Adaptive Experimentation at Scale

Hongseok Namkoong

Decision, Risk, and Operations Division
Columbia Business School
namkoong@gsb.columbia.edu

This work was led by Ethan Che

Adaptive Experimentation at Scale: A
Computational Framework for Flexible Batches

Arxiv arxiv.org/abs/2303.11582
Interactive plots aes-batch.streamlit.app

ethche.github.io

Motivation

Experimentation (prediction = decision)

* Imagine a ML engineer building a recommendation system

People you may know from Columbia University See all b
@9 Configuration 1 2 ... K
Henry Lam Mengjun Zhu Daniel Bienstock Ruizhe Jia H H
Associate Professor at Student PhD at Massachusetts Ph.D. Student at WhICh Of these help users grow thelr
Columbia University Institute of Technology Columbia University professional network the best?
@D 8 mutual connections @ Columbia University @ Columbia University @ Columbia University

< 2+ Connect) (2+ Connect > < 2+ Connect) (2+ Connect

 Underpowered: quality of service improvement at most 2%

- Business impact can nevertheless be big!

Experimentation

* Foundation of scientific decision-making

- medical treatments, economic policy, product &
engineering innovations

* Typically expensive or risky: cost of collecting data poses
operational constraint

o Statistical power is of fundamental concern

Adaptivity

e Adaptive allocation of measurement effort can improve power
- Vast literature: Thompson (’33), Chernoff ('59), Robbins & Lai ('52, ’85) + 1000s others

e Assumes unit-level continual reallocation

e Algorithmic design largely guided by theory; “operational
constraints” unmodeled

- Guarantees hold as # reallocation epochs T'— o0

- Changes to the objective requires ad hoc changes to algo

Adaptivity

* Reallocating measurement costly in practice
- Delayed feedback, engineering & organizational challenges
- Latency -> offline computation of sampling probabilities

* No adaptivity in practice; at most few, large batches

Initial Variant |5 0 20
Assignment g

I
Member Id
Request
Input
Member Id

Input

I . Qutput
Variant
Assignment
2: €8 E5B B
Store DB

Subsequent
Vanant Provide

Assignment [™
Request 1

1 2 3 4 5 6 7 8 Subsequent
Ar Variant Provide 4_
ms Assignment > .

Member Id

Request 2

Overview

Computation over theory

e Optimize “constants”: tailored to small # of reallocations

- instance-specific signal-to-noise ratio

e Algorithmic design guided by modern computational tools
- ML + optimization; handle multiple objectives flexibly
- Policies trained via differentiable programming

* Must handle batch sizes flexibly

- Cannot resolve if batch size changes

Goal

e Optimize “constants”; tailored to small # of reallocations
- instance-specific signal-to-noise ratio

A/B test: Bandits:
no adaptivity fully sequential
<< -
............) € i,
Present work Batched bandits
disproves Conventiona| Perchet+16, Jun+16, Agarwal+17, Gao+19,

. . Esfandiari+21, Kalkanli+21, Karbasi+21
wisdom that batching

complicates algo design

Gaussian approximations

[Sample mean in a batch ~ Gaussian]

e Allocation controls the effective sample size

- Gaussian is skinny if the arm is sampled more

* Normal approximations, universal in inference,
IS also useful for design of adaptive algorithms

(e

i
A

Gaussian sequential experiment

Batch 1 Batch 2 Batch 3

(e ¢ -)

o T 1A
A

A /\

) o

Sequence of Gaussian observations gives a
tractable model for dynamic programming (DP)

Formulation

Typically in practice, variance ~ 100K X mean reward
with large batches n ~ 100K

Scaling average rewards

* Model underpowered experiments by scaling average
rewards with batch size n

h
. _ _a _ 2
Reward atarma: R, =——+ ¢, where Var(e,) = s
n
Average rewards
| >

1/2

Impossible << Admissible 1 < Trivial

Scaling average rewards

* Model underpowered experiments by scaling average
rewards with batch size n

h

Reward atarma: R, =——=+¢&, where Var(e)= s’
n

R, : sample mean forarm a, r, : allocation/fraction

\/; ‘R, ~ N(z h, r s>

a “a’ a

Gaussian sequential experiment

e For each arm a (n —\

\/_ R, ~ N(zh, x s> /\

e Each batch is an approximate Gaussian draw /\
- Each “observation” provides info on average rewards /7,

- Allocation 7, controls the effective sample size _ 5 J

Our scaling is related to diffusion limits for fully sequential problems, e.g., Wager & Xu (2021), Fan & Glynn (2021)

Local asymptotic hormality
e Using successive normal approximations for each batch,

G, | Gy, ~N (ﬂt - h, diag(r, - SZ))

.
Theorem (Che & N.’23) If allocation &'s only depends on

batch means continuously, then

(VR - \/1Ry1) = Gy s Gry)

~

We don’t impose any assumption on the magnitude of 7,

1.2

1.0

¥

©0.8

0.6

Frequen

0.4
0.2

0.0

Empirical validity

max h, — h, where d ~ mp (\/;R():T_l)
a

I Gaussian Limit
Batch size = 10,000
Batch size = 100

T =10 epochs
K=100 arms

0.5 1.0 1.5 2.0
Simple Regret (normalized)

2.5

Normal approximation
reasonable even for
small batch sizes!

Convergence rate

4)
Corollary Let L be the Lipschitz constant of allocations 7, .

Metrize weak convergence using bounded |-Lipschitz functions. Then,

dist <\/;RO:T—19 GO:T—l) SLIn710

. J

» No assumption on the magnitude of 7,

- If &, uniformly lower bounded, our proof gives standard O(n~"%)-bound

e Despite empirics, conservative convergence rates

- Nevertheless, usually T << n in online platforms

Markov decision process
over posterior beliefs

Posterior beliefs as states

e Maintain beliefs over average rewards h

Prior h~v:=N (,uo, diag(ag))
Likelihood G | h~N (ﬂh, diag(;tsz)) i Gaussian

approximation

» Observe sample means G, , then update posterior beliefs

e Goal: choose allocation 7, to maximize terminal reward

Posterior updates as state dynamics

Prior h ~ U ‘= N (/’tO’ dlag(dg)
Likelihood G | h ~ N (ﬂ'h, diag(ﬂsz)) P Gaussian

approximation

e Bayes rule / posterior update gives state dynamics

é)
Posterior variance 0;121 = 0[2 + 7,/ 5
Posterior mean Hip1 = 0t2+1/0r2 - Y, T 01r2+1/52 - G,

_ J

“Training”

.
Posterior variance 6% = 0_2 + 7./s*

+1
Posterior mean o =0 67y + t+1/s - G,

t+1

e Goal: plan using roll-outs and maximize terminal reward

maximize § E* |max ;.| : 7(u,0),t=1,....,T—1
a

Bayesian adaptive experiment

maximize Reward of arm chosen at the end of the experiment

allocation

e Gaussian observations at each epoch; perform posterior
updates over belief on the average rewards

* Prior only over average rewards

- Unlike Thompson sampling, no distributional assumptions on individual
rewards

Bayesian adaptive experiment

maximize Reward of arm chosen at the end of the experiment

allocation

 Tailored to the signal-to-noise ratio in each problem instance
and the number of reallocation opportunities T°

* Offline updates: easily deployable to millions of units!
- Only sample from a fixed allocation, regardless of batch size
- TS difficult to implement due to real-time posterior inference

“Inference”

Idealized Gaussian

(")
Posterior variance O'jrzl — 0;2 + 7Z't/ s2 A
Posterior mean Pop = Ur2+1/0t2 - Y, + 0t2+1/s2 -G,

(N Y,

“Inference”

Idealized Gaussian

(" I)
Posterior variance 51121 = _2 + Jl't/ S
Posterior mean Hep1 = H_l/dt /S2 X

“Inference”

Scaled sample mean

(- |)

Posterior variance 0;21 =0, >+ /s’

Posterior mean Yo = t+1/0t U, + t+1/s \/_R

e Calculate state transitions / posterior updates using observed
sample mean

 Apply learned policy at the current state: z,(,, 0,)

Sanity check

Idealized Gaussian

!

4 |)
Posterior variance dtfl =0, + 1 /s*
\/
Posterior mean Yo = t+1/0t M, + H_I/S - G,

Sanity check

Idealized Gaussian

!

(")
Posterior variance dtfl = 0[2 + 7,/ 5 |
Posterior mean Popq = Ur2+1/5t2 - Y, + 0z2+1/S2 x

& J

Scaled sample mean /’}7\/;Rl‘

[Theorem The two are equivalent for large batch n J

Overview

* Despite conventional wisdom, batching simplifies algo design
e Gaussianity is a result, not an assumption
* Incorporate prior knowledge on average rewards

e Differentiable dynamic program
- Bring to bear full power of modern ML + opt tools
- Objectives can be flexibly encoded

Adaptive designs from approximate
dynamic programming

75

Percent of Simple Regret of Uniform

It actually works!

RN —————

— e

Uniform

Oracle TS
mmm 1 Oracle Top-Two TS
mmm | Successive Elimination
memm RHO (proposed)

1 2 3 4 5 6 7 8 9 10
Number of reallocations

K=100
n =10K

Empirical Rigor

aes-batch.streamlit.app

Residual Horizon Optimization

* DP is hard, so consider a simple open-loop policy

- Optimize over future allocations that only depend on currently
available information (y,, o,)

 Guaranteed to outperform allocations that only use (y,, 6,)

e Sanity checks
- Sample proportional to measurement noise as 5, — 0

- Similar to Thompson sampling as T'— o0

Residual Horizon Optimization

* Resolve planning problem via stoch. gradient descent

min [E [reward | current posterior belief]

allocation P
1.0 , 1.0 ,
Experiment ends Experiment ends
0.8 0.8 :
> tomorrow > in 10 days
= 0.6 = 0.6
3 3
004 04
o o
B - HHN
0.0 0.0 .
1 2 3 4 5 1 2 3 4 5
Arms Arms

(Calibrate exploration to residual horizon by iterative planning)

Pathwise policy gradient

» Differentiable dynamics over the policy parametrization 7, ,(6)

4)
Posterior variance 62 = 6% + 1./s>
+1 t t
Posterior mean Yo = 012-|-1/0t2 - Y, + 01r2+1/52 - G,
_ J

 |[nstead of “zero-th order / score trick” estimates (e.g., PPO),
use pathwise gradients using auto-differentiation!

- a.k.a. 21st century infinitesimal perturbation analysis using PyTorch

Pathwise policy gradient

» Differentiable dynamics over the policy parametrization 7, ,(6)

* Train policy through stochastic gradient ascent
0 — 0+ VV O (uy, 6)

e Similar performance to RHO when # arms small (K = 10)

* Training challenging for many arms, large horizons, low noise
- Noisy and vanishing gradients

Gaussian batch policies

Percent of Simple Regret of Uniform

75

mmm | Uniform

&= |\yopic
Gaussian Limit TS

e Gaussian Limit Top-Two TS

e TS++

@m=» Policy Gradient

@amm» RHO (proposed)

1 2 3 4 5 6 4 8 9 10
Number of reallocations

K=100
n = 10K

Comparison against
standard methods

Baselines

e Uniform; static A/B testing

e Batch Successive Elimination
- Remove arms whose UCB < LCB of other arms

e Batch Thompson sampling

| Oracle policies
e Batch Top-2 Thompson sampling

75

Percent of Simple Regret of Uniform

Batch size

Large batch n = 10000

RN —————

— e

Uniform

Oracle TS
mmm 1 Oracle Top-Two TS
mmm | Successive Elimination
memm RHO (proposed)

1 2 3 4 5 6 7 8 9 10
Number of reallocations

K=100
n =10K

75
70

Percent of Simple Regret of Uniform
(00)
O

Batch size

Small batch n = 100

~=——————————————

N

~_—-~
\ o F Sy
\~"\\

~

| =
mmm 1 Uniform

Oracle TS
mmm 1 Oracle Top-Two TS
mmm | Successive Elimination

mesm RHO (proposed)

1 2 3 4 5 6 7 8 9 10
Number of reallocations

K=100
n=100

—
I~ (o)) (@) o
o o o o

N
o

Percent of Simple Regret of Uniform

Measurement noise s

2
a

0.2 1.0
Measurement Variance

EE Uniform
B Successive Elimination
B RHO (proposed)

2.0

K=100
n=100

Empirics takeaways

e Gaussian approximation useful for experimental design

- Even when batch sizes are small!

* Policies derived from our MDP outperform algos that require
complete knowledge of the reward distribution, e.g., TS

* Among these, RHO achieves the largest performance gains

- Gains large when underpowered: many treatment arms or high
measurement noise, where standard adaptive policies struggle

aes-batch.streamlit.app

Recap

e Algorithmic design guided by modern computational tools
- ML + optimization; trained through differentiable programming

* Optimize “constants”; tailored to small # of reallocations

- instance-specific measurement noise and statistical power
 Handle batch sizes flexibly

 Empirically validated & deployable with ease

