Math Programming For Adaptive Experimentation

Hongseok Namkoong

Columbia Business School

Aug 2024, RLC Deployable RL Workshop

Ethan Che Columbia

Daniel Jiang

Jimmy Wang Columbia

Experimentation (prediction ⇒ decision)

Imagine a ML engineer building a recommendation system

- Underpowered: quality of service improvement < 2%
 - Business impact can nevertheless be big!

Adaptivity

- Adaptivity improves power => more testable hypotheses
 - Vast literature: Thompson ('33), Chernoff ('59), Robbins & Lai ('52, '85) + 1000s others
- Assumes unit-level continual reallocation
- Algo design guided by theory
 - Regret guarantees hold as # reallocation epochs $T \to \infty$
 - Changes to the objective requires ad hoc changes to algo

Batched Feedback

Practical setting: a few, large batches (think T=7 batches with $n=100{,}000$ users per batch)

Due to delayed feedback or operational efficiency

Disclaimers

- This talk is about adaptive experiments, not continual interactions with an environment.
- As such, we don't care about $T \to \infty$
- For bandit experts
 - Forget sublinear regret as T grows
 - It's all about constants! We want 20% gains in experiment efficiency.

Non-stationarity

• Treatment effects change over day-of-the-week

ASOS Dataset

- Fashion retailer with > 26m active customers
- 78 real experiments with two arms and up to four metrics
 - Means and variances recorded every 12 or 24-hours
 - Duration range from 2~132 recorded intervals
- We generate 241 unique benchmark settings
 - Added additional arms (total 10 arms) with similar gaps as real ones

Non-stationarity

Vignette: Thomson sampling

- TS: Select arms with P(Arm optimal | History)
 - Sample parameter $\theta \sim \text{Posterior(History)}$, pick best arm under θ
- Top-two TS: Same, but w.p. λ redraw θ until different arm selected
 - Equal to TS if $\lambda = 0$, less greedy as $\lambda \to 1$
 - Contextual variant: Explicitly model non-stationarity

Russo (2020), Russo & Qin (2023)

Vignette: Thomson sampling

- Contextual policies explicitly model timevarying trends
- Batch size = 100K and horizon T = 10
- Bandit algos worse than a static A/B test
- Overfits on initial, temporary performance

180K different problem instances

Why is this happening?

- I didn't follow the instruction manual
- Algo only gets T = 10 chances to update policy; not much adaptivity
- When algo gets to update per person, performs really well!

People want different things

- Best Arm Identification: I want the best treatment (simple regret).
- Top 5 Arm Identification: Actually, I just want top-5 arms.
- Personalization: Learn a policy that assigns treatments to users.
- Multiple Metrics: Find best arm in a primary metric that's not worse than control in another guardrail metric.

Constraints

- Sample Coverage: I want at least 10% of samples for my control arm
- Budget Constraint: I can't give too many discounts.
- Quality of Service: I don't want a regression in this metric during the experiment (with 95% probability).
- Pacing: I want to use my budget of samples efficiently as possible over the experiment.

Problem

What is a good algorithmic design principle for...

Top 5 arm identification +

Batched Feedback +

Non-stationarity +

Sample coverage constraints + ...

...that will actually materialize into practical performance?

Current art

- Step 1: Hire a person in this room for 1-2 years
- Step 2: Develop a variant of Thomson sampling or UCB adapted to the particular problem instance you have
- Step 3: Prove a nice regret bound for the said algorithm

Current art

- Step 1: Hire a person in this room for 1-2 years
- Step 2: Develop a variant of Thomson sampling or UCB adapted to the particular problem instance you have
- Step 3: Prove a nice regret bound for the said algorithm
- When infeasible, apply some algo not designed for your instance
 - Brittle performance: often even worse than uniform

Mathematical Programming

minimize $_{\pi}$ Objective (π)

subject to Constraint(π) $\leq B$

- Write down in a modeling language (e.g., CVX)
- Call a generic solver to get approximate solution (e.g., Gurobi)
- Good solvers should perform well across a wide set of problem instances, rather than focus only on a particular problem

Why do we design problem-specific algos?

Adaptive experimentation as dynamic program

$$\begin{aligned} & \text{minimize}_{\pi_t(H_t)} & \mathbb{E}\left[\sum_{t=0}^T \text{Objective}_t(\pi_t, H_t)\right] \\ & \text{subject to} & & \text{Cost}(\pi_t; H_t) \leq c_t \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

Reward/outcome distribution $R \sim \nu(\cdot)$ unknown

Bayesian MDP

- Adopt Bayesian principles to reason through uncertainty on u
- Let Q_t be posterior on ν given the history H_t

$$\text{minimize}_{\pi_t(H_t, Q_t)} \hspace{0.2cm} \mathbb{E} \left[\sum_{t=0}^{T} \text{Objective}_t(\pi_t, H_t, Q_t) \right]$$

subject to
$$\operatorname{Cost}(\pi_t; H_t, Q_t) \leq c_t$$

$$\pi_t(H_t, Q_t) \in \operatorname{Simplex}$$

Bayesian MDP

- States
 - Observed data H_t ; dimension = no. users
 - Posterior distribution Q_t ; infinite dimensional in general
- Requires a Bayesian model for how each user behaves
- Even computing state transitions (posterior update) is a challenge

Bayesian MDP

Simplifying the Bayesian MDP

- Assume parametric model for *mean* rewards with true param θ^{\star}
- Examples
 - Finite armed MAB: θ^* = average reward across arms
 - Contextual model
 - Linear rewards: $\mathbb{E}[R \mid X = x, A = a] = \phi(x, a)^{\mathsf{T}} \theta_a^{\star}$
 - Logistic model: logistic(R) = $\phi(x, a)^{T}\theta_{a}^{\star}$

Simplifying the Bayesian MDP

Within each batch t, central limit theorem says

maximum likelihood estimator
$$\hat{\theta}_t \sim N(\theta^*, n^{-1}g(\pi_t))$$

- 99% of statistics; everyone uses this to calculate p-values
- CLT compress entire batch to sufficient statistic $\widehat{\boldsymbol{\theta}}_t$

Bayesian Principle Over Batches

Governed by **posterior mean and variance** (β_t, Σ_t)

Prior Likelihood Posterior $\theta^{\star} \sim N(\beta_0, \Sigma_0) \qquad \qquad \widehat{\theta}_t \sim N(\theta^{\star}, n^{-1}g(\pi_t)) \qquad \qquad \theta^{\star} \sim N(\beta_1, \Sigma_1)$

Batch compressed to sufficient statistic

Bayesian Principle Over Batches

Governed by **posterior mean and variance** (β_t, Σ_t)

Prior Likelihood Posterior $\theta^{\star} \sim N(\beta_0, \Sigma_0) \longrightarrow \widehat{\theta}_t \sim N(\theta^{\star}, n^{-1}g(\pi_t)) \longrightarrow \theta^{\star} \sim N(\beta_1, \Sigma_1)$

Bayesian Principle Over Batches

Governed by **posterior mean and variance** (β_t, Σ_t)

Prior Likelihood Posterior $\theta^{\star} \sim N(\beta_0, \Sigma_0) \longrightarrow \widehat{\theta}_t \sim N(\theta^{\star}, n^{-1}g(\pi_t)) \longrightarrow \theta^{\star} \sim N(\beta_1, \Sigma_1)$

- Computationally, closed-form posterior state transitions
 - Posterior update formula for Gaussian conjugate family
 - Differentiable dynamics

Batch Limit Dynamic Program

$$\mathsf{minimize}_{\pi_t(\beta_t, \Sigma_t)} \;\; \mathbb{E}\left[\sum_{t=0}^T \mathsf{Objective}_t(\pi_t, \beta_t, \Sigma_t) \right]$$

subject to

$$Cost(\pi_t; \beta_t, \Sigma_t) \le c_t$$

$$\pi_t(\beta_t, \Sigma_t) \in \text{Simplex}$$

• State dimension = $O(d^2)$

Batch Limit Dynamic Program

- Models any objective and constraint that can be written as a function of posterior states
 - Cumulative- and simple-regret, top-k regret
 - Budget constraints, minimum allocation constraints
 - Above applied to any number of rewards/outcomes/metrics

- At every epoch, given posterior state (β, Σ) , solve for the optimal static sampling allocations
- Resolve every batch, based on new information

$$\begin{aligned} & \text{minimize}_{\pi_t(\beta_t, \Sigma_t)} & \mathbb{E}\left[\sum_{t=s}^T \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s \right] \\ & \text{subject to} & & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \leq c_t & & t \geq s \end{aligned}$$

 $\pi_t(\beta_t, \Sigma_t) \in \text{Simplex}$

- At every epoch, given posterior state (β, Σ) , solve for the optimal static sampling allocations
- Resolve every batch, based on new information

$$\begin{aligned} & \text{minimize}_{\pi_t(\beta_t, \Sigma_t)} & \mathbb{E}\left[\sum_{t=s}^{T} \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s\right] \\ & \text{subject to} & & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \leq c_t & & t \geq s \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- At every epoch, given posterior state (β, Σ) , solve for the optimal static sampling allocations
- Resolve every batch, based on new information

$$\begin{aligned} & \text{minimize}_{\pi_t} & \mathbb{E}\left[\sum_{t=s}^{T} \text{Objective}_t(\pi_t, \beta_t, \Sigma_t) \mid \beta_s, \Sigma_s \right] \\ & \text{subject to} & & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \leq c_t & & t \geq s \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

- Closed-form dynamics means (β_t, Σ_t) can be expressed explicitly
- Use stochastic gradients to optimize allocations!

Use stochastic gradients to optimize allocations!

O PyTorch

Why planning? Calibrate exploration to horizon

(c) RHO
$$(T - t = 1)$$
 (optimal)

(d) RHO
$$(T - t = 10)$$

MPC Design Principle

Theorem: RHO achieves a smaller Bayesian regret than any static policy

- For any time horizon T
- For any constraints
- For any objective
- For any time non-stationarity

Why? The algorithm is **Policy Iteration on Static Designs**

Back to non-stationarity

Benchmarking results over 180K different instances

Contextual = model time-varying trends

Batch size = 100K

Horizon T = 10

Back to non-stationarity

Benchmarking results over 180K different instances

Contextual = model time-varying trends

Batch size = 100K

Horizon T = 10

Encoding different objectives

$$\begin{aligned} & \text{minimize}_{\pi_t} \ \ \mathbb{E}\left[\sum_{t=0}^{T-1} \text{Within-exp. Rewards}_t(\pi_t, \beta_t, \Sigma_t) + \lambda \cdot \text{Post-exp Rewards}(\pi_T, \beta_T, \Sigma_T)\right] \\ & \text{subject to} & & \text{Cost}(\pi_t; \beta_t, \Sigma_t) \leq c_t \ , \quad \pi_t \in \text{Simplex} \end{aligned}$$

- Natural candidate for λ : # in experiment / # affected by treatment
- Unlike TS-based policies, easy to balance within-experiment (simple) vs. post-experiment (cumulative) regret

Encoding different objectives

Summary

- Optimization-based planning for adaptive experimental design
 - Flexibly handles batches, objectives, constraints, and non-stationarity
 - Robustness guarantees against static A/B tests
- Normal approximations universal in statistical inference also delivers a tractable way to directly optimize experiments
- Intellectual foundation: sequential CLT
 - All quantities depend on previous observations; theory requires great care

Papers

hsnamkoong.github.io

Mathematical Programming For Adaptive Experiments

arXiv:2408.04570 with E. Che, D. Jiang, J. Wang

 AExGym: Benchmarks and Environments for Adaptive Experimentation

arXiv:2408.04531 github.com/namkoong-lab/aexgym with J. Wang, E. Che, D. Jiang

 Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches

arXiv:2303.11582 with E. Che