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Experimentation (prediction = decision)

 [magine a ML engineer building a recommendation system

People you may know from Columbia University See all h

Configuration 1 2 ... K

Henry Lam Mengjun Zhu Daniel Bienstock Ruizhe Jia

Associate Professor at Student PhD at Massachusetts Ph.D. Student at .
Columbia University Institute of Technology Columbia University Goal: hel p users g fOW thel Y
@D 8 mutual connections = [w®] Co lumbia University @ Columbia University @ Columbia University prOfeSSionaI netWO rk

< 2+ Connect > < 2+ Connect > < 2+ Connect ) ( 2+ Connect )

e Underpowered: quality of service improvement < 2%

- Business impact can nevertheless be big!



Adaptivity

e Adaptivity improves power => change how we do science!

- Expand testable hypotheses beyond usual binary options

e \ast literature assuming unit-level continual reallocation
- Thompson ('33), Chernoff (’59), Robbins & Lai (52, '85) + 1000s others

e Algo design guided by theory: regret as # reallocation 1 — oo



Batched Feedback

Challenges in adaptive experimentation

Practical setting: a few, large batches
(think 7' = "7 batches with n = 100,000 users per batch)
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Due to delayed feedback or operational efficiency




Disclaimer for experts

e NOT about continual interaction nor sublinear regret ( T=7 )

- It’s all about constants! We want 30% gain in experiment efficiency.

A/B test: Bandits:
no adaptivity fully sequential
M —————————————————————————————————>
............ > € - crririiinanans
Present work Batched bandits
Disprove conventional wisdom that Perchet+16, Jun+16, Agarwal+17, Gao+19,

batching complicates algo design Esfandiari+21, Kalkanli+21, Karbasi+21



Non-stationarity

Challenges in adaptive experimentation

* Treatment effects change over day-of-the-week




ASOS Dataset

Fashion retailer with > 26m active customers

e /8 RCTs, two arms, four metrics

- Mean, variances every 12 or 24-
hours

- 2~132 recorded intervals

* Generate 241 benchmark settings

- By adding arms (total 10 arms)
with similar gaps as real ones



ASOS Dataset

Fashion retailer with > 26m active customers

Best arm changes every day

e 78 RCTs, two arms, four metrics 0.00201 A
- (mean, var) every 12/24 hours g 0.0018 ‘/l \\\
- 2~132 recorded intervals E D001 \\\\ .
* Generate 241 benchmark settings qg’ 00014 ) )
- By adding arms (total 10 arms) g \\ /‘/’
with similar gaps as real ones 0.0012 1 - N\
0 2 4 6 -



Vignette: Static RCT outperforms SoTA bandits

e TS: Select arms with Prob( arm optimal | History ) rmhompsom, 1933]
* Top-two (TT): Same, but give second best arm a chance [Russo, 2020



Vignette: Static RCT outperforms SoTA bandits

e TS: Select arms with Prob( arm optimal | History ) rmhompsom, 1933]
* Top-two (TT): Same, but give second best arm a chance [Russo, 2020
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People want different things
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People want different things

Challenges in adaptive experimentation

* Best Arm ldentification: | want the best treatment or max power
* Top S Arm ldentification: actually, | want top-5 arms

* Personalization: learn a policy that assigns treatments to users.

Multiple Metrics: find best arm in a primary metric that’s not worse
than control in another guardrail metric.



Constraints

Challenges in adaptive experimentation

 Sample Coverage: at least 10% of samples for all arms
 Budget Constraint: can’t give too many discounts
* Quality of Service: don’t want a regression in this metric

* Pacing: use budget efficiently over the experiment



Challenges in adaptive experimentation

What is a good algorithmic design principle for...

Top 5 arm identification +
Batched Feedback +
Non-stationarity +

Sample coverage constraints + ...

...that will actually materialize into practical performance?



Current art

o Step 1: Hire top bandit researcher for two years

o Step 2: Develop a variant of Thomson sampling adapted
to your particular objective & constraints

o Step 3: Prove a nice regret bound for said algorithm

* \When infeasible, apply some algo not designed for your instance

- Brittle performance: often even worse than uniform



Mathematical Programming

minimize, Objective(x)

subject to Constraint(z) < B

* Write down in a modeling language (e.g., CVX)
* Call a generic solver to get approximate solution (e.g., Gurobi)

* Good solvers should perform well across a wide set of problem
instances, rather than focus only on a particular problem



Why do we design

problem-specific algos?



Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (, D
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Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (, D

Sampling
Allocation

Users X, w w
Treatments q, (' D D (’ D

Features ¢ PO, $@.0) 0.0 (0w o(C.0)

JZ't 70%

¥
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Adaptive experimentation as dynamic program

I
minimizeﬂt(Ht) E |:Z Objeotivet(ﬂt, Ht):|
=0

H, : history at epoch ¢

subjectto |

T
[Z Cost(z;; Ht)] <c
=0

1. Unknown reward distribution
2. State space exponential in # units



Adaptive experimentation as dynamic program




Gaussian approximations

Sample mean in a batch ~ Gaussian n

e Allocation controls the effective sample size

- Gaussian is skinny if the arm is sampled more
* Normal approximations, universal in inference,

IS also useful for design of adaptive algorithms




Gaussian sequential experiment

Batch 1
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Sequence of Gaussian observations gives a tractable MDP



Modeling average behavior

e Parametric model for mean rewards

 Examples
» Non-contextual: * = average reward across arms

» Contextual model: for known feature map ¢(X, A),
- Linear/logistic: E[R | X, A] = Link(¢(X,A)'6™)

- Confounders: Terms that don’t depend on A (e.g., day-of-the-week)




Gaussian approximations

 Within each batch t, central limit theorem says

~ Var(r,)
maximum likelihood estimator 6, ~ N (6’*, t )
n

* 99% of statistics; everyone uses this to calculate p-values

» CLT compress entire batch to sufficient statistic @,



Compress batch to sufficient statistic

Governed by posterior mean and variance (f,, 2,

Prior Likelihood Posterior
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Compress batch to sufficient statistic

Governed by posterior mean and variance (f,, 2,

Prior Likelihood Posterior

\

0* ~ N(fp, Zp) —> 0, ~ NO*,n"Var(z)) —> 0* ~ N(B|,Z))

 Known, closed-form posterior state transitions
- Posterior update formula for Gaussian conjugate family

- Differentiable dynamics



Batch Limit Dynamic Program

minimize, gz ) I

as states!

T
: : Posterior beliefs
Z Objectlvet(ﬂt, M
=0

T
subject to - [Z Cost(z,; p,, Zt)] <c
=1

(P, %,) € Simplex

. State dimension = O(dim(6)?)



Batch Limit Dynamic Program

 Model any objective and constraint written with posterior states
- Cumulative- and simple-regret, top-k regret
- Budget constraints, minimum allocation constraints
- Above applied to any number of rewards/outcomes/metrics

* Today: Simple solver to showcase our optimization approach



Formalization: local asymptotic normality

e For measurement noise 52, define sequential Gaussian experiment

G |Gy, ~N (ﬂ't - 0%, diag(, - Sz))

Theorem (Che & N."23) |f #'s is continuous is batch statistics,

(ﬁRO, ...,ﬁRT_l) = (G, ...,Gp_;)

We don’t impose any assumption on the magnitude of 7, (big gap with best result in the literature).

This result significantly expands the scope of normal approximations adaptive settings.



Empirical Validity

1.2 i Gaussian Limit
Batch size = 10,000
1.0 Batch size = 100
>
%0'8 BE | T =10 epochs
q?.)—o 6 ' : K =100 arms
I

"

ad

T

l
0050 05 10 15 20 25

Simple Regret (normalized)

s e

Normal approximation
reasonable even for
small batch sizes!



Proof based on Stein’s method

Corollary  L:Lip. const. of policy

Metrize weak convergence using bounded |-Lipschitz functions. Then,

dist (ﬁRO:T—D GO:T—I) S LTn_1/6

e No assumption on the magnitude of r,

- If , uniformly lower bounded, our proof gives standard O(n_l/ 2)—bound

e Despite empirics, conservative convergence rates

- Nevertheless, usually 1" <K 7 in online platforms



Residual Horizon Optimization

At every epoch, given posterior state (f, 2), solve for the optimal
static sampling allocations

* Resolve every batch, based on new information

T
minimize, s 5 [ 2 Objective (7;, P, 2,) | Py, 2,
[=

subject to (P, ,) € Simplex



Residual Horizon Optimization

At every epoch, given posterior state (f, 2), solve for the optimal
static sampling allocations

* Resolve every batch, based on new information

. Constants




Residual Horizon Optimization

At every epoch, given posterior state (f, 2), solve for the optimal
static sampling allocations

* Resolve every batch, based on new information

T
minimize,, Z Objective (7, P, 2,) | Py, 2,
[=S

subject to 7, € Simplex



Residual Horizon Optimization

T
minimize, [ Z Objective (7, P, 2,) | Py, 2,
[=

subject to T, € Simplex

» Closed-form dynamics means (f,, 2.,) can be expressed explicitly

* Use stochastic gradients to optimize allocations! O PyTorch



Residual Horizon Optimization

Why planning? Calibrate exploration to horizon

1.0 1.0
Experiment ends Experiment ends

>0'8 tomorrow >O'8 In 10 days
= 0.6 = 0.6
a a
© 0.4 © 0.4
al al

0.2 . 0.2 . .

0.0 0.0 e

1 2 3 4 5 1 2 3 4 5

Arms Arms



Algo Design Principle

Theorem: RHO outperforms any static policy (including A/B tests)

» For any time horizon 1’
 For any constraints
 For any objective

* For any time non-stationarity

Why? The algorithm is Policy lteration on Static Designs



Simple non-contextual example
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Simple non-contextual example
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Back to non-stationarity
Benchmarking results over 180K different instances
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Encoding different objectives

* I[magine social platform tuning weights on clicks vs. likes vs. shares

T—1
minimize, [ Z Within-exp Rewards (7, p;, ;) + 4 - Post-exp Rewards(7, p7, 2r)
=0

» Natural candidate for A: # in experiment / # affected by treatment

* Unlike TS-based policies, easy to balance within-experiment
(simple) vs. post-experiment (cumulative) regret



Encoding different objectives
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Applications at Netflix

by Ethan Che (I had nothing to do with it)

* Artwork personalized for each user

* New movies”? Requires
exploration to learn (e-greedy).

* How should the exploration rate
be calibrated across a limitea T
horizon (think 7 days)? g '




Applications at Allegheny County (PA)

Given limited budget, how do we allocate resources?

* /K people exit county jail each year; re-entry ~30%

* Outcomes: re-entry, multiple ED visits, involuntary psychiatric
commitment, involvement in violence, shelter usage

* |nterventions: cash transfer, jobs program, CBT

e Status quo: risk score-based allocation



CLT for adaptive designs

* Normal approximations => tractable optimization formulation for AEX

* Flexibly handles batches, objectives, constraints, and non-stationarity
- Unlike other heuristics (e.qg., TS), reliably outperform A/B tests

* Empirical benchmarking can derive methodological progress!

aes-batch.streamlit.app github.com/namkoong-lab/aexgym

Optimization-Driven Adaptive Experimentation, with E. Che, D. Jiang, J. Wang
Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches, with E. Che, Major Revision in Operations Research

AExGym: Benchmarks and Environments for Adaptive Experimentation, with J. Wang, E. Che, D. Jiang



