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• Imagine a ML engineer building a recommendation system


• Underpowered: quality of service improvement < 2%

- Business impact can nevertheless be big!

Configuration    1    2     …   K    

Goal: help users grow their  
          professional network

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Experimentation (prediction  decision)⇒



• Adaptivity improves power => change how we do science!

- Expand testable hypotheses beyond usual binary options


• Vast literature assuming unit-level continual reallocation 

- Thompson (’33), Chernoff (’59), Robbins & Lai (’52, ’85) + 1000s others


• Algo design guided by theory: regret as # reallocation T → ∞

Adaptivity



Batched Feedback

Practical setting: a few, large batches 

(think  batches with  users per batch)T = 7 n = 100,000

Due to delayed feedback or operational efficiency

Challenges in adaptive experimentation



Disclaimer for experts

• NOT about continual interaction nor sublinear regret ( T=7 )

- It’s all about constants! We want 30% gain in experiment efficiency. 

A/B test: 
no adaptivity

Bandits: 
fully sequential

Batched banditsPresent work
Perchet+16, Jun+16, Agarwal+17, Gao+19, 

Esfandiari+21, Kalkanli+21, Karbasi+21
Disprove conventional wisdom that 
batching complicates algo design



Non-stationarity

• Treatment effects change over day-of-the-week

Challenges in adaptive experimentation



ASOS Dataset

• 78 RCTs, two arms, four metrics

- Mean, variances every 12 or 24-

hours

- 2~132 recorded intervals


• Generate 241 benchmark settings

- By adding arms (total 10 arms) 

with similar gaps as real ones

Fashion retailer with > 26m active customers



ASOS Dataset

• 78 RCTs, two arms, four metrics

- (mean, var) every 12/24 hours

- 2~132 recorded intervals


• Generate 241 benchmark settings

- By adding arms (total 10 arms) 

with similar gaps as real ones

Fashion retailer with > 26m active customers

Best arm changes every day



Vignette: Static RCT outperforms SoTA bandits

• TS: Select arms with Prob( arm optimal | History )

• Top-two (TT): Same, but give second best arm a chance [Russo, 2020]

[Thompsom, 1933]



Vignette: Static RCT outperforms SoTA bandits

• TS: Select arms with Prob( arm optimal | History )

• Top-two (TT): Same, but give second best arm a chance [Russo, 2020]

(Russo & Qin, 2023)

(Russo, 2020)

`

batch size = 100K

`
Avgeraged over 180K 

problem instances

 
Overfits on initial, temporary 
performance when T = 10

[Thompsom, 1933]

explicitly model nonstationarity
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People want different things

• Best Arm Identification: I want the best treatment or max power

• Top 5 Arm Identification: actually, I want top-5 arms

• Personalization: learn a policy that assigns treatments to users.

• Multiple Metrics: find best arm in a primary metric that’s not worse 
than control in another guardrail metric.

Challenges in adaptive experimentation



Constraints

• Sample Coverage: at least 10% of samples for all arms


• Budget Constraint: can’t give too many discounts


• Quality of Service: don’t want a regression in this metric


• Pacing: use budget efficiently over the experiment

Challenges in adaptive experimentation



Challenges in adaptive experimentation
What is a good algorithmic design principle for…

Top 5 arm identification +


Batched Feedback + 


Non-stationarity +


Sample coverage constraints + …

…that will actually materialize into practical performance?



• Step 1: Hire top bandit researcher for two years


• Step 2: Develop a variant of Thomson sampling adapted  
            to your particular objective & constraints


• Step 3: Prove a nice regret bound for said algorithm 

• When infeasible, apply some algo not designed for your instance

- Brittle performance: often even worse than uniform


Current art



Mathematical Programming




          subject to    


• Write down in a modeling language (e.g., CVX)


• Call a generic solver to get approximate solution (e.g., Gurobi)


• Good solvers should perform well across a wide set of problem 
instances, rather than focus only on a particular problem

minimizeπ Objective(π)

Constraint(π) ≤ B



Why do we design  

problem-specific algos?



Batched Experiments

Sampling

Allocation πt

πt

Two Treatment Arms: For    in :t range(T)

50% 50%
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Batched Experiments

Users xt

Treatments at

Rewards Rt

Sampling

Allocation πt

1 0 0

πt

Features ϕ ϕ( , )

0 1

ϕ( , ) ϕ( , ) ϕ( , ) ϕ( , )

Two Treatment Arms: For    in :t range(T)

30% 70%



Adaptive experimentation as dynamic program

           


 

             subject to      


                                  


minimizeπt(Ht) 𝔼 [
T

∑
t=0

Objectivet(πt, Ht)]
𝔼 [

T

∑
t=0

Cost(πt; Ht)] ≤ c

1. Unknown reward distribution 
2. State space exponential in # units

Ht : history at epoch t



Adaptive experimentation as dynamic program



• Allocation controls the effective sample size

- Gaussian is skinny if the arm is sampled more


• Normal approximations, universal in inference, 
is also useful for design of adaptive algorithms

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Sample mean in a batch ~ Gaussian

Gaussian approximations



Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Sequence of Gaussian observations gives a tractable MDP

Gaussian sequential experiment



Modeling average behavior

• Parametric model for mean rewards


• Examples


• Non-contextual:  = average reward across arms


• Contextual model: for known feature map ,

- Linear/logistic: 


- Confounders: Terms that don’t depend on A (e.g., day-of-the-week)

θ⋆

ϕ(X, A)
𝔼[R ∣ X, A] = Link(ϕ(X, A)⊤θ⋆)



Gaussian approximations

• Within each batch t, central limit theorem says  
 

       maximum likelihood estimator    

• 99% of statistics; everyone uses this to calculate p-values


• CLT compress entire batch to sufficient statistic 

̂θ t ∼ N (θ⋆,
Var(πt)

n )

̂θ t



LikelihoodPrior Posterior

Governed by posterior mean and variance (βt, Σt)

Compress batch to sufficient statistic

           ̂θ t ∼ N(θ⋆, n−1Var(πt))           θ⋆ ∼ N(β0, Σ0)            θ⋆ ∼ N(β1, Σ1)



           ̂θ t ∼ N(θ⋆, n−1Var(πt))

Likelihood

           θ⋆ ∼ N(β0, Σ0)

Prior

           θ⋆ ∼ N(β1, Σ1)

Posterior

Governed by posterior mean and variance (βt, Σt)

• Known, closed-form posterior state transitions

- Posterior update formula for Gaussian conjugate family

- Differentiable dynamics

Compress batch to sufficient statistic



Batch Limit Dynamic Program

           


 

             subject to         


                                      


• State dimension = 

minimizeπt(βt,Σt) 𝔼 [
T

∑
t=0

Objectivet(πt, βt, Σt)]
𝔼 [

T

∑
t=1

Cost(πt; βt, Σt)] ≤ c

πt(βt, Σt) ∈ Simplex

O(dim(θ)2)

Posterior beliefs 
as states!



Batch Limit Dynamic Program

• Model any objective and constraint written with posterior states

- Cumulative- and simple-regret, top-k regret


- Budget constraints, minimum allocation constraints


- Above applied to any number of rewards/outcomes/metrics 

• Today: Simple solver to showcase our optimization approach



• For measurement noise , define sequential Gaussian experiment 
 
                   

s2

Gt ∣ G0:t−1 ∼ N (πt ⋅ θ⋆, diag(πt ⋅ s2))
Theorem (Che & N. ’23)

                 ( nR̄0, …, nR̄T−1) ⇒ (G0, …, GT−1)

If ’s is continuous is batch statistics,π

We don’t impose any assumption on the magnitude of   (big gap with best result in the literature). 

This result significantly expands the scope of normal approximations adaptive settings.

πt

Formalization: local asymptotic normality



T = 10 epochs

K = 100 arms

Normal approximation 
reasonable even for 
small batch sizes!

Empirical Validity



• No assumption on the magnitude of  

- If  uniformly lower bounded, our proof gives standard -bound


• Despite empirics, conservative convergence rates

- Nevertheless, usually  in online platforms

πt
πt O(n−1/2)

T ⋘ n

Corollary

Metrize weak convergence using bounded 1-Lipschitz functions.  Then, 

                       dist ( nR̄0:T−1, G0:T−1) ≲ LTn−1/6

: Lip. const. of policy  L πt

Proof based on Stein’s method



Residual Horizon Optimization
• At every epoch, given posterior state , solve for the optimal 

static sampling allocations

• Resolve every batch, based on new information

(β, Σ)
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Residual Horizon Optimization

                    


 

                    subject to               

• Closed-form dynamics means  can be expressed explicitly


• Use stochastic gradients to optimize allocations!

minimizeπt 𝔼 [
T

∑
t=s

Objectivet(πt, βt, Σt) ∣ βs, Σs]
πt ∈ Simplex

(βt, Σt)



Why planning? Calibrate exploration to horizon

Residual Horizon Optimization

Experiment ends 
tomorrow

Experiment ends 
in 10 days



Algo Design Principle

Why? The algorithm is Policy Iteration on Static Designs

  Theorem: RHO outperforms any static policy (including A/B tests)


• For any time horizon 


• For any constraints


• For any objective


• For any time non-stationarity

T



# arms = 100

Large batch size = 10000

Simple non-contextual example



Small batch size = 100

Simple non-contextual example # arms = 100



(Russo & Qin, 2023)

(Russo, 2020)

Back to non-stationarity

Contextual = model 
time-varying trends


Batch size = 100K 


Horizon T = 10


Benchmarking results over 180K different instances
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Encoding different objectives

• Imagine social platform tuning weights on clicks vs. likes vs. shares 




• Natural candidate for : # in experiment / # affected by treatment


• Unlike TS-based policies, easy to balance within-experiment 
(simple) vs. post-experiment (cumulative) regret

minimizeπt 𝔼 [
T−1

∑
t=0

Within-exp Rewardst(πt, βt, Σt) + λ ⋅ Post-exp Rewards(πT, βT, ΣT)]
λ



Encoding different objectives Batch size n = 100, Horizon T = 5




Applications at Netflix

• Artwork personalized for each user


• New movies? Requires 
exploration to learn ( -greedy).


• How should the exploration rate 
be calibrated across a limited 
horizon (think 7 days)?

ϵ

by Ethan Che (I had nothing to do with it)



Applications at Allegheny County (PA)

• 7K people exit county jail each year; re-entry ~30%


• Outcomes: re-entry, multiple ED visits, involuntary psychiatric 
commitment, involvement in violence, shelter usage


• Interventions: cash transfer, jobs program, CBT


• Status quo: risk score-based allocation

Given limited budget, how do we allocate resources?



CLT for adaptive designs

• Normal approximations => tractable optimization formulation for AEx


• Flexibly handles batches, objectives, constraints, and non-stationarity

- Unlike other heuristics (e.g., TS), reliably outperform A/B tests


• Empirical benchmarking can derive methodological progress!

aes-batch.streamlit.app github.com/namkoong-lab/aexgym

Optimization-Driven Adaptive Experimentation, with E. Che, D. Jiang, J. Wang


Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches, with E. Che, Major Revision in Operations Research


AExGym: Benchmarks and Environments for Adaptive Experimentation, with J. Wang, E. Che, D. Jiang


