
Adaptive Experimentation at Scale

Hongseok Namkoong
Decision, Risk, and Operations Division


Columbia Business School

namkoong@gsb.columbia.edu



This work was led by Ethan Che

Adaptive Experimentation at Scale: A 
Computational Framework for Flexible Batches


           Arxiv           arxiv.org/abs/2303.11582

Interactive plots   aes-batch.streamlit.app

ethche.github.io



Motivation



Experimentation (prediction  decision)⇒

• Imagine a ML engineer building a recommendation system


• Underpowered: quality of service improvement at most 2%

- Business impact can nevertheless be big!

Configuration    1    2     …   K    

Which of these help users grow their 
professional network the best?

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮
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Experimentation

• Foundation of scientific decision-making

- medical treatments, economic policy, product & 

engineering innovations


• Typically expensive or risky: cost of collecting data poses 
operational constraint


• Statistical power is of fundamental concern



Adaptivity

• Adaptive allocation of measurement effort can improve power

- Vast literature: Thompson (’33), Chernoff (’59), Robbins & Lai (’52, ’85) + 1000s others


• Assumes unit-level continual reallocation 


• Algorithmic design largely guided by theory; “operational 
constraints” unmodeled

- Guarantees hold as # reallocation epochs 


- Changes to the objective requires ad hoc changes to algo
T → ∞



Adaptivity
• Reallocating measurement costly in practice


- Delayed feedback, engineering & organizational challenges

- Latency -> offline computation of sampling probabilities


• No adaptivity in practice; at most few, large batches



Overview



• Optimize “constants”: tailored to small # of reallocations

- instance-specific signal-to-noise ratio


• Algorithmic design guided by modern computational tools

- ML + optimization; handle multiple objectives flexibly

- Policies trained via differentiable programming


• Must handle batch sizes flexibly

- Cannot resolve if batch size changes

Computation over theory



Goal

• Optimize “constants”: tailored to small # of reallocations

- instance-specific signal-to-noise ratio


• Algorithmic design guided by modern computational tools

- ML + optimization; handle multiple objectives flexibly

- Policies trained via differentiable programming


• Must handle batch sizes flexibly

- Cannot resolve if batch size changes

A/B test: 
no adaptivity

Bandits: 
fully sequential

Batched banditsPresent work
Perchet+16, Jun+16, Agarwal+17, Gao+19, 

Esfandiari+21, Kalkanli+21, Karbasi+21
disproves conventional 
wisdom that batching 

complicates algo design



Gaussian approximations

• Allocation controls the effective sample size

- Gaussian is skinny if the arm is sampled more


• Normal approximations, universal in inference, 
is also useful for design of adaptive algorithms

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Sample mean in a batch ~ Gaussian



Gaussian sequential experiment
Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Sequence of Gaussian observations gives a 
tractable model for dynamic programming (DP)



Formulation

Typically in practice, variance ~ 100K  mean reward 
                   with large batches n ~ 100K

×



Scaling average rewards

n−1/2 TrivialImpossible ≪ ≪

• Model underpowered experiments by scaling average  
rewards with batch size  
 

Reward at arm :        where   

n

a Ra =
ha

n
+ εa Var(εa) = s2

a

Average rewards

Admissible



Scaling average rewards
• Model underpowered experiments by scaling average  

rewards with batch size  
 

Reward at arm :        where     

 
 : sample mean for arm ,      : allocation/fraction 

 
 

                                
 

n

a Ra =
ha

n
+ εa Var(εa) = s2

a

R̄a a πa

n ⋅ R̄a ∼ N(πaha, πas2
a)



Gaussian sequential experiment

• For each arm   
 
                 

• Each batch is an approximate Gaussian draw

- Each “observation” provides info on average rewards 


- Allocation  controls the effective sample size

a

n ⋅ R̄a ∼ N(πaha, πas2
a)

ha

πa

Batch 1 Batch 2 Batch 3

⋮ ⋮ ⋮ ⋮

Our scaling is related to diffusion limits for fully sequential problems, e.g., Wager & Xu (2021), Fan & Glynn (2021)



• Using successive normal approximations for each batch, 
 
                   Gt ∣ G0:t−1 ∼ N (πt ⋅ h, diag(πt ⋅ s2))

Local asymptotic normality

Theorem (Che & N. ’23)

                 ( nR̄0, …, nR̄T−1) ⇒ (G0, …, GT−1)

If allocation ’s only depends onπ
batch means continuously, then

We don’t impose any assumption on the magnitude of   πt



Empirical validity

T = 10 epochs

K = 100 arms

Normal approximation 
reasonable even for 
small batch sizes!

max
a

ha − h ̂a where ̂a ∼ πT ( nR̄0:T−1)



• No assumption on the magnitude of  

- If  uniformly lower bounded, our proof gives standard -bound


• Despite empirics, conservative convergence rates

- Nevertheless, usually  in online platforms

πt
πt O(n−1/2)

T ⋘ n

Convergence rate
Corollary

Metrize weak convergence using bounded 1-Lipschitz functions.  Then, 

                       dist ( nR̄0:T−1, G0:T−1) ≲ LTn−1/6

Let  be the Lipschitz constant of allocations  .L πt



Markov decision process 
over posterior beliefs 



Posterior beliefs as states

• Maintain beliefs over average rewards  
 
 
 

• Observe sample means  , then update posterior beliefs


• Goal: choose allocation  to maximize terminal reward

h

Gt

πt

Prior                 
Likelihood       

h ∼ ν := N (μ0, diag(σ2
0))

G ∣ h ∼ N (πh, diag(πs2)) Gaussian 
approximation



Posterior updates as state dynamics

• Bayes rule / posterior update gives state dynamics 
 
 
 
 
 
 

Prior                 
Likelihood       

h ∼ ν := N (μ0, diag(σ2
0))

G ∣ h ∼ N (πh, diag(πs2))

Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Gaussian 
approximation



“Training”

• Goal: plan using roll-outs and maximize terminal reward 
 

maximize {𝔼π [max
a

μT,a] : πt(μt, σt), t = 1,…, T − 1}

Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt



• Gaussian observations at each epoch; perform posterior 
updates over belief on the average rewards


• Prior only over average rewards

- Unlike Thompson sampling, no distributional assumptions on individual 

rewards

                           Reward of arm chosen at the end of the experimentmaximizeallocation

Bayesian adaptive experiment



Bayesian adaptive experiment

• Tailored to the signal-to-noise ratio in each problem instance 
and the number of reallocation opportunities 


• Offline updates: easily deployable to millions of units!

- Only sample from a fixed allocation, regardless of batch size

- TS difficult to implement due to real-time posterior inference

T

                           Reward of arm chosen at the end of the experimentmaximizeallocation



Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

“Inference”
Idealized Gaussian



Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

“Inference”
Idealized Gaussian



“Inference”

• Calculate state transitions / posterior updates using observed 
sample mean


• Apply learned policy at the current state: πt(μt, σt)

Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ nR̄t

Scaled sample mean



Sanity check

Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Idealized Gaussian



Sanity check

Theorem The two are equivalent for large batch n

Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt

Idealized Gaussian

   
                                      

nR̄tScaled sample mean



Overview

• Despite conventional wisdom, batching simplifies algo design


• Gaussianity is a result, not an assumption


• Incorporate prior knowledge on average rewards


• Differentiable dynamic program

- Bring to bear full power of modern ML + opt tools

- Objectives can be flexibly encoded



Adaptive designs from approximate 
dynamic programming



It actually works!

K = 100

n = 10K



Empirical Rigor

aes-batch.streamlit.app



Residual Horizon Optimization

• DP is hard, so consider a simple open-loop policy


- Optimize over future allocations that only depend on currently 
available information 


• Guaranteed to outperform allocations that only use 


• Sanity checks

- Sample proportional to measurement noise as 


- Similar to Thompson sampling as 

(μt, σt)

(μt, σt)

sa → ∞
T → ∞



Residual Horizon Optimization
• Resolve planning problem via stoch. gradient descent

min
ρ

𝔼 [ reward | current posterior belief ]
Experiment ends 

tomorrow
Experiment ends 

in 10 days

Calibrate exploration to residual horizon by iterative planning

allocation



Pathwise policy gradient
• Differentiable dynamics over the policy parametrization  
 
 

• Instead of “zero-th order / score trick” estimates (e.g., PPO), 
use pathwise gradients using auto-differentiation!

- a.k.a. 21st century infinitesimal perturbation analysis using PyTorch

πt,a(θ)

Posterior variance      
 

Posterior mean          
                                      

σ−2
t+1 = σ−2

t + πt /s2

μt+1 = σ2
t+1/σ2

t ⋅ μt + σ2
t+1/s2 ⋅ Gt



Pathwise policy gradient
• Differentiable dynamics over the policy parametrization 


• Train policy through stochastic gradient ascent 
 
                               


• Similar performance to RHO when # arms small (K = 10)


• Training challenging for many arms, large horizons, low noise

- Noisy and vanishing gradients

πt,a(θ)

θ ← θ + ∇̂Vπ(θ)
0 (μ0, σ0)



Gaussian batch policies

K = 100

n = 10K



Comparison against 
standard methods



Baselines

• Uniform; static A/B testing


• Batch Successive Elimination

- Remove arms whose UCB < LCB of other arms


• Batch Thompson sampling


• Batch Top-2 Thompson sampling } Oracle policies



Batch size

K = 100

n = 10K

Large batch n = 10000



Batch size

K = 100

n = 100

Small batch n = 100



Measurement noise s2
a

K = 100

n = 100



Empirics takeaways

• Gaussian approximation useful for experimental design

- Even when batch sizes are small!


• Policies derived from our MDP outperform algos that require 
complete knowledge of the reward distribution, e.g., TS


• Among these, RHO achieves the largest performance gains

- Gains large when underpowered: many treatment arms or high 

measurement noise, where standard adaptive policies struggle

aes-batch.streamlit.app



Recap

• Algorithmic design guided by modern computational tools

- ML + optimization; trained through differentiable programming


• Optimize “constants”: tailored to small # of reallocations

- instance-specific measurement noise and statistical power 


• Handle batch sizes flexibly


• Empirically validated & deployable with ease


