DRO squared

Toward a inductive modeling language for distribution shifts

Hongseok Namkoong

namkoong@gsb.columbia.edu

Decision, Risk, and Operations Division, Columbia Business School

Based on joint works with Tiffany Cai, Peng Cui, Jiashuo Liu, Tianyu Wang, Steve Yadlowsky

ImageNet

Large **image classification** dataset: 1.2 mio training images, 1,000 image classes.

Golden retriever

Al builds on data as infrastructure

Usage of datasets from here No usage of datasets from here

Pattern recognition will reflect existing biases

Screenshot from 2020-03-31 11-27-22.png

Technology	68%
Electronic Device	66%
Photography	62%
Mobile Phone	54%

Screenshot from 2020-03-31 11-23-45.png

Gun	88%
Photography	68%
Firearm	65%
Plant	59%

OCTOBER 30, 2023

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

BRIEFING ROOM > PRESIDENTIAL ACTIONS

"Artificial Intelligence systems deployed irresponsibly have reproduced and intensified existing inequities, caused new types of harmful discrimination, and exacerbated online and physical harms....It is necessary to hold those developing and deploying AI accountable to standards that protect against unlawful discrimination and abuse, including in the justice system and the Federal Government."

A "process" view of Al systems (not just a model)

Trustworthy data-driven decision-making

- Reliability is a first-order problem in Al-driven decisions
 Standard CS ML benchmarking view breaks down
- I study AI systems with distribution shifts as a central concern
 Build algorithmic + empirical foundation with a modern ML lens
- Main application: online platforms where AI-systems influence high-stakes decisions
 - Algorithmic hiring / sourcing, e.g., allocation of limited recruiter bandwidth across candidates at LinkedIn

A "process" view of AI systems

ML as stochastic optimization

• Standard approach: Solve average-case risk minimization

minimize_{$$f(\cdot)$$} $\mathbb{E}_P[\ell(Y, f(X))]$

• Distributionally robust optimization: Solve worst-case problem

minimize_{$$f(\cdot)$$} max $\mathbb{E}_Q[\ell(Y, f(X))]$

• Idea: Do well almost all the time, instead of on average!

Recent progress

- DRO can contribute to generalization, robustness, and fairness
- Intellectual foundations: training algorithms and data efficiency
- Practical impact: algorithms useful when real shifts can be modeled succinctly, e.g., fairness across demographic groups

Duchi and **N**. Learning models with uniform performance via distributionally robust optimization. Annals of Statistics, 2021. Duchi, Hashimoto, and **N**. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022. Hashimoto, Srivastava, **N**, and Liang. Fairness without demographics in repeated loss minimization. ICML, 2018. Best Paper Runner-up. Sinha*, **N***, and Duchi. Certifiable distributional robustness with principled adversarial training. ICLR, 2018. Oral presentation.

Vignette: auto-complete service

Motivation: Autocomplete system for text

Problem: Atypical text doesn't get surfaced

African American Vernacular (AAVE)

If u wit me den u pose to RESPECT ME

Standard American English (SAE)

If you are with me then you are supposed to respect me.

DRO mitigates disparity amplification

Hashimoto, Srivastava, N, and Liang. Fairness without demographics in repeated loss minimization. ICML, 2018. Best Paper Runner-up.

DRO mitigates disparity amplification

Hashimoto, Srivastava, N, and Liang. Fairness without demographics in repeated loss minimization. ICML, 2018. Best Paper Runner-up.

Causal inference and experimentation

Distributional robustness is a useful diagnostic

- Causal inference is fundamental to scientific decision-making
- Its reliability depends on the ability to extrapolate a study's findings
- Assess validity of findings under distribution shifts
 - Example: finding fails to hold over subpopulations comprising 80% of the study population

Jeong and N. Assessing external validity over worst-case subpopulations, Short version appeared at COLT2020. YNBDT. Bounds on the conditional and average treatment effect with unobserved confounding factors. Annals of Statistics, 2022. NKYB. Off-policy policy evaluation for sequential decisions under unobserved confounding. NeurIPS, 2020. Boyarsky, Egami, and N.. Assessing external validity of RCTs under effect-ordering. Work in progress. Ma, Huang, and N.. A practical minimax approach to causal inference with limited overlap. Work in progress

Industry applications

- Engineering constraints: Robust algos under infrastructural constraints
- **Compliance**: Disparate treatment, design best practices for "due diligence"
- Governance: Standardize & scale requirements at the company level

Today: Diagnostics

Understand why predictive performance degraded

Back to ImageNet

[Taori, Dave, Shankar, Carlini, Recht, Schmidt '20]

Slide credit: Ludwig Schmidt

How do we go up the red line?

- Algorithmic interventions do not provide robustness; only larger training data does—Al community focus on scaling internet data
- But cost of data collection remains a binding constraint; need to understand which data to collect
- Implicit assumptions in the CS benchmarking view (one-size-fits-all)
 - Building a universally robust model, just like humans!
 - Focus on covariate shift (X-shift), e.g., image recognition

[WIKLKRGHFNS'22] Robust fine-tuning of zero-shot models. CVPR, 2022. Best Paper Award Finalist. [WIGRGMNFCKS'22] Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. ICML, 2022.

Even tabular benchmarks mainly focus on X-shifts

• Look at loss ratio of deployed model vs. best model for target

$$\frac{\mathbb{E}_Q[\ell(Y, f_P(X))]}{\min_{f \in \mathcal{F}} \mathbb{E}_Q[\ell(Y, f(X))]} - 1, \quad \text{where} \quad f_P \in \operatorname*{argmin}_{f \in \mathcal{F}} \mathbb{E}_P[\ell(Y, f(X))]$$

Today: Design new datasets from US census data!

Even tabular benchmarks mainly focus on X-shifts

• Look at loss ratio of deployed model vs. best model for target

$$\frac{\mathbb{E}_{Q}[\ell(Y, f_{P}(X))]}{\min_{f \in \mathcal{F}} \mathbb{E}_{Q}[\ell(Y, f(X))]} - 1, \text{ where } f_{P} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}_{P}[\ell(Y, f(X))] \qquad \begin{array}{c} \textit{relative} \\ \textit{regret} \end{array}$$

Liu, Wang, Cui, N., On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets, Short version in NeurIPS, 2023.

Accuracy-on-the-line doesn't hold under strong *Y*|*X*-shifts

• Train & target performance correlated only when X-shifts dominate

Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization.

WhyShift

https://github.com/namkoong-lab/whyshift

- Out of 169 train-target pairs, 80% primarily suffer *Y*|*X*-shifts
- Existing algos do not show consistent robustness gains
 - They make assumptions about data distributions but do **not** check them
 - We need an understanding of **why** the distribution changed!

DRO revisited

• Distributionally robust optimization: Solve worst-case problem

$$\operatorname{minimize}_{f(\cdot)} \max_{Q \in \mathcal{P}} \mathbb{E}_Q[\ell(Y, f(X))]$$

- Choice of ambiguity set \mathcal{P} arbitrary; primarily driven by mathematical convenience and details "left to the modeler"
- Little thought given to model class $f(\cdot)$

Empirical analysis of 10,000 DRO models

Analyze impact of algorithmic design knobs on model robustness

Target performance: single state

- Model class most important! Trees >>> ambiguity set
- Effect of ambiguity set inconsistent across different outcomes

Target performance: single state

• Effect of ambiguity set inconsistent across different outcomes

Upper: Predict whether a low-income individual, not eligible for Medicare, has coverage from public health insurance. Lower: Predict whether annual income > \$50K

Target performance: worst state

• Even for worst-state performance, DRO is unreliable

Upper: Predict whether a low-income individual, not eligible for Medicare, has coverage from public health insurance. Lower: Predict whether annual income > \$50K

Problems with deductive reasoning

Worst-case distribution does not match real targets

Blue bars: Accuracy of logistic regression models trained on each state.

Red bars: Accuracy on worst-case distribution from a DRO model trained on CA

Last week's discussion scientific methods

Figure from Christopher Ryan, DRO Brown Bag, April 2024

Inductive approach to ambiguity sets: X-shifts

- Consider shifts induced by age groups: [20,25), [25,30), ..., [75,100)
- Consider DRO methods (DHN'22) tailored to shifts on a subset of covariates
- Variable selection for ambiguity set: top-K with largest subgroup differences
- Performance varies a lot over variables selected

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.

Inductive approach to ambiguity sets: *Y*|*X*-shifts

- Consider *Y*|*X*-shifts from NE -> LA (public coverage task)
- Consider DRO methods that consider shifts on a subset of covariates and Y
- Variable selection for ambiguity set: Y | "income" suffers the largest shift
- Performance varies a lot over variables selected

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.

Inductive approach to ambiguity sets: *Y*|*X*-shifts

- Consider *Y*|*X*-shifts from NE -> LA (public coverage task)
- Consider DRO methods that consider shifts on a subset of covariates and Y
- Variable selection for ambiguity set: Y | "income" suffers the largest shift
- Performance varies a lot over variables selected

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.

Inductive approach to ambiguity sets

- Y|X-shifts from NE -> LA; DRO over shifts on a subset of (X, Y)
- Variable selection for ambiguity set: Y | "income" suffers the largest shift
- Performance varies a lot over variables selected

Liu, Wang, Cui, **N**., On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets, Short version in NeurIPS, 2023. Duchi, Hashimoto, and **N**. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.

Takeaways so far

- Underlying model class (neural networks vs. tree ensembles) has first-order impact on robustness, yet frequently overlooked
- Ambiguity sets should be *modeled.* Move from deductive to inductive reasoning; do not optimize for math convenience
- Validation methods for hyperparameter selection matters a lot

Cai, Liu, Cui, and N., Data Heterogeneity and Distributional Robustness, NeurIPS Tutorial 2023

Rest of the talk: a step toward an inductive modeling language for distribution shifts

- Current ML community: out-of-distribution performance is worse than in-distribution performance,
 - i.e., **P: train** \neq **Q: target**
- How do we attribute performance degradation? Not all shifts matter for model performance
- Different shifts warrant different interventions
 Our goal today: differentiate X- vs. Y|X-shifts

L: loss P: train Q: target S: shared

Decompose into X-shift vs. Y|X-shift

Train Shared Target Ρ S

L: loss P: train

Q: target S: shared

Q

$$\mathbf{E_p[E_p[L|X]]} \xrightarrow{X \text{ shift } (P \to S)} \mathbf{E_s[E_p[L|X]]}$$

Diagnosis:

S has more X's that are harder to predict than P

> Potential interventions: Use domain adaptation, e.g. importance weighting

Diagnosis: YX moves farther from predicted model

> Potential interventions: Re-collect data or modify covariates

 $E_{S}[E_{p}[L|X]]$ $Y \mid X \text{ shift}$ $E_{S}[E_{Q}[L|X]]$

L: loss P: train Q: target S: shared

Diagnosis:

Q has "new" X's that are harder to predict than **S**

Potential interventions: Collect + label more data on "new" examples L: loss P: train Q: target S: shared

$$\mathbf{E}_{\mathbf{S}}[\mathbf{E}_{\mathbf{Q}}[\mathbf{L}|\mathbf{X}]] \xrightarrow{X \text{ shift } (S \to Q)} \mathbf{E}_{\mathbf{Q}}[\mathbf{E}_{\mathbf{Q}}[\mathbf{L}|\mathbf{X}]]$$

Estimation

$$E_{p}[E_{p}[L|X]] \xrightarrow{X \text{ shift } (P \to S)} E_{s}[E_{p}[L|X]] \xrightarrow{X \text{ shift } (S \to Q)} E_{0}[E_{0}[L|X]]$$

$$E_{p}[E_{p}[L|X]] \xrightarrow{X \text{ shift } (S \to Q)} E_{0}[E_{0}[L|X]]$$

Importance weights look like classifier probabilities

```
L: loss
P: train
Q: target
S: shared
```

Reweight samples from P and Q into S using importance weighting. The importance weights are

$$\frac{dS_X}{dP_X}(x) \propto \frac{q(x)}{p(x) + q(x)} \quad \text{and} \quad \frac{dS_X}{dQ_X}(x) \propto \frac{p(x)}{p(x) + q(x)}$$
Importance weights look like classifier probabilities of X being from P vs Q

Method

L: loss P: train Q: target S: shared

- 1. Train domain classifier to classify X as coming from P vs Q
- 2. Reweight losses from P and Q into S using class probabilities

Shared S inputs are those that can't be confidently classified as **P** vs **Q**

Confidence intervals

L: loss P: train Q: target S: shared

[Theorem: asymptotics] For a nonparametric classifier / reweighting that is asymptotically accurate, our estimator for $\theta_{Q} = E_{S}[E_{Q}[L|X]]$ is asymptotically normal

$$\sqrt{n}(\hat{\theta}_Q - \theta_Q) \stackrel{d}{\rightsquigarrow} N(0, \operatorname{Var}(\psi_Q(W)))$$

and we can estimate $Var(\psi_Q(W))$ using plug-ins to calculate confidence intervals.

[Theorem: semiparametric efficiency] Our estimator gives the tightest possible confidence interval, achieving the lowest possible (asymptotic) variance

Cai, N., and Yadlowsky, Diagnosing Model Performance Under Distribution Shift, 2023

Employment prediction case study

L: loss P: train Q: target S: shared

[X shift] **P**: only age ≤ 25 , **Q**: general population

Employment prediction case study

[X shift] **P**: age \leq 25 overrepresented, **Q**: evenly sampled population

Substantial portion attributed to X shift ($P \rightarrow S$), suggesting domain adaptation may be effective

Better data can be effective

[Y|X shift] P: California (CA), Q: Puerto Rico (PR)

CA model does not use language.

Y|X shift because of missing covariate: language affects outcome

 \rightarrow better performance in PR

A methodological bottleneck: uncertainty

Zhang, Cai, N. and Russo. Posterior Sampling via Autoregressive Generation. Work in progress.

Distribution Shift Decomposition (DISDE)

- Diagnostic for understanding why performance dropped in terms of X vs Y|X shift
- Can help articulate modeling assumptions + data collection

We need a modeling language for a data-centric view of AI

- Develop modeling tools in an **application-specific** manner!
- Top of mind: resolving methodological bottlenecks in uncertainty quantification

Cai, **N.**, and Yadlowsky, Diagnosing Model Performance Under Distribution Shift, Major revision in Operations Research, Conference version appeared in Foundations of Responsible Computing 2022, <u>https://github.com/namkoong-lab/disde</u> Liu, Wang, Cui, and **N.**, On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets, Conference version in NeurIPS 2023, <u>https://github.com/namkoong-lab/whyshift</u>

What's next?

- Industrial applications
 - Governance: Scale minimal requirements at the company level
 - Compliance: Design best practices for "due diligence" in responsible Al
 - Engineering constraints: Design algorithms under infrastructural constraints
- Methodological bottlenecks: uncertainty quantification, objective and actions defined on different timescales
- Top of mind: Measurement and mitigation in shifting AI paradigms

Employment prediction case study

L: loss P: train Q: target S: shared

[Y|X shift] P: West Virginia, Q: Maryland

WV model does not use education.

Y|X shift because of missing covariate: education affects employment

Better data can be more effective than better algorithms!

[Y|X shift] P: California (CA), Q: Puerto Rico (PR)

Include language features when training on CA \rightarrow better performance in PR

Not set ing and the set ing an

collecting better target data

collecting better features

Appendix: Variables in Linear Analysis

Type	Name	Definition				
$\begin{array}{c} \text{Model} \\ \text{Class} \\ X_{i,j,s} \end{array}$	Tree MLP	A dummy variable that takes value one if the base learner of the model configuration is tree-structure A dummy variable that takes value one if the base learner of the model configuration is MLP				
Ambiguity Set	Wasserstein	A dummy variable that takes value one if the model configu- ration belongs to DRO and uses Wasserstein-type metric A dummy variable that takes value one if the model configu- ration belongs to DRO and uses χ^2 -divergence metric A dummy variable that takes value one if the model configu- ration belongs to DRO and uses KL-divergence metric				
$D_{i,j,s,t}$	Chi-squared					
	Kullback-Leibler					
	Total Variation	A dummy variable that takes value one if the model configu- ration belongs to DRO and uses TV-distance metric				
	OT-Discrepancy Radius	A dummy variable that takes value one if the model con- figuration belongs to DRO and uses the optimal transport- discrepancy with conditional moment constraints The rescaled ambiguity size if the model configuration belongs to DRO and equal to zero if the model configuration does				
		not belong to DRO				
Shift Pattern $Z_{i,j}$	Y X-ratio	The $Y X$ -shift percentage calculated by DISDE from the source domain to the target domain				
Validation Type $V_{i,j}$	Worst	A dummy variable that takes value one if the best configuration is obtained through the largest accuracy from the worst target domain				
	Average	A dummy variable that takes value one if the best config- uration is obtained through the largest accuracy from the average-case target domain				

Appendix: Configurations

- Algorithms evaluated in our empirical study:
 - 1. *Basic learners*: Logistic Regression (LR), SVM, fully-connected neural networks (MLP) with standard ERM optimization;
 - 2. Tree-based learners: Random Forest (RF) [8], GBM [26], LightGBM [19], XGBoost [9];
 - 3. Imbalanced learning algorithms: SUBY, RWY, SUBG, RWG [17], which reweight or subsample data to balance the samples of different classes (Y) or different demographic groups (G);
 - 4. *Fairness-enhancing algorithms*: In-processing methods [4] with demographic parity, equal opportunity, and error parity as constraints, and post-processing methods [15] with exponential and threshold controls;
 - Linear-DRO algorithms: Distributionally robust optimization (DRO) methods based on linear SVM using different uncertainty sets, including CVaR-DRO [28], χ²-DRO [12], TV-DRO [18], KL-DRO [16], Wasserstein-DRO [6], Augmented Wasserstein-DRO [30], Satisificing Wasserstein-DRO [22], Sinkhorn-DRO [31], Holistic-DRO [5], Unified-DRO (with L₂-norm) [7], and Unified-DRO (with L_{inf}-norm) [7];
 - 6. NN-DRO algorithms: DRO methods based on MLP using different uncertainty sets, including CVaR-DRO (NN) and χ^2 -DRO (NN) with fast implementation [21], CVaR-DORO (NN) and χ^2 -DORO (NN) that are designed for outlier robustness [34].

Worst-case Distribution Analysis

- Misalignment between worst-case distributions and target distributions
 - when we use the worst-case distribution of KL-DRO to train tree-based methods, their target accuracies **even drop a lot**

Worst-case Distribution Analysis

• Recall that KL-DRO improves the worst target performance on ACS Pub.Cov

¢.		Dependent variable: Accuracy						
		Setup 1: one-to-one			Setup 2: one-to-worst			
Variable Name		All	Pubcov	Income	All	Pubcov	Income	
Model Class	Tree	.0095***	.0047***	.0024***	0113^{***}	0335^{***}	0035	
		(.0027)	(.0012)	(.0009)	(.0023)	(.0032)	(.0031)	
	MLP	$.0036^{*}$	0142^{***}	.0081***	0355^{***}	0363^{***}	0296^{***}	
		(.0019)	(.0009)	(.0007)	(.0024)	(.0040)	(.0033)	
Ambiguity Set	Wasserstein	0048^{*}	0077***	0040***	0469^{***}	0274^{***}	.0002	
		(.0027)	(.0012)	(.0009)	(.0035)	(.0066)	(.0050)	
	Chi-squared	.0011	$.0022^{*}$.0011	0015	$.0170^{***}$	0054	
		(.0025)	(.0011)	(.0008)	(.0026)	(.0035)	(.0036)	
	Kullback-Leibler	0024	.0008	0008	0062^{**}	.0643***	0773^{***}	
		(.0025)	(.0012)	(.0009)	(.0025)	(.0034)	(.0035)	

Worst-case Distribution Analysis

- But still conservative!
 - We train LightGBM and XGBoost models on the worst-case distribution of KL-DRO
 - The worst-case performance over 50 target states improves
 - But the overall target performances drop a lot!

Algorithmic Intervention: design better ambiguity sets?

Case study on covariate shifts:

- for Marginal-DRO and Wasserstein DRO
- only perturb the covariates whose distributions shifte a lot among age groups
 pick the Top-shifted covariates
- measure the worst sub-group accuracy (age groups: [20,25), [25,30), ..., [75,100))

income prediction

Task:

Source: Age < 25Target: Age ≥ 25

Non-Algorithmic Intervention: collect better features/data?

• Region Analysis on *Y*|*X*-shift

Find Covariate Regions with Strong Y|X-Shifts!

- 1. Construct shared distribution from training and target
- 2. Model Y separately on each of training and target: f_{p} , f_{q}
- 3. Model difference in *Y* between train and target $|f_p(x) f_q(x)|$ on shared distribution using interpretable tree-based model

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). <u>On the Need for a Language Describing Distribution Shifts: Illustrations on</u> <u>Tabular Datasets</u>. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*.

Non-Algorithmic Intervention: collect better features/data?

WhyShift

https://github.com/namkoong-lab/whyshift

- Initial conjecture: Y|X-shifts are more prominent than X-shifts in practice
- Out of 169 source-target pairs with significant performance degradation, 80% of them are primarily attributed to *Y*|*X*-shifts.

AI pipeline

More description of datasets and shifts. Outcomes etc.

In spirit, describe the dro that actually works

Expand on why can't we just do regular ml benchmarking on distribution shifts