B

Why do we design  

problem-specific algos?

Batched Experiments

Sampling

Allocation πt

πt

Two Treatment Arms: For in :t range(T)

50% 50%

Batched Experiments

Users xt

Sampling

Allocation πt

πt

Two Treatment Arms: For in :t range(T)

50% 50%

Batched Experiments

Users xt

Sampling

Allocation πt

πt

Two Treatment Arms: For in :t range(T)

50% 50%

Batched Experiments

Users xt

Treatments at

Sampling

Allocation πt

πt

Two Treatment Arms: For in :t range(T)

50% 50%

Batched Experiments

Users xt

Treatments at

Sampling

Allocation πt

πt

Features ϕ ϕ(,) ϕ(,) ϕ(,) ϕ(,) ϕ(,)

Two Treatment Arms: For in :t range(T)

50% 50%

Batched Experiments

Users xt

Treatments at

Rewards Rt

Sampling

Allocation πt

1 0 0

πt

Features ϕ ϕ(,)

0 1

ϕ(,) ϕ(,) ϕ(,) ϕ(,)

Two Treatment Arms: For in :t range(T)

50% 50%

Batched Experiments

Users xt

Treatments at

Rewards Rt

Sampling

Allocation πt

1 0 0

πt

Features ϕ ϕ(,)

0 1

ϕ(,) ϕ(,) ϕ(,) ϕ(,)

Two Treatment Arms: For in :t range(T)

30% 70%

Adaptive experimentation as dynamic program

 

 subject to

minimizeπt(Ht) 𝔼 [
T

∑
t=0

Objectivet(πt, Ht)]
Cost(πt; Ht) ≤ ct

πt(Ht) ∈ Simplex

Reward/outcome distribution unknownR ∼ ν(⋅)

Bayesian MDP
• Adopt Bayesian principles to reason through uncertainty on

• Let be posterior on given the history

ν

𝖰t ν Ht

 
 subject to

minimizeπt(Ht,Qt) 𝔼 [
T

∑
t=0

Objectivet(πt, Ht, Qt)]
Cost(πt; Ht, Qt) ≤ ct

πt(Ht, Qt) ∈ Simplex

Bayesian MDP

• States

- Observed data ; dimension = no. users

- Posterior distribution ; infinite dimensional in general

• Requires a Bayesian model for how each user behaves

• Even computing state transitions (posterior update) is a challenge

Ht

𝖰t

Bayesian MDP

Simplifying the Bayesian MDP

• Assume parametric model for mean rewards with true param

• Examples

• Finite armed MAB: = average reward across arms

• Contextual model

- Linear rewards:

- Logistic model:

θ⋆

θ⋆

𝔼[R ∣ X = x, A = a] = ϕ(x, a)⊤θ⋆
a

logistic(R) = ϕ(x, a)⊤θ⋆
a

Simplifying the Bayesian MDP

• Within each batch t, central limit theorem says  
 
 maximum likelihood estimator  

• 99% of statistics; everyone uses this to calculate p-values

• CLT compress entire batch to sufficient statistic

̂θ t ∼ N(θ⋆, n−1g(πt))

̂θ t

Bayesian Principle Over Batches

 ̂θ t ∼ N(θ⋆, n−1g(πt))

Likelihood

Batch compressed to sufficient statistic

 θ⋆ ∼ N(β0, Σ0)

Prior

 θ⋆ ∼ N(β1, Σ1)

Posterior

Governed by posterior mean and variance (βt, Σt)

Bayesian Principle Over Batches

 ̂θ t ∼ N(θ⋆, n−1g(πt))

Likelihood

 θ⋆ ∼ N(β0, Σ0)

Prior

 θ⋆ ∼ N(β1, Σ1)

Posterior

Governed by posterior mean and variance (βt, Σt)

Bayesian Principle Over Batches

 ̂θ t ∼ N(θ⋆, n−1g(πt))

Likelihood

 θ⋆ ∼ N(β0, Σ0)

Prior

 θ⋆ ∼ N(β1, Σ1)

Posterior

Governed by posterior mean and variance (βt, Σt)

• Computationally, closed-form posterior state transitions

- Posterior update formula for Gaussian conjugate family

- Differentiable dynamics

Batch Limit Dynamic Program

 
 subject to

• State dimension =

minimizeπt(βt,Σt) 𝔼 [
T

∑
t=0

Objectivet(πt, βt, Σt)]
Cost(πt; βt, Σt) ≤ ct

πt(βt, Σt) ∈ Simplex

O(d2)

Batch Limit Dynamic Program

• Models any objective and constraint that can be written as a
function of posterior states

- Cumulative- and simple-regret, top-k regret

- Budget constraints, minimum allocation constraints

- Above applied to any number of rewards/outcomes/metrics

Residual Horizon Optimization
• At every epoch, given posterior state , solve for the optimal

static sampling allocations

• Resolve every batch, based on new information

(β, Σ)

 

 subject to

minimizeπt(βt,Σt) 𝔼 [
T

∑
t=s

Objectivet(πt, βt, Σt) ∣ βs, Σs]
Cost(πt; βt, Σt) ≤ ct t ≥ s

πt(βt, Σt) ∈ Simplex

Residual Horizon Optimization
• At every epoch, given posterior state , solve for the optimal

static sampling allocations

• Resolve every batch, based on new information

(β, Σ)

 

 subject to

minimizeπt(βt,Σt) 𝔼 [
T

∑
t=s

Objectivet(πt, βt, Σt) ∣ βs, Σs]
Cost(πt; βt, Σt) ≤ ct t ≥ s

πt(βt, Σt) ∈ Simplex

Constants

Residual Horizon Optimization
• At every epoch, given posterior state , solve for the optimal

static sampling allocations

• Resolve every batch, based on new information

(β, Σ)

 

 subject to

minimizeπt 𝔼 [
T

∑
t=s

Objectivet(πt, βt, Σt) ∣ βs, Σs]
Cost(πt; βt, Σt) ≤ ct t ≥ s

πt ∈ Simplex

Residual Horizon Optimization

 

 subject to

• Closed-form dynamics means can be expressed explicitly

• Use stochastic gradients to optimize allocations!

minimizeπt 𝔼 [
T

∑
t=s

Objectivet(πt, βt, Σt) ∣ βs, Σs]
Cost(πt; βt, Σt) ≤ ct t ≥ s

πt ∈ Simplex

(βt, Σt)

Residual Horizon Optimization

• Use stochastic gradients to optimize allocations!

Why planning? Calibrate exploration to horizon

Residual Horizon Optimization

MPC Design Principle

Why? The algorithm is Policy Iteration on Static Designs

 Theorem: RHO achieves a smaller Bayesian regret than any static policy

• For any time horizon

• For any constraints

• For any objective

• For any time non-stationarity

T

(Russo & Qin, 2023)

(Russo, 2020)

Back to non-stationarity

Contextual = model
time-varying trends

Batch size = 100K

Horizon T = 10

Benchmarking results over 180K different instances

(Russo & Qin, 2023)

(Russo, 2020)

Back to non-stationarity

Contextual = model
time-varying trends

Batch size = 100K

Horizon T = 10

Benchmarking results over 180K different instances

Encoding different objectives

 

subject to ,  

• Natural candidate for : # in experiment / # affected by treatment

• Unlike TS-based policies, easy to balance within-experiment
(simple) vs. post-experiment (cumulative) regret

minimizeπt 𝔼 [
T−1

∑
t=0

Within-exp. Rewardst(πt, βt, Σt) + λ ⋅ Post-exp Rewards(πT, βT, ΣT)]
Cost(πt; βt, Σt) ≤ ct πt ∈ Simplex

λ

Encoding different objectives Batch size n = 100, Horizon T = 5

Summary

• Optimization-based planning for adaptive experimental design

- Flexibly handles batches, objectives, constraints, and non-stationarity

- Robustness guarantees against static A/B tests

• Normal approximations universal in statistical inference also delivers
a tractable way to directly optimize experiments

• Intellectual foundation: sequential CLT

- All quantities depend on previous observations; theory requires great care

Papers
• Mathematical Programming For Adaptive Experiments 
 
arXiv:2408.04570 with E. Che, D. Jiang, J. Wang

• AExGym: Benchmarks and Environments for Adaptive
Experimentation 
 
arXiv:2408.04531 github.com/namkoong-lab/aexgym with J. Wang, E. Che, D. Jiang

• Adaptive Experimentation at Scale: A Computational Framework
for Flexible Batches 
 
arXiv:2303.11582 with E. Che

hsnamkoong.github.io

http://hsnamkoong.github.io

