Adaptive Experimentation at Scale

Hongseok Namkoong

Decision, Risk, and Operations Division Columbia Business School namkoong@gsb.columbia.edu

This work was led by Ethan Che

ethche.github.io

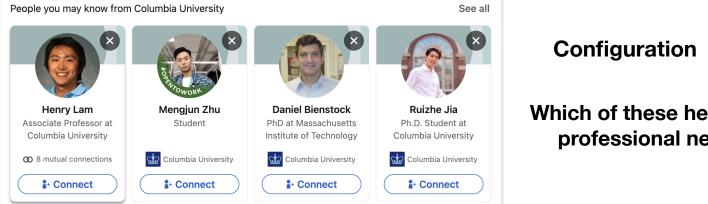
Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches

Arxiv <u>arxiv.org/abs/2303.11582</u> Interactive plots aes-batch.streamlit.app

Motivation

Experimentation (prediction \Rightarrow decision)

Imagine a ML engineer building a recommendation system



Which of these help users grow their professional network the best?

1

2

K

- Underpowered: quality of service improvement at most 2%
 - Business impact can nevertheless be big!

Experimentation

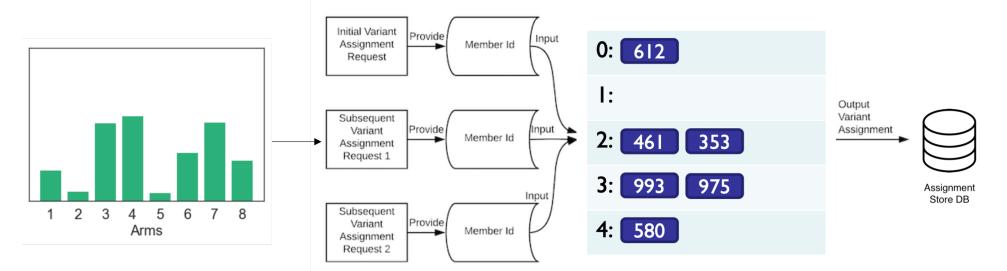
- Foundation of scientific decision-making
 - medical treatments, economic policy, product & engineering innovations
- Typically expensive or risky: cost of collecting data poses operational constraint
- Statistical power is of fundamental concern

Adaptivity

- Adaptive allocation of measurement effort can improve power
 - Vast literature: Thompson ('33), Chernoff ('59), Robbins & Lai ('52, '85) + 1000s others
- Assumes unit-level continual reallocation
- Algorithmic design largely guided by theory; "operational constraints" unmodeled
 - Guarantees hold as # reallocation epochs $T \rightarrow \infty$
 - Changes to the objective requires ad hoc changes to algo

Adaptivity

- Reallocating measurement costly in practice
 - Delayed feedback, engineering & organizational challenges
 - Latency -> offline computation of sampling probabilities
- No adaptivity in practice; *at most few, large batches*



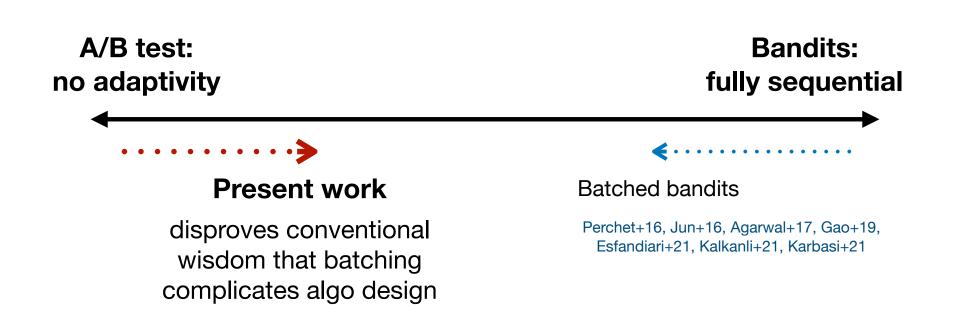
Overview

Computation over theory

- Optimize "constants": tailored to small # of reallocations
 - instance-specific signal-to-noise ratio
- Algorithmic design guided by modern computational tools
 - ML + optimization; handle multiple objectives flexibly
 - Policies trained via differentiable programming
- Must handle batch sizes flexibly
 - Cannot resolve if batch size changes

Goal

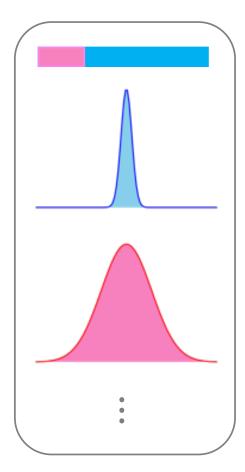
- Optimize "constants": tailored to small # of reallocations
 - instance-specific signal-to-noise ratio



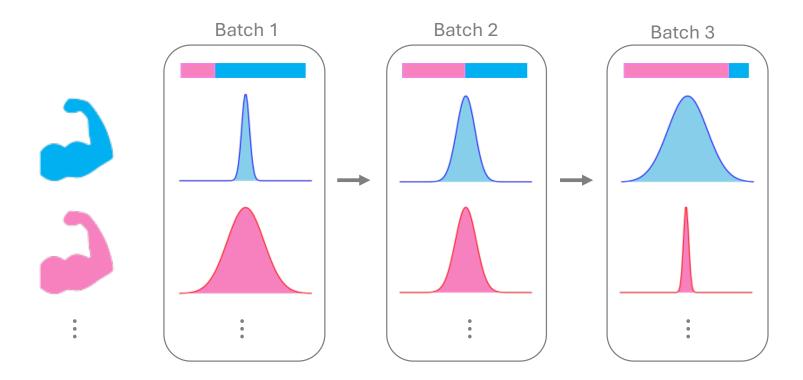
Gaussian approximations

Sample mean in a batch ~ Gaussian

- Allocation controls the effective sample size
 - Gaussian is skinny if the arm is sampled more
- Normal approximations, universal in inference, is also useful for design of adaptive algorithms



Gaussian sequential experiment



Sequence of Gaussian observations gives a tractable model for dynamic programming (DP)

Formulation

Typically in practice, variance ~ $100K \times$ mean reward with large batches n ~ 100K

Scaling average rewards

 Model underpowered experiments by scaling average rewards with batch size n

Reward at arm *a*:
$$R_a = \frac{h_a}{\sqrt{n}} + \varepsilon_a$$
 where $Var(\varepsilon_a) = s_a^2$
Average rewards
Impossible \ll Admissible $n^{-1/2} \ll$ Trivial

Scaling average rewards

 Model underpowered experiments by scaling average rewards with batch size n

Reward at arm *a*:
$$R_a = \frac{h_a}{\sqrt{n}} + \varepsilon_a$$
 where $Var(\varepsilon_a) = s_a^2$

 \bar{R}_a : sample mean for arm a, π_a : allocation/fraction $\sqrt{n} \cdot \bar{R}_a \sim N(\pi_a h_a, \pi_a s_a^2)$

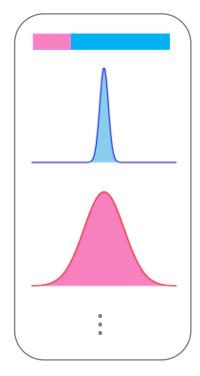
Gaussian sequential experiment

• For each arm *a*

$$\sqrt{n} \cdot \bar{R}_a \sim N(\pi_a h_a, \pi_a s_a^2)$$

- Each batch is an approximate Gaussian draw
 - Each "observation" provides info on average rewards h_a
 - Allocation π_a controls the effective sample size





Local asymptotic normality

• Using successive normal approximations for each batch,

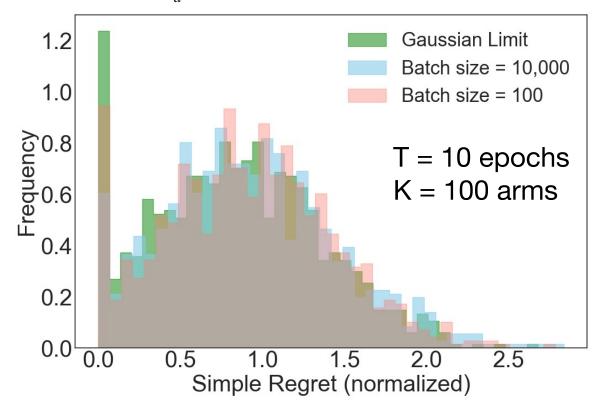
$$G_t \mid G_{0:t-1} \sim N\left(\pi_t \cdot h, \operatorname{diag}(\pi_t \cdot s^2)\right)$$

Theorem (Che & N. '23)If allocation π 's only depends onbatch means continuously, then

$$\left(\sqrt{n}\bar{R}_0, \dots, \sqrt{n}\bar{R}_{T-1}\right) \Rightarrow (G_0, \dots, G_{T-1})$$

We don't impose any assumption on the magnitude of π_t

$$\max_{a} h_a - h_{\hat{a}}$$
 where $\hat{a} \sim \pi_T \left(\sqrt{n} \bar{R}_{0:T-1} \right)$



Normal approximation reasonable even for small batch sizes!

Convergence rate

 $\begin{array}{ll} \textbf{Corollary} & \text{Let } L \text{ be the Lipschitz constant of allocations } \pi_t \text{ .} \\ \\ \text{Metrize weak convergence using bounded I-Lipschitz functions. Then,} \\ \\ & \text{dist} \left(\sqrt{n} \bar{R}_{0:T-1}, G_{0:T-1} \right) \lesssim L^T n^{-1/6} \end{array}$

- No assumption on the magnitude of π_t
 - If π_t uniformly lower bounded, our proof gives standard $O(n^{-1/2})$ -bound
- Despite empirics, conservative convergence rates
 - Nevertheless, usually $T \ll n$ in online platforms

Markov decision process over posterior beliefs

Posterior beliefs as states

• Maintain *beliefs* over average rewards *h*

Prior
$$h \sim \nu := N(\mu_0, \operatorname{diag}(\sigma_0^2))$$

Likelihood $G \mid h \sim N(\pi h, \operatorname{diag}(\pi s^2)) \longleftarrow \operatorname{Gaussian}_{\operatorname{approximation}}$

- Observe sample means G_t , then update posterior beliefs
- Goal: choose allocation π_t to maximize terminal reward

Posterior updates as state dynamics

Prior
$$h \sim \nu := N(\mu_0, \operatorname{diag}(\sigma_0^2))$$

Likelihood $G \mid h \sim N(\pi h, \operatorname{diag}(\pi s^2)) \longleftarrow \operatorname{Gaussian}_{\operatorname{approximation}}$

Bayes rule / posterior update gives state dynamics

Posterior variance $\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$ Posterior mean $\mu_{t+1} = \sigma_{t+1}^2/\sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2/s^2 \cdot G_t$

"Training"

Posterior variance
$$\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$$
Posterior mean $\mu_{t+1} = \sigma_{t+1}^2 / \sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2 / s^2 \cdot G_t$

• Goal: plan using roll-outs and maximize terminal reward

maximize
$$\left\{ \mathbb{E}^{\pi} \left[\max_{a} \mu_{T,a} \right] : \pi_{t}(\mu_{t},\sigma_{t}), t = 1, \dots, T-1 \right\}$$

Bayesian adaptive experiment

maximize_{allocation} Reward of arm chosen at the end of the experiment

- Gaussian observations at each epoch; perform posterior updates over belief on the average rewards
- Prior only over *average* rewards
 - Unlike Thompson sampling, no distributional assumptions on *individual* rewards

Bayesian adaptive experiment

maximize_{allocation} Reward of arm chosen at the end of the experiment

- Tailored to the signal-to-noise ratio in each problem instance and the number of reallocation opportunities T
- **Offline** updates: easily deployable to millions of units!
 - Only sample from a fixed allocation, regardless of batch size
 - TS difficult to implement due to real-time posterior inference

"Inference"

Idealized Gaussian

Posterior variance
$$\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$$

Posterior mean $\mu_{t+1} = \sigma_{t+1}^2/\sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2/s^2 \cdot G_t$

"Inference"

Idealized Gaussian

Posterior variance
$$\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$$
Posterior mean $\mu_{t+1} = \sigma_{t+1}^2/\sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2/s^2 \cdot \kappa$

"Inference"

Scaled sample mean

Posterior variance
$$\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$$

Posterior mean $\mu_{t+1} = \sigma_{t+1}^2/\sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2/s^2 \cdot \sqrt{nR_t}$

- Calculate state transitions / posterior updates using observed sample mean
- Apply learned policy at the current state: $\pi_t(\mu_t, \sigma_t)$

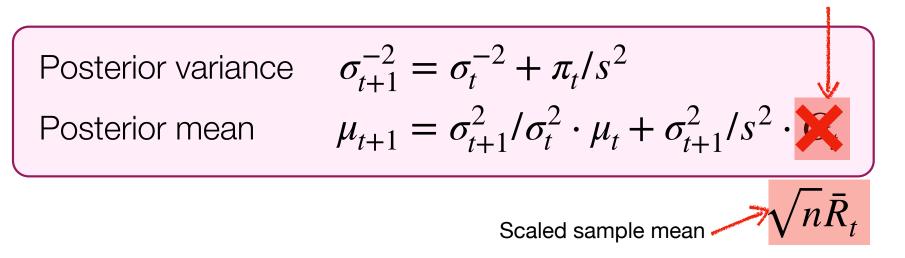
Sanity check

1

Posterior variance
$$\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$$

Posterior mean $\mu_{t+1} = \sigma_{t+1}^2/\sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2/s^2 \cdot G_t$

Sanity check



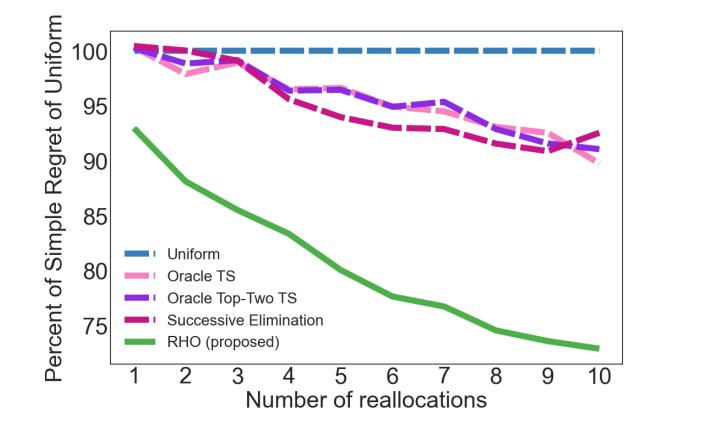
Theorem The two are equivalent for large batch n

Overview

- Despite conventional wisdom, batching simplifies algo design
- Gaussianity is a **result**, not an assumption
- Incorporate prior knowledge on *average rewards*
- Differentiable dynamic program
 - Bring to bear full power of modern ML + opt tools
 - Objectives can be flexibly encoded

Adaptive designs from approximate dynamic programming

It actually works!



K = 100 n = 10K

Empirical Rigor

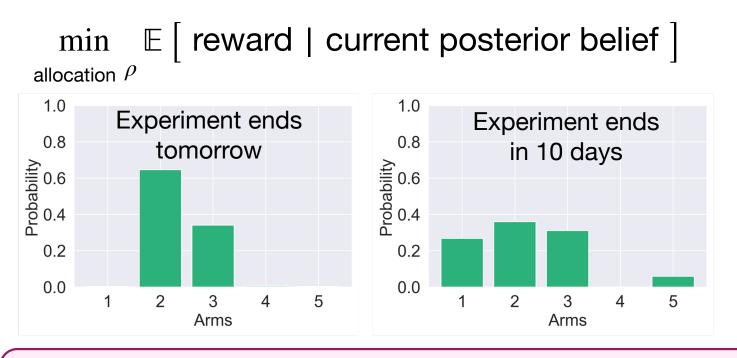
aes-batch.streamlit.app

Residual Horizon Optimization

- DP is hard, so consider a simple open-loop policy
 - Optimize over future allocations that only depend on currently available information (μ_t, σ_t)
- Guaranteed to outperform allocations that only use (μ_t, σ_t)
- Sanity checks
 - Sample proportional to measurement noise as $s_a \rightarrow \infty$
 - Similar to Thompson sampling as $T \to \infty$

Residual Horizon Optimization

• Resolve planning problem via stoch. gradient descent



Calibrate exploration to residual horizon by iterative planning

Pathwise policy gradient

• Differentiable dynamics over the policy parametrization $\pi_{t,a}(\theta)$

Posterior variance
$$\sigma_{t+1}^{-2} = \sigma_t^{-2} + \pi_t/s^2$$
Posterior mean $\mu_{t+1} = \sigma_{t+1}^2/\sigma_t^2 \cdot \mu_t + \sigma_{t+1}^2/s^2 \cdot G_t$

- Instead of "zero-th order / score trick" estimates (e.g., PPO), use pathwise gradients using auto-differentiation!
 - a.k.a. 21st century infinitesimal perturbation analysis using PyTorch

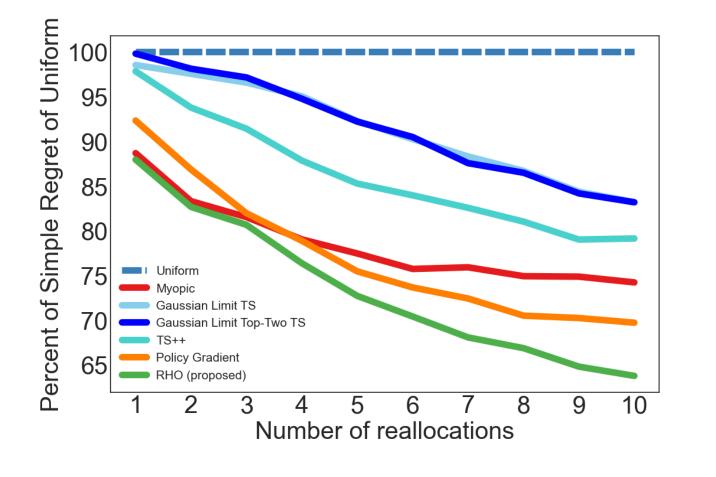
Pathwise policy gradient

- Differentiable dynamics over the policy parametrization $\pi_{t,a}(\theta)$
- Train policy through stochastic gradient ascent

$$\theta \leftarrow \theta + \hat{\nabla} V_0^{\pi(\theta)}(\mu_0, \sigma_0)$$

- Similar performance to RHO when # arms small (K = 10)
- Training challenging for many arms, large horizons, low noise
 - Noisy and vanishing gradients

Gaussian batch policies



K = 100 n = 10K

Comparison against standard methods

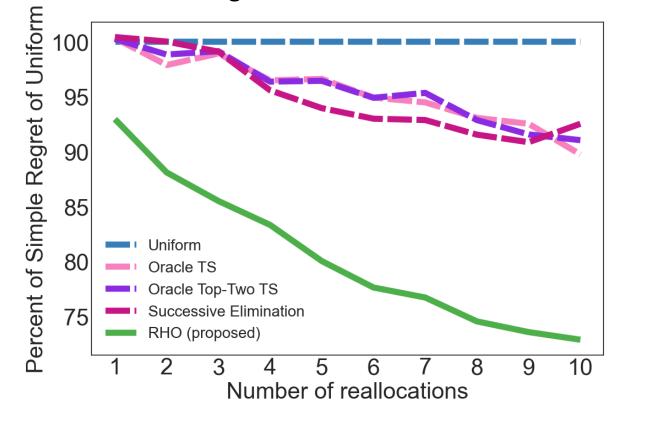
Baselines

- Uniform; static A/B testing
- **Batch Successive Elimination**
 - Remove arms whose UCB < LCB of other arms
- Batch Thompson samplingBatch Top-2 Thompson sampling

Oracle policies

Batch size

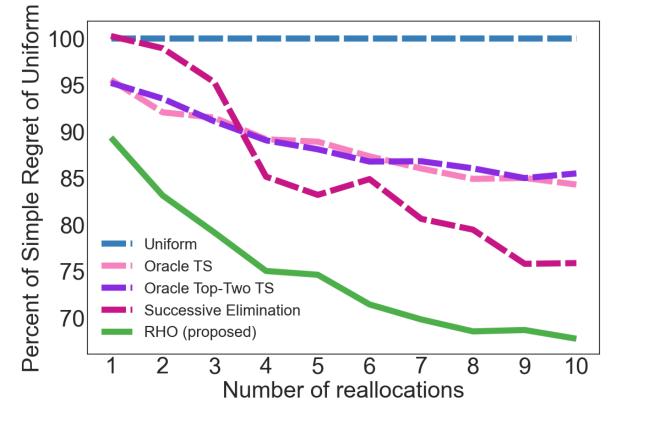
Large batch n = 10000



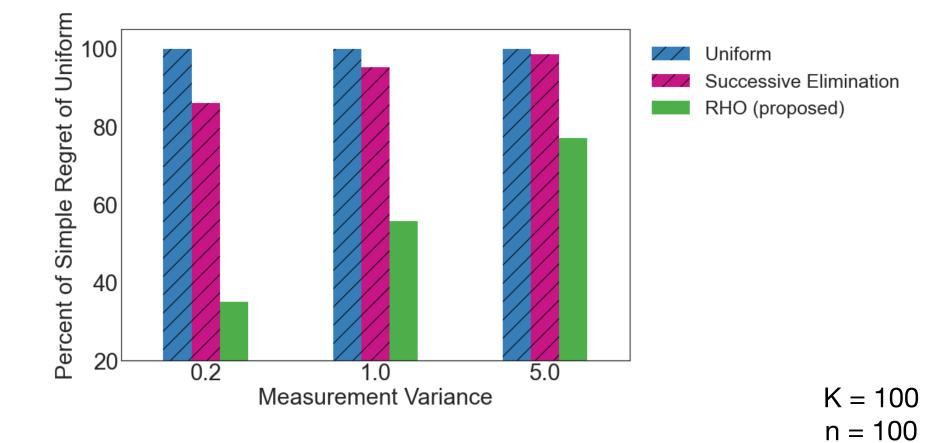
K = 100 n = 10K

Batch size

Small batch n = 100



K = 100 n = 100



Empirics takeaways

- Gaussian approximation useful for experimental design
 - Even when batch sizes are small!
- Policies derived from our MDP outperform algos that require complete knowledge of the reward distribution, e.g., TS
- Among these, RHO achieves the largest performance gains
 - Gains large when underpowered: many treatment arms or high measurement noise, where standard adaptive policies struggle

aes-batch.streamlit.app

Recap

- Algorithmic design guided by modern computational tools
 - ML + optimization; trained through differentiable programming
- Optimize "constants": tailored to small # of reallocations
 - instance-specific measurement noise and statistical power
- Handle batch sizes flexibly
- Empirically validated & *deployable with ease*