
Adaptive Experimentation at Scale

Hongseok Namkoong
Decision, Risk, and Operations Division

Columbia Business School

namkoong@gsb.columbia.edu

This work was led by Ethan Che

Adaptive Experimentation at Scale: A
Computational Framework for Flexible Batches

 Arxiv arxiv.org/abs/2303.11582

Interactive plots aes-batch.streamlit.app

ethche.github.io

Motivation

Experimentation (prediction decision)⇒

• Imagine a ML engineer building a recommendation system

• Underpowered: quality of service improvement at most 2%

- Business impact can nevertheless be big!

Configuration 1 2 … K

Which of these help users grow their
professional network the best?

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Experimentation

• Foundation of scientific decision-making

- medical treatments, economic policy, product &

engineering innovations

• Typically expensive or risky: cost of collecting data poses
operational constraint

• Statistical power is of fundamental concern

Adaptivity

• Adaptive allocation of measurement effort can improve power

- Vast literature: Thompson (’33), Chernoff (’59), Robbins & Lai (’52, ’85) + 1000s others

• Assumes unit-level continual reallocation

• Algorithmic design largely guided by theory; “operational
constraints” unmodeled

- Guarantees hold as # reallocation epochs

- Changes to the objective requires ad hoc changes to algo
T → ∞

Adaptivity
• Reallocating measurement costly in practice

- Delayed feedback, engineering & organizational challenges

- Latency -> offline computation of sampling probabilities

• No adaptivity in practice; at most few, large batches

Overview

• Optimize “constants”: tailored to small # of reallocations

- instance-specific signal-to-noise ratio

• Algorithmic design guided by modern computational tools

- ML + optimization; handle multiple objectives flexibly

- Policies trained via differentiable programming

• Must handle batch sizes flexibly

- Cannot resolve if batch size changes

Computation over theory

Goal

• Optimize “constants”: tailored to small # of reallocations

- instance-specific signal-to-noise ratio

• Algorithmic design guided by modern computational tools

- ML + optimization; handle multiple objectives flexibly

- Policies trained via differentiable programming

• Must handle batch sizes flexibly

- Cannot resolve if batch size changes

A/B test:
no adaptivity

Bandits:
fully sequential

Batched banditsPresent work
Perchet+16, Jun+16, Agarwal+17, Gao+19,

Esfandiari+21, Kalkanli+21, Karbasi+21
disproves conventional
wisdom that batching

complicates algo design

Gaussian approximations

• Allocation controls the effective sample size

- Gaussian is skinny if the arm is sampled more

• Normal approximations, universal in inference,
is also useful for design of adaptive algorithms

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Sample mean in a batch ~ Gaussian

Gaussian sequential experiment
Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Sequence of Gaussian observations gives a
tractable model for dynamic programming (DP)

Formulation

Typically in practice, variance ~ 100K mean reward 
 with large batches n ~ 100K

×

Scaling average rewards

n−1/2 TrivialImpossible ≪ ≪

• Model underpowered experiments by scaling average  
rewards with batch size  
 

Reward at arm : where

n

a Ra =
ha

n
+ εa Var(εa) = s2

a

Average rewards

Admissible

Scaling average rewards
• Model underpowered experiments by scaling average  

rewards with batch size  
 

Reward at arm : where  

 
 : sample mean for arm , : allocation/fraction 

 
 

  
 

n

a Ra =
ha

n
+ εa Var(εa) = s2

a

R̄a a πa

n ⋅ R̄a ∼ N(πaha, πas2
a)

Gaussian sequential experiment

• For each arm  
 
  

• Each batch is an approximate Gaussian draw

- Each “observation” provides info on average rewards

- Allocation controls the effective sample size

a

n ⋅ R̄a ∼ N(πaha, πas2
a)

ha

πa

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Our scaling is related to diffusion limits for fully sequential problems, e.g., Wager & Xu (2021), Fan & Glynn (2021)

• Using successive normal approximations for each batch, 
 
 Gt ∣ G0:t−1 ∼ N (πt ⋅ h, diag(πt ⋅ s2))

Local asymptotic normality

Theorem (Che & N. ’23)

 (nR̄0, …, nR̄T−1) ⇒ (G0, …, GT−1)

If allocation ’s only depends onπ
batch means continuously, then

We don’t impose any assumption on the magnitude of πt

Empirical validity

T = 10 epochs

K = 100 arms

Normal approximation
reasonable even for
small batch sizes!

max
a

ha − h ̂a where ̂a ∼ πT (nR̄0:T−1)

• No assumption on the magnitude of

- If uniformly lower bounded, our proof gives standard -bound

• Despite empirics, conservative convergence rates

- Nevertheless, usually in online platforms

πt
πt O(n−1/2)

T ⋘ n

Convergence rate
Corollary

Metrize weak convergence using bounded 1-Lipschitz functions. Then,

 dist (nR̄0:T−1, G0:T−1) ≲ LTn−1/6

Let be the Lipschitz constant of allocations .L πt

Markov decision process
over posterior beliefs

Posterior beliefs as states

• Maintain beliefs over average rewards  
 
 
 

• Observe sample means , then update posterior beliefs

• Goal: choose allocation to maximize terminal reward

h

Gt

πt

Prior
Likelihood

h ∼ ν := N (μ0, diag(σ2
0))

G ∣ h ∼ N (πh, diag(πs2)) Gaussian
approximation

Posterior updates as state dynamics

• Bayes rule / posterior update gives state dynamics 
 
 
 
 
 
 

Prior
Likelihood

h ∼ ν := N (μ0, diag(σ2
0))

G ∣ h ∼ N (πh, diag(πs2))

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Gaussian
approximation

“Training”

• Goal: plan using roll-outs and maximize terminal reward 
 

maximize {𝔼π [max
a

μT,a] : πt(μt, σt), t = 1,…, T − 1}

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

• Gaussian observations at each epoch; perform posterior
updates over belief on the average rewards

• Prior only over average rewards

- Unlike Thompson sampling, no distributional assumptions on individual

rewards

 Reward of arm chosen at the end of the experimentmaximizeallocation

Bayesian adaptive experiment

Bayesian adaptive experiment

• Tailored to the signal-to-noise ratio in each problem instance
and the number of reallocation opportunities

• Offline updates: easily deployable to millions of units!

- Only sample from a fixed allocation, regardless of batch size

- TS difficult to implement due to real-time posterior inference

T

 Reward of arm chosen at the end of the experimentmaximizeallocation

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

“Inference”
Idealized Gaussian

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

“Inference”
Idealized Gaussian

“Inference”

• Calculate state transitions / posterior updates using observed
sample mean

• Apply learned policy at the current state: πt(μt, σt)

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ nR̄t

Scaled sample mean

Sanity check

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Idealized Gaussian

Sanity check

Theorem The two are equivalent for large batch n

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Idealized Gaussian

nR̄tScaled sample mean

Overview

• Despite conventional wisdom, batching simplifies algo design

• Gaussianity is a result, not an assumption

• Incorporate prior knowledge on average rewards

• Differentiable dynamic program

- Bring to bear full power of modern ML + opt tools

- Objectives can be flexibly encoded

Adaptive designs from approximate
dynamic programming

It actually works!

K = 100

n = 10K

Empirical Rigor

aes-batch.streamlit.app

Residual Horizon Optimization

• DP is hard, so consider a simple open-loop policy

- Optimize over future allocations that only depend on currently
available information

• Guaranteed to outperform allocations that only use

• Sanity checks

- Sample proportional to measurement noise as

- Similar to Thompson sampling as

(μt, σt)

(μt, σt)

sa → ∞
T → ∞

Residual Horizon Optimization
• Resolve planning problem via stoch. gradient descent

min
ρ

𝔼 [reward | current posterior belief]
Experiment ends

tomorrow
Experiment ends

in 10 days

Calibrate exploration to residual horizon by iterative planning

allocation

Pathwise policy gradient
• Differentiable dynamics over the policy parametrization  
 
 

• Instead of “zero-th order / score trick” estimates (e.g., PPO),
use pathwise gradients using auto-differentiation!

- a.k.a. 21st century infinitesimal perturbation analysis using PyTorch

πt,a(θ)

Posterior variance

Posterior mean

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Pathwise policy gradient
• Differentiable dynamics over the policy parametrization

• Train policy through stochastic gradient ascent 
 

• Similar performance to RHO when # arms small (K = 10)

• Training challenging for many arms, large horizons, low noise

- Noisy and vanishing gradients

πt,a(θ)

θ ← θ + ∇̂Vπ(θ)
0 (μ0, σ0)

Gaussian batch policies

K = 100

n = 10K

Comparison against
standard methods

Baselines

• Uniform; static A/B testing

• Batch Successive Elimination

- Remove arms whose UCB < LCB of other arms

• Batch Thompson sampling

• Batch Top-2 Thompson sampling } Oracle policies

Batch size

K = 100

n = 10K

Large batch n = 10000

Batch size

K = 100

n = 100

Small batch n = 100

Measurement noise s2
a

K = 100

n = 100

Empirics takeaways

• Gaussian approximation useful for experimental design

- Even when batch sizes are small!

• Policies derived from our MDP outperform algos that require
complete knowledge of the reward distribution, e.g., TS

• Among these, RHO achieves the largest performance gains

- Gains large when underpowered: many treatment arms or high

measurement noise, where standard adaptive policies struggle

aes-batch.streamlit.app

Recap

• Algorithmic design guided by modern computational tools

- ML + optimization; trained through differentiable programming

• Optimize “constants”: tailored to small # of reallocations

- instance-specific measurement noise and statistical power

• Handle batch sizes flexibly

• Empirically validated & deployable with ease

