Math Programming For
Adaptive Experimentation

Hongseok Namkoong

Columbia Business School

Aug 2024, RLC Deployable RL Workshop Ethan Che Daniel Jiang Jimmy Wang

Columbia Meta Columbia

Experimentation (prediction = decision)

* Imagine a ML engineer building a recommendation system

People you may know from Columbia University See all b

Configuration 1 2 ... K

Henry Lam Mengjun Zhu Daniel Bienstock Ruizhe Jia

Associate Professor at Student PhD at Massachusetts Ph.D. Student at .
Columbia University Institute of Technology Columbia University Goal . hel p users g row thel r
@D 8 mutual connections @ Columbia University @ Columbia University @ Columbia University professional netWo rk

(2+ Connect) (2+ Connect) (2+ Connect)

e Underpowered: quality of service improvement < 2%
- Business impact can nevertheless be big!

Adaptivity

e Adaptivity improves power => more testable hypotheses
- Vast literature: Thompson (’33), Chernoff ('59), Robbins & Lai ('52, ’85) + 1000s others

e Assumes unit-level continual reallocation

* Algo design guided by theory

- Regret guarantees hold as # reallocation epochs T' — oo

- Changes to the objective requires ad hoc changes to algo

Batched Feedback

Practical setting: a few, large batches
(think T = 7 batches with n = 100,000 users per batch)

Pedanaene

Due to delayed feedback or operational efficiency

Disclaimers

e This talk is about adaptive experiments, not continual
interactions with an environment.

e As such, we don’t care about 7' — o0

* For bandit experts
- Forget sublinear regret as T grows
- It’s all about constants! We want 20% gains in experiment efficiency.

Non-stationarity

* Treatment effects change over day-of-the-week

ASOS Dataset

 Fashion retailer with > 26m active customers

e 78 real experiments with two arms and up to four metrics
- Means and variances recorded every 12 or 24-hours

- Duration range from 2~132 recorded intervals

* We generate 241 unique benchmark settings
- Added additional arms (total 10 arms) with similar gaps as real ones

Non-stationarity

] A
0.0020 7\ Bestarm changes every day
/ \ A
/ | \
2000187 /N
(») .,/ \ o
= ' \
Q ; \
o’ 0.0016 Y °
8’ } \\\\\. f,f \\
© 0.0014 - VN A
O \\ \\ / 7 N\
é \ \\ fj "/ \\ \\
0.0012 - o N - VN
\\:r/, L__ "
0 4 6 8

Vignette: Thomson sampling

» TS: Select arms with P(Arm optimal | History)

- Sample parameter 0 ~ Posterior(History), pick best arm under &

« Top-two TS: Same, but w.p. A redraw @ until different arm selected
- Equalto TSifA =0, less greedy as 4 — 1

- Contextual variant: Explicitly model non-stationarity
Russo (2020), Russo & Qin (2023)

Vignette: Thomson sampling

180K different problem instances

Contextual policies
explicitly model time-
varying trends

Batch size = 100K and
horizon T =10

Bandit algos worse
than a static A/B test

Overfits on initial,
temporary performance

% of Reward Gained Over Uniform

2

[

o

‘ *
Uniform
Non-Contextual TS
Non-Contextual TTTS (Russo, 2020)
Contextual TS

Contextual TTTS (Russo & Qin, 2023)

Best of Non-Contextual {TS, TTTS}
Best of Contextual {TS, TTTS}

>oOr) %

A

=
oo

19 20 21 22
% Best Arm Correct

Why is this happening?

[
S

e | didn’t follow the instruction
manual

-
N

(o]
o

* Algo only gets T = 10 chances to
update policy; not much adaptivity

 When algo gets to update per
person, performs really well! 2 ‘—_

% of Reward Gained Over Uniform

Best of batched
contextual TS Uniform
and TTTS

Fully sequential
contextual TTTS

People want different things

* Best Arm Identification: | want the best treatment (simple regret).
* Top 5 Arm ldentification: Actually, | just want top-5 arms.
* Personalization: Learn a policy that assigns treatments to users.

* Multiple Metrics: Find best arm in a primary metric that’s not worse
than control in another guardrail metric.

Constraints

« Sample Coverage: | want at least 10% of samples for my control arm
 Budget Constraint: | can’t give too many discounts.

* Quality of Service: | don’t want a regression in this metric during the
experiment (with 95% probability).

* Pacing: | want to use my budget of samples efficiently as possible
over the experiment.

Problem

What is a good algorithmic design principle for...

Top 5 arm identification +
Batched Feedback +

Non-stationarity +

Sample coverage constraints + ...

...that will actually materialize into practical performance?

Current art

« Step 1: Hire a person in this room for 1-2 years

« Step 2: Develop a variant of Thomson sampling or UCB adapted
to the particular problem instance you have

« Step 3: Prove a nice regret bound for the said algorithm

Current art

« Step 1: Hire a person in this room for 1-2 years

« Step 2: Develop a variant of Thomson sampling or UCB adapted
to the particular problem instance you have

« Step 3: Prove a nice regret bound for the said algorithm

 When infeasible, apply some algo not designed for your instance

- Brittle performance: often even worse than uniform

Mathematical Programming

minimize, Objective(xr)

subject to Constraint(z) < B

* Write down in a modeling language (e.g., CVX)
« Call a generic solver to get approximate solution (e.g., Gurobi)

» Good solvers should perform well across a wide set of problem
instances, rather than focus only on a particular problem

Why do we design

problem-specific algos?

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' D
Sampling 7, 0%

Allocation 7,

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' D

Sampling
Allocation 7,

ﬂ't 50% 50%

P I R

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' G
Samping I, 5%

Allocation 7,

woss i

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' G
Samping I, 5%

Allocation 7,

ot ¢
Treatments a, (' G G C, G

Users x,

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' G

Sampling
Allocation 7,

7 50% 50%
oo ¢
Treatments a, (’ G G C, G

Features ¢ H(O.w) H@®.0) 0.0 (0w o(©.0)

Users x,

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' G

Sampling
Allocation 7,

7 50% 50%
oo ¢
Treatments a, (’ G G C, G

Features ¢ H(O.w) H@®.0) 0.0 (0w o(©.0)

Users x,

Rewards R, 1 0 0 0 1

Batched Experiments

For ¢ inrange(7): Two Treatment Arms: (' G

Sampling
Allocation 7,

7 30% 70%
oo ¢
Treatments a, (’ G G C, G

Features ¢ H(O.w) H@®.0) 0.0 (0w o(©.0)

Users x,

Rewards R, 1 0 0 0 1

Adaptive experimentation as dynamic program

T
minimize,) [E ZObjeotivet(ﬂt,Ht)
| =0

subject to Cost(r; H) < c,

r(H,) € Simplex

Reward/outcome distribution R ~ v(-) unknown

Bayesian MDP

« Adopt Bayesian principles to reason through uncertainty on v

« Let Q, be posterior on v given the history H,

T
minimize, g o) [E Z Objective (7, H;, Q,)
_ =0

subject to Cost(r; H, Q,) < ¢,

r(H, Q,) € Simplex

Bayesian MDP

e States

- Observed data H,; dimension = no. users

- Posterior distribution Qt; infinite dimensional in general

* Requires a Bayesian model for how each user behaves

* Even computing state transitions (posterior update) is a challenge

Bayesian MDP

Simplifying the Bayesian MDP

« Assume parametric model for mean rewards with true param 0*

 Examples

* Finite armed MAB: 6* = average reward across arms

e Contextual model
- Linear rewards: E[R | X = x,A = a] = ¢(x, a)Té’;

- Logistic model: logistic(R) = ¢(x, a)TH;

Simplifying the Bayesian MDP

* Within each batch t, central limit theorem says

N\

maximum likelihood estimator 6, ~ N(0*,n"g(x,))

* 99% of statistics; everyone uses this to calculate p-values

« CLT compress entire batch to sufficient statistic @,

Bayesian Principle Over Batches

Governed by posterior mean and variance (f,, X))

Prior Likelihood Posterior

0* ~ N(By, Z,) 0, ~ NO*,n""g(n)) 0* ~ N(B,, Z))

Batch compressed to sufficient statistic

Bayesian Principle Over Batches

Governed by posterior mean and variance (/,, 2,)

Prior Likelihood Posterior

0% ~ Ny, Zg) —> 0, ~ N©O*,n"'g(n)) —> 0* ~ N(B;, %))

Bayesian Principle Over Batches

Governed by posterior mean and variance (/,, 2,)

Prior Likelihood Posterior

0% ~ Ny, Zg) —> 0, ~ N©O*,n"'g(n)) —> 0* ~ N(B;, %))

 Computationally, closed-form posterior state transitions
- Posterior update formula for Gaussian conjugate family

- Differentiable dynamics

Batch Limit Dynamic Program

T
minimize, 3 5 E Z Objective (7, f, Z,)
=0

subject to Cost(n,; f,, 2,) < ¢,

r(p,2,) € Simplex

. State dimension = O(d?)

Batch Limit Dynamic Program

* Models any objective and constraint that can be written as a
function of posterior states

- Cumulative- and simple-regret, top-k regret
- Budget constraints, minimum allocation constraints
- Above applied to any number of rewards/outcomes/metrics

Residual Horizon Optimization

* At every epoch, given posterior state (S, X), solve for the optimal
static sampling allocations

* Resolve every batch, based on new information

T
minimize, s vy [E Z Objective (7, f,) | P, 2
I=s

subject to Cost(z,; f,, 2,) < ¢, [>s

(P, 2,) € Simplex

Residual Horizon Optimization

* At every epoch, given posterior state (S, X), solve for the optimal
static sampling allocations

* Resolve every batch, based on new information

/ Constants

T
minimize, sy [E Z Objectivet(ﬂi”, Pn2) | Pes 2
I=s

subject to Cost(z,; f,, 2,) < ¢, [>s

Residual Horizon Optimization

* At every epoch, given posterior state (S, X), solve for the optimal
static sampling allocations

* Resolve every batch, based on new information

T
minimize, [E Z Objective (1, f,, X)) | f;, Zg
I=s

subject to Cost(z,; p,,2,) < ¢, r>s

7, € Simplex

Residual Horizon Optimization

T
minimize, [E Z Objective (7, f,, Z,) | Py» 2
I=s

subject to Cost(n,; f,, 2,) < ¢, [>s

7, € Simplex

« Closed-form dynamics means (f3,, 2,) can be expressed explicitly

e Use stochastic gradients to optimize allocations!

Residual Horizon Optimization

e Use stochastic gradients to optimize allocations!

O PyTorch

Residual Horizon Optimization

Why planning? Calibrate exploration to horizon

Arms

(c)RHO (T-t = 1)
(optimal)

1.0
0.8
>

= 0.6
0.4

Probab

0.2
0.0

1 2 3 4

5
Arms

(d) RHO (T - t = 10)

MPC Design Principle

Theorem: RHO achieves a smaller Bayesian regret than any static policy

« For any time horizon T
* For any constraints

* For any objective

K-For any time non-stationarity J

Why? The algorithm is Policy lteration on Static Designs

Back to non-stationarity
Benchmarking results over 180K different instances

= 6
—
@]
=
c 4
=
| -

Contextual = model 0 5.

time-varying trends g @ Uuniform

_ v 0 ' Non-Contextual TS
Batch size = 100K .% ‘ @ Non-Contextual TTTS (Russo, 2020)
. O _, A Contextual TS

Horizon T =10 ° A Contextual TTTS (Russo & Qin, 2029
g @ Best of Non-Contextual {TS, TTTS}
5 1 @ Best of Contextual {TS, TTTS}
E * Contextual RHO (Various Learning Rates)
O -6 ‘ Contextual RHO (Tuned Learning Rate)
2 |
° 1

18 19 20 21 22 23 24
% Best Arm Correct

Back to non-stationarity
Benchmarking results over 180K different instances

Contextual = model
time-varying trends

Uniform

Non-Contextual TS

Non-Contextual TTTS (Russo, 2020)

Contextual TS

Contextual TTTS (Russo & Qin, 2023)

Best of Non-Contextual {TS, TTTS}

Best of Contextual {TS, TTTS}

Contextual RHO (Various Learning Rates)

Contextual RHO (Tuned Learning Rate)

|

18 19 20 21 22 23 24
% Best Arm Correct

Batch size = 100K
Horizon T =10

@
*orhreee

&

% of Reward Gained Over Uniform
o
)
®

Encoding different objectives

T-1
minimize, [E 2 Within-exp. Rewards (7,, §;, X,) + A - Post-exp Rewards(7y, fr, 27)
t=0
subject to Cost(z; f,,2,) < c¢,, = € Simplex

 Natural candidate for A: # in experiment / # affected by treatment

* Unlike TS-based policies, easy to balance within-experiment
(simple) vs. post-experiment (cumulative) regret

Encoding different objectives

100

% Cumulative Regret of Uniform

40

Batch size n = 100, Horizon T =5

Optimize Post-Experiment

Simple Regret

O
o

80 1

70

60 1

50 1

—T10.1
(O RHO Objective Weights 02 ¥
\/ Top-Two TS Parameter Values =
038
©

0.4
v [
g ; -o.sg
O \ 4 —
\ 0.6
wn
0.7
o
° o.8|_$
Q
@ 09 0
O 0 e =

92 94 96 98 100 102 104

% Simple Regret of Uniform

1:

N
(o) N = = - o
RHO Weight Ratio (Simple:Cumulative)

oA
=

Optimize Within-Experiment
Cumulative regret

Summary

e Optimization-based planning for adaptive experimental design
- Flexibly handles batches, objectives, constraints, and non-stationarity

- Robustness guarantees against static A/B tests

* Normal approximations universal in statistical inference also delivers
a tractable way to directly optimize experiments

* Intellectual foundation: sequential CLT
- All quantities depend on previous observations; theory requires great care

Papers hsnamkoong.github.io

 Mathematical Programming For Adaptive Experiments

arXiv:2408.04570 with E. Che, D. Jiang, J. Wang

 AExGym: Benchmarks and Environments for Adaptive
Experimentation

arXiv:2408.04531 github.com/namkoong-lab/aexgym with J. Wang, E. Che, D. Jiang

* Adaptive Experimentation at Scale: A Computational Framework
for Flexible Batches

arXiv:2303.11582 with E. Che

http://hsnamkoong.github.io

