Math Programming For Adaptive Experimentation

Hongseok Namkoong

Columbia Business School

Aug 2024, RLC Deployable RL Workshop

Ethan Che Daniel Jiang Jimmy Wang Columbia Meta Columbia

Experimentation (prediction ⇒ **decision)**

• Imagine a ML engineer building a recommendation system

- Underpowered: quality of service improvement < 2%
	- Business impact can nevertheless be big!

Adaptivity

- Adaptivity improves power => more testable hypotheses
	- Vast literature: Thompson ('33), Chernoff ('59), Robbins & Lai ('52, '85) + 1000s others
- Assumes unit-level continual reallocation
- Algo design guided by theory
	- Regret guarantees hold as # reallocation epochs $T\rightarrow\infty$
	- Changes to the objective requires ad hoc changes to algo

Batched Feedback

Practical setting: a **few, large batches** (think $T = 7$ batches with $n = 100,000$ users per batch)

$\hat{\P}$ $\hat{\P}$ $\hat{\P}$ $\hat{\P}$ $\hat{\P}$ $\hat{\P}$ $\hat{\P}$ $\hat{\P}$ $\tilde{\textbf{r}}$ $\mathbf T$

Due to delayed feedback or operational efficiency

Disclaimers

- This talk is about adaptive experiments, not continual interactions with an environment.
- As such, we don't care about $T\to\infty$
- For bandit experts
	- Forget sublinear regret as T grows
	- It's all about constants! We want 20% gains in experiment efficiency.

Non-stationarity

• Treatment effects change over day-of-the-week

ASOS Dataset

- Fashion retailer with > 26m active customers
- 78 real experiments with two arms and up to four metrics
	- Means and variances recorded every 12 or 24-hours
	- Duration range from 2~132 recorded intervals
- We generate 241 unique benchmark settings
	- Added additional arms (total 10 arms) with similar gaps as real ones

Non-stationarity

Vignette: Thomson sampling

- TS: Select arms with P(Arm optimal | History)
	- Sample parameter $\theta \thicksim$ Posterior(History), pick best arm under θ
- Top-two TS: Same, but w.p. λ redraw θ until different arm selected
	- Equal to TS if $\lambda = 0$, less greedy as $\lambda \to 1$
	- Contextual variant: Explicitly model non-stationarity

Russo (2020), Russo & Qin (2023)

Vignette: Thomson sampling

- Contextual policies explicitly model timevarying trends
- Batch size = 100K and horizon $T = 10$
- **• Bandit algos worse than a static A/B test**
- Overfits on initial, temporary performance

180K different problem instances

Why is this happening?

- I didn't follow the instruction manual
- Algo only gets $T = 10$ chances to update policy; not much adaptivity
- When algo gets to update per person, performs really well!

People want different things

- **Best Arm Identification:** I want the best treatment (simple regret).
- **Top 5 Arm Identification:** Actually, I just want top-5 arms.
- **Personalization:** Learn a *policy* that assigns treatments to users.
- **Multiple Metrics:** Find best arm in a primary metric that's not worse than control in another guardrail metric.

Constraints

- **• Sample Coverage:** I want at least 10% of samples for my control arm
- **• Budget Constraint:** I can't give too many discounts.
- **• Quality of Service:** I don't want a regression in this metric during the experiment (with 95% probability).
- **• Pacing:** I want to use my budget of samples efficiently as possible over the experiment.

Problem

What is a good algorithmic design principle for…

Top 5 arm identification + Batched Feedback + Non-stationarity + Sample coverage constraints + …

…that will actually materialize into practical performance?

Current art

- **•** Step 1: Hire a person in this room for 1-2 years
- **•** Step 2: Develop a variant of Thomson sampling or UCB adapted to the particular problem instance you have
- **•** Step 3: Prove a nice regret bound for the said algorithm

Current art

- **•** Step 1: Hire a person in this room for 1-2 years
- **•** Step 2: Develop a variant of Thomson sampling or UCB adapted to the particular problem instance you have
- **•** Step 3: Prove a nice regret bound for the said algorithm
- **•** When infeasible, apply some algo not designed for your instance
	- **-** Brittle performance: often even worse than uniform

Mathematical Programming

minimize*^π* Objective(*π*)

subject to \quad Constraint $(\pi) \leq B$

- Write down in a modeling language (e.g., CVX)
- Call a generic solver to get approximate solution (e.g., Gurobi)
- Good solvers should perform well across a wide set of problem instances, rather than focus only on a particular problem

Why do we design problem-specific algos?

Sampling Allocation *π^t* π _t **For** *t* in range(*T*): Two Treatment Arms: \overrightarrow{Q} 50% 50%

Adaptive experimentation as dynamic program

$$
\begin{aligned}\n\text{minimize}_{\pi_t(H_t)} \quad & \mathbb{E}\left[\sum_{t=0}^T \text{Objective}_t(\pi_t, H_t)\right] \\
\text{subject to} \qquad \begin{aligned}\n\text{Cost}(\pi_t; H_t) \leq c_t \\
\pi_t(H_t) \in \text{Simplex}\n\end{aligned}\n\end{aligned}
$$

Reward/outcome distribution $R \sim \nu(\cdot)$ unknown

Bayesian MDP

- Adopt Bayesian principles to reason through uncertainty on *ν*
- Let Q_t be posterior on ν given the history H_t

$$
\begin{aligned}\n\text{minimize}_{\pi_t(H_t, Q_t)} \quad & \mathbb{E}\left[\sum_{t=0}^T \text{Objective}_t(\pi_t, H_t, Q_t)\right] \\
\text{subject to} \quad \text{Cost}(\pi_t; H_t, Q_t) \le c_t \\
\pi_t(H_t, Q_t) \in \text{Simplex}\n\end{aligned}
$$

Bayesian MDP

- States
	- $-$ Observed data H_t ; dimension = no. users
	- Posterior distribution Q_t ; infinite dimensional in general
- Requires a Bayesian model for how each user behaves
- Even computing state transitions (posterior update) is a challenge

Bayesian MDP

Simplifying the Bayesian MDP

- Assume parametric model for *mean* rewards with true param θ^{\star}
- Examples
	- Finite armed MAB: θ^{\star} = average reward across arms
	- Contextual model
		- Linear rewards: $\mathbb{E}[R \mid X = x, A = a] = \phi(x, a)^\top \theta_a^\star$
		- Logistic model: logistic(R) = $\phi(x, a)^\top \theta_a^\star$

Simplifying the Bayesian MDP

• Within each batch t, central limit theorem says

maximum likelihood estimator $\hat{\theta}_t \sim N(\theta^{\star}, n^{-1}g(\pi_t))$ ̂

- 99% of statistics; everyone uses this to calculate p-values
- CLT compress entire batch to sufficient statistic *θ t*̂

Bayesian Principle Over Batches

Governed by **posterior mean and variance** (β_t, Σ_t)

 $\hat{\theta}_t \sim N(\theta^{\star}, n^{-1}g(\pi_t))$ ̂ Likelihood $\theta^{\star} \sim N(\beta_0, \Sigma_0)$ Prior $\theta^{\star} \sim N(\beta_1, \Sigma_1)$ Posterior

Batch compressed to sufficient statistic

Bayesian Principle Over Batches

Governed by **posterior mean and variance** (β_t, Σ_t)

Bayesian Principle Over Batches

Governed by **posterior mean and variance** (β_t, Σ_t)

 $\theta^* \sim N(\beta_0, \Sigma_0) \longrightarrow \hat{\theta}_t \sim N(\theta^*, n^{-1}g(\pi_t)) \longrightarrow \theta^* \sim N(\beta_1, \Sigma_1)$ ̂ Likelihood Prior Posterior

- Computationally, closed-form posterior state transitions
	- Posterior update formula for Gaussian conjugate family
	- Differentiable dynamics

Batch Limit Dynamic Program

$$
\text{minimize}_{\pi_t(\beta_t, \Sigma_t)} \quad \mathbb{E} \left[\sum_{t=0}^T \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \right]
$$

subject to

 $Cost(\pi_{t}; \beta_{t}, \Sigma_{t}) \leq c_{t}$

 $\pi_{t}(\beta_{t}, \Sigma_{t}) \in \mathsf{Simplex}$

• State dimension = $O(d^2)$

Batch Limit Dynamic Program

- Models any objective and constraint that can be written as a function of posterior states
	- Cumulative- and simple-regret, top-k regret
	- Budget constraints, minimum allocation constraints
	- Above applied to any number of rewards/outcomes/metrics

- At every epoch, given posterior state (β, Σ) , solve for the optimal **static** sampling allocations
- Resolve every batch, based on new information

$$
\begin{aligned}\n\text{minimize}_{\pi_t(\beta_t, \Sigma_t)} & \mathbb{E}\left[\sum_{t=s}^T \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s\right] \\
\text{subject to} & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \le c_t, \qquad t \ge s\n\end{aligned}
$$

$$
Cost(\pi_t; \beta_t, \Sigma_t) \le c_t \qquad t \ge s
$$

 $\pi_{t}(\beta_{t}, \Sigma_{t}) \in \mathsf{Simplex}$

- At every epoch, given posterior state (β, Σ) , solve for the optimal **static** sampling allocations
- Resolve every batch, based on new information

$$
\begin{aligned}\n\text{minimize}_{\pi_t(\rho_t, \Sigma_t)} & \mathbb{E}\left[\sum_{t=s}^T \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s\right] \\
\text{subject to} & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \le c_t \qquad t \ge s \\
& \pi_t(\beta_t, \Sigma_t) \in \text{Simplex}\n\end{aligned}
$$

- At every epoch, given posterior state (β, Σ) , solve for the optimal **static** sampling allocations
- Resolve every batch, based on new information

$$
\begin{aligned}\n\text{minimize}_{\pi_t} \quad & \mathbb{E}\left[\sum_{t=s}^{T} \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s\right] \\
\text{subject to} \qquad & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \le c_t \qquad t \ge s \\
& \pi_t \in \text{Simplex}\n\end{aligned}
$$

$$
\begin{aligned}\n\text{minimize}_{\pi_t} \quad &\mathbb{E}\left[\sum_{t=s}^{T} \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s\right] \\
\text{subject to} \qquad &\text{Cost}(\pi_t; \beta_t, \Sigma_t) \le c_t \qquad t \ge s \\
&\qquad \pi_t \in \text{Simplex}\n\end{aligned}
$$

- Closed-form dynamics means (β_t, Σ_t) can be expressed explicitly
- Use stochastic gradients to optimize allocations!

• Use stochastic gradients to optimize allocations!

MPC Design Principle

Theorem: RHO achieves a smaller Bayesian regret than *any* static policy

- **•** For any time horizon *T*
- **•** For any constraints
- **•** For any objective
- **•** For any time non-stationarity

Why? The algorithm is **Policy Iteration on Static Designs**

Back to non-stationarity

Benchmarking results over 180K different instances

Back to non-stationarity

Benchmarking results over 180K different instances

Encoding different objectives

minimize<sub>$$
\pi_t
$$</sub> $\mathbb{E}\left[\sum_{t=0}^{T-1} \text{Within-exp. Rewards}_{t}(\pi_t, \beta_t, \Sigma_t) + \lambda \cdot \text{Post-exp Rewards}(\pi_T, \beta_T, \Sigma_T)\right]$

subject to $\qquad \qquad \text{Cost}(\pi_{t}; \beta_{t}, \Sigma_{t}) \leq c_{t}, \quad \pi_{t} \in \text{Simplex}$

- Natural candidate for λ : # in experiment / # affected by treatment
- Unlike TS-based policies, easy to balance within-experiment (simple) vs. post-experiment (cumulative) regret

Encoding different objectives Batch size n = 100, Horizon T = 5

Summary

- Optimization-based planning for adaptive experimental design
	- Flexibly handles batches, objectives, constraints, and non-stationarity
	- Robustness guarantees against static A/B tests
- Normal approximations universal in statistical inference also delivers a tractable way to directly optimize experiments
- Intellectual foundation: sequential CLT
	- All quantities depend on previous observations; theory requires great care

Papers

hsnamkoong.github.io

• Mathematical Programming For Adaptive Experiments

arXiv:2408.04570 with E. Che, D. Jiang, J. Wang

• AExGym: Benchmarks and Environments for Adaptive Experimentation

arXiv:2408.04531 github.com/namkoong-lab/aexgym with J. Wang, E. Che, D. Jiang

• Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches

arXiv:2303.11582 with E. Che