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Large image classification dataset: 1.2 mio training images, 1,000 image classes.

30

45

20

2010

ImageNet

2011

AlexNet

|

2012

2013

2014

Human

Golden retriever

2015

2016

2017



Al builds on data as infrastructure

® Usage of datasets from here © No usage of datasets from here

Countries are distorted by

frequency of usage. Datasets
originating in the US account
for the most usages (26.910).

Research by: Koch, Denton, Hanna, and Foster (2021)
Visual by: The Mozilla In




Pattern recognition will reflect existing biases

Technology 68%
Electronic Device 66%
Photography 62°
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THE WHITE HOUSE

OCTOBER 30, 2023

Executive Order on the Safe, Secure, and
Trustworthy Development and Use of
Artificial Intelligence

» BRIEFING ROOM » PRESIDENTIAL ACTIONS

“Artificial Intelligence systems deployed irresponsibly have reproduced and intensified existing inequities,
caused new types of harmful discrimination, and exacerbated online and physical harms....It is necessary to hold
those developing and deploying Al accountable to standards that protect against unlawful discrimination and
abuse, including in the justice system and the Federal Government.”

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/




A “process” view of Al systems (not just a model)

Focus of most
research in ML

Data Develop | Test
collection & Train predictions

. —

Monitor & “Decision-making”
Maintain (experimentation)




Trustworthy data-driven decision-making

e Reliability is a first-order problem in Al-driven decisions
o Standard CS ML benchmarking view breaks down

e | study Al systems with distribution shifts as a central concern
o Build algorithmic + empirical foundation with a modern ML lens

e Main application: online platforms where Al-systems influence

high-stakes decisions
o Algorithmic hiring / sourcing, e.g., allocation of limited recruiter
bandwidth across candidates at LinkedIn



A “process” view of Al systems

Data Develop | Test
collection & Train predictions

. —

Monitor & “Decision-making”
Maintain (experimentation)




ML as stochastic optimization

e Standard approach: Solve average-case risk minimization

minimize .y Ep[(Y, f(X))]
e Distributionally robust optimization: Solve worst-case problem

minimize(.) max Eqle(Y, f(X))]

e Idea: Do well almost all the time, instead of on average!



Recent progress

e DRO can contribute to generalization, robustness, and fairness
e Intellectual foundations: training algorithms and data efficiency

e Practical impact: algorithms useful when real shifts can be
modeled succinctly, e.g., fairness across demographic groups

Duchi and N. Learning models with uniform performance via distributionally robust optimization. Annals of Statistics, 2021.

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.

Hashimoto, Srivastava, N, and Liang. Fairness without demographics in repeated loss minimization. ICML, 2018. Best Paper Runner-up.
Sinha*, N*, and Duchi. Certifiable distributional robustness with principled adversarial training. ICLR, 2018. Oral presentation.



Vignette: auto-complete service

i i . Blodgett 16
Motivation: Autocomplete system for text oo 0
on Twitter
W~ 1| P
Tschechien orschid ( African American English (AAE) ) ( Standard American English (SAE)
Tiarkei

farei _
L B . Autocomplete system
Tschechoslowakei with different AAVE fractions

The New YO Times Retention for both groups

Amazon Mechanical Turk

AAE Test set SAE Test set

Problem: Atypical text doesn't get surfaced

Y A4

( User retention for each group )

African American Vernacular (AAVE)

If u wit me den u pose to RESPECT ME

Standard American English (SAE)
If you are with me then you are supposed to respect me.




DRO mitigates disparity amplification
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Hashimoto, Srivastava, N, and Liang. Fairness without demographics in repeated loss minimization. ICML, 2018. Best Paper Runner-up.



DRO mitigates disparity amplification
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Hashimoto, Srivastava, N, and Liang. Fairness without demographics in repeated loss minimization. ICML, 2018. Best Paper Runner-up.



Causal inference and experimentation

Data Develop | Test
collection & Train predictions

T~ —

Monitor & “Decision-making”
Maintain (experimentation)

\
Gap between predictions (clicks)

and long-term metrics (revenue)
bridged via experimentation

/




Distributional robustness is a useful diagnostic

e (Causal inference is fundamental to
scientific decision-making

e |[ts reliability depends on the ability
to extrapolate a study’s findings

e Assess validity of findings under
distribution shifts

o Example: finding fails to hold over
subpopulations comprising 80% of the
study population

Jeong and N. Assessing external validity over worst-case subpopulations, Short version appeared at COLT2020.

treatment effect
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YNBDT. Bounds on the conditional and average treatment effect with unobserved confounding factors. Annals of Statistics, 2022.
NKYB. Off-policy policy evaluation for sequential decisions under unobserved confounding. NeurlPS, 2020.

Boyarsky, Egami, and N.. Assessing external validity of RCTs under effect-ordering. Work in progress.

Ma, Huang, and N.. A practical minimax approach to causal inference with limited overlap. Work in progress



Industry applications

Data. Develgp & Tf—:‘s.t
collection Train predictions
Monitor & “Decision-making”
Maintain (experimentation)

e Engineering constraints: Robust algos under infrastructural constraints
e Compliance: Disparate treatment, design best practices for “due diligence”

e Governance: Standardize & scale requirements at the company level



Today: Diagnostics

Data Develop . Test
collection & Train predictions

T~ —

Monitor & “Decision-making”
Maintain (experimentation)

Understand why predictive performance degraded



Back to ImageNet

751

~
o

(o)}
w

wn
(64}
R

ImageNetV2 (top-1, %)
@

N
vl
®

R

. /’/ w
Big drop o \

"" EfficientNet-B7
A L
A\
¢\

. T VGG, ResNet, DenseNet,
ResNeXt, Inceptjon, NASNet, etc.

- - - - y — x
e Standard models

60

N

AlexNet

Slide credit: Ludwig Schmidt

65 70 75 80 85
ImageNet (top-1, %)

[Taori, Dave, Shankar, Carlini, Recht, Schmidt '20]



How do we go up the red line?

e Algorithmic interventions do not provide robustness; only larger
training data does— Al community focus on scaling internet data

e But cost of data collection remains a binding constraint; need to
understand which data to collect

e Implicit assumptions in the CS benchmarking view (one-size-fits-all)
o Building a universally robust model, just like humans!

o Focus on covariate shift (X-shift), e.g., image recognition

[WIKLKRGHFNS’22] Robust fine-tuning of zero-shot models. CVPR, 2022. Best Paper Award Finalist.
[WIGRGMNFCKS’22] Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. ICML, 2022.



Even tabular benchmarks mainly focus on X-shifts

e Look at loss ratio of deployed model vs. best model for target

Eqle(Y, fp(X))] , relative
min e EgU(Y, f(X)) — 1, where fp€ arjggn;nEp[E(Y,f(X))] regret

Existing datasets

Today: Design new datasets
from US census data!
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Even tabular benchmarks mainly focus on X-shifts

e Look at loss ratio of deployed model vs. best model for target

Eq[(Y, fr(X))] , relative
minser E[U(Y, f(X))] 1, where fp € mjggnEp[é(Y,f(X))] regret
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Liu, Wang, Cui, N., On the Need for a Language Describing Distribution Shifts: lllustrations on Tabular Datasets, Short version in NeurlPS, 2023.



Accuracy-on-the-line doesn’t hold under strong Y|X-shifts

e Train & target performance correlated only when X-shifts dominate
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Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization. On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets



https://github.com/namkoong-lab/whyshift

whyshift 0.1.3

WhyShift B 5 e

https://github.com/namkoong-lab/whyshift

e Out of 169 train-target pairs, 80% primarily suffer Y|X-shifts

e Existing algos do not show consistent robustness gains
o They make assumptions about data distributions but do not check them
o We need an understanding of why the distribution changed!
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https://github.com/namkoong-lab/whyshift

DRO revisited

e Distributionally robust optimization: Solve worst-case problem

minimize() max Eqle(Y, f(X))]

e Choice of ambiguity set P arbitrary; primarily driven by
mathematical convenience and details “left to the modeler”

e Little thought given to model class f(-)



Empirical analysis of 10,000 DRO models

e Analyze impact of algorithmic design knobs on model robustness

Task/State fixed effect

Accijst = @+ By Xijs + Ba Dijss + B3Zij + B Vig Hps + 75|+ €

Y L SN

Model Class Ambiguity Set Shift Pattern Validation Type
(Tree, Linear, MLP) (Distance Type, Radius)  (Y|X-ratio) (Average, Worst)




Target performance: single state

e Model class most important! Trees >>> ambiguity set
e Effect of ambiguity set inconsistent across different outcomes
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Target performance: single state

e Effect of ambiguity set inconsistent across different outcomes
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Upper: Predict whether a low-income individual, not eligible for Medicare, has coverage from public health insurance.
Lower: Predict whether annual income > $50K



Target performance: worst state

e Even for worst-state performance, DRO is unreliable
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Lower: Predict whether annual income > $50K



Problems with deductive reasoning

Worst-case distribution does not match real targets

B Optimal accuracy on each state

Even train (CA)
accuracy is low!

80% 1

Bl Optimal accuracy on worst distributions

80% === - - - - - —_—l .

NDWYAK HI MNMT DE NE LA VI NY WI RI PA SDWVCO KS TA IL CA le-3 1le-2 1le-1 2e-1 3e-1 4e-1

Robustness Radius of KL-DRO

Blue bars: Accuracy of logistic regression models trained on each state.

Red bars: Accuracy on worst-case distribution from a DRO model trained on CA



Last week’s discussion scientific methods

“Ideal hypothesis”
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Figure from Christopher Ryan, DRO Brown Bag, April 2024



Inductive approach to ambiguity sets: X-shifts

Yy e e e e
=]

[=2]
(3]

Worst Sub-group Accuracy
=2
(==

Consider shifts induced by age groups: [20,25), [25,30), ..., [75,100)
Consider DRO methods (DHN’22) tailored to shifts on a subset of covariates
Variable selection for ambiguity set: top-K with largest subgroup differences
Performance varies a lot over variables selected

DRO models based on SVM Marginal DRO WDRO
SVM LR RF XGB LGBM 1 2 3 4 5 6 7 8 9 10 All 1 2 3 4 5 6 7 8 9 10 All
K Features K Features

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.



Inductive approach to ambiguity sets: Y|X-shifts

Consider Y|X-shifts from NE -> LA (public coverage task)

Consider DRO methods that consider shifts on a subset of covariates and Y
Variable selection for ambiguity set: Y | “income” suffers the largest shift
Performance varies a lot over variables selected

0.70

DRO models based on SVM ~__

Marginal DRO

Target Macro F1

0.55

SVM LR RF XGBLGBM All Y+All  Y-+Income
Features Features Feature

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.



Inductive approach to ambiguity sets: Y|X-shifts

Consider Y|X-shifts from NE -> LA (public coverage task)

Consider DRO methods that consider shifts on a subset of covariates and Y
Variable selection for ambiguity set: Y | “income” suffers the largest shift
Performance varies a lot over variables selected

0.70

DRO models based on SVM

— Marginal DRO Y|X DRO
=
o
=
3
T
= For conditional Y|X-DRO:
g the h-net is a SVM.
M the alpha-net is a two-layer MLP.
=
0.55
SVM LR RF XGBLGBM Al Y+All Y+Income Y| All Y| Income
Features Featureseature Features  Features

Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.



Inductive approach to ambiguity sets

e Y|X-shifts from NE -> LA; DRO over shifts on a subset of (X, Y)
e Variable selection for ambiguity set: Y | “income” suffers the largest shift
e Performance varies a lot over variables selected

0.704
DRO models based on SVM \
— Marginal DRO Y|X DRO
~ [DHN’22] [LSW’'24]
2
3}
3]
=
Bl
3]
o0
7
=
0.55
SVM LR RF XGBLGBM Al Y+All Y+Income Y| All Y| Income
Features Featureseature Features  Features

Liu, Wang, Cui, N., On the Need for a Language Describing Distribution Shifts: lllustrations on Tabular Datasets, Short version in NeurlPS, 2023.
Duchi, Hashimoto, and N. Distributionally robust losses against mixture covariate shifts. Operations Research, 2022.



Takeaways so far

e Underlying model class (neural networks vs. tree ensembles)
has first-order impact on robustness, yet frequently overlooked

e Ambiguity sets should be modeled. Move from deductive to
inductive reasoning; do not optimize for math convenience

e Validation methods for hyperparameter selection matters a lot

Cai, Liu, Cui, and N., Data Heterogeneity and Distributional Robustness, NeurIPS Tutorial 2023



Rest of the talk: a step toward an inductive modeling
language for distribution shifts

e Current ML community: out-of-distribution performance is
worse than in-distribution performance,

o i.e. P:train # Q:target

e How do we attribute performance degradation? Not all shifts
matter for model performance

e Different shifts warrant different interventions
o Our goal today: differentiate X- vs. Y|X-shifts



L: loss
A P: train

Q: target
density
of X PX (L{
A
expected 7~ - = <—EQ[L|X]

loss given X / — — <—EP[L|X]

— >
X=age L is loss

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

A P: train
Q: target
density
of X PX (%{ You can only
compare Y|.X on

® ® shared X
\ /

expected { i /—\\*//—- <—EQ[L|X]
loss given X /) — — - <—EP[L|X]
— ~ &
— [
< ® ® » X=age L 1s loss
EQ[L|X] not E_[L|X] not
well-defined well-defined

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Define Shared Distribution P: train

Q: target
S: shared
A
density
of X
>X
A =age
. X X

px(x) + qx(x)

of X S

>
X=age

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Decompose change in performance 0 tarwes
S: shared
E,[E,[L|X]] E,[E,[LIX]]
Performance on the Performance on the
training distribution target distribution
1\ J
Y

Decompose into X-shift vs. Y|X-shift

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Decompose change in performance

X shift (P — S) \
E,[E,[LIX]] > EJ[E,[LIX]] \

Diagnosis:
S has more X’s that are
harder to predict than P

Potential interventions:
Use domain adaptation, e.g.
importance weighting

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011

L: loss
P: train
Q: target
S: shared

Shared ' Target
S Q



L: loss
P: train
Q: target
S: shared

Decompose change in performance

Train Shared ' Target
L [P S Q
Diagnosis:

Y|X moves farther from
predicted model

E [E,[LIX]]

Y | X shift

Potential interventions:
Re-collect data

or modify covariates

<

E[E [LIX]]

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Decompose change in performance 0 tarset
S: shared
Diagnosis:
Q has “new” X’s that are B il i
harder to predict than S |
Potential interventions:
Collect + label more data
on “new” examples
X shift (S = Q)
ES[EQ[LlX]] ? EQ[EQ[LlX]]

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

P: train

Q: target
Legend: S: shared

Decompose change in performance

Y | X
X shift ; shift
—
X shift (P — S)
E,[E,[LIX]] » EE,[LIX]]

Y | X shift

i X shift (S — Q)
E[Eq(LIXI] > E,[E,[LIX])

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss
. . P: trai
Estimation O: target

Legend: S: shared

Y | X
X shift ; shift
—
X shift (P — S)
E,[E,[LIX]] » EE,[LIX]]

Y | X shift

i X shift (S — Q)
E[Eq(LIXI] > E[E,[LIX])




L: loss

. . P: train

E5t|mat|0n Q: target

Legend: S: shared
Y | X
X shift , shift
—_—
X shift (P — 5)
E,[E,[LIX]] | Eg[E,[LIX]]
Y | X shift

K shift (S — Q)
E[E,[LIX]]  Eg[Eg(LIX])



L: loss

° P: trai
How do you take expectations Q %Tg“ea
egend: S: share
over S??? e

X shift } shift
—_— v

X shift (P — 5)
> ES[EP[L|X]]

'Y | X shif

' | Importance
weighting!




L: loss

. . - e P: train
Importance weights look like classifier probabilities q; target
S: shared

Reweight samples from P and Q into S using importance weighting.
The importance weights are

dSx
dPx

p(x)
p(x) + q(z)

q(r) and dSx
p(r) + q(x) dQ x

(7) (7)

Importance weights look like classifier
probabilities of X being from P vs Q




Method

L: loss

P: train
Q: target
S: shared

1. Traindomain classifier to classify X as coming from P vs Q

2. Reweightlosses from P and Q into S using class probabilities

Shared S inputs are those that can’t be
confidently classified as P vs Q




L: loss
P: train

Confidence intervals Q: target
S: shared

[Theorem: asymptotics] For a nonparametric classifier / reweighting that is
asymptotically accurate, our estimator for GQ=ES[EQ[LIX]] is asymptotically normal

V(lg —0q) < N(0, Var (1o (W)))

and we can estimate Var (g (W)) using plug-ins to calculate confidence intervals.

[Theorem: semiparametric efficiency] Our estimator gives the tightest possible
confidence interval, achieving the lowest possible (asymptotic) variance

Cai, N., and Yadlowsky, Diagnosing Model Performance Under Distribution Shift, 2023



L: loss

P: train
Employment prediction case study Q: target
S: shared
[X shift] P: only age <25, Q: general population
021 Performance attributed to X shift
=3 G -1 (S — Q), meaning “new
0.8 o2 .
ol examples” such as older people
30.7 §§’
: ' e
0.6 -
B X shift (P to S)
B X shift (S to Q) Shared Target
0.5 Y|X shift S Q
Source Target Diffe}ence
Age<=25 General
Population

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

P: train
Employment prediction case study Q: target
S: shared
[X shift] P: age <25 overrepresented, Q: evenly sampled population
0.775- Substantial portion attributed
el S ?;é _____ ] to X shift (P — S), suggesting
€3 domain adaptation may be
0.725 1 op )
g <9 effective
So700 NN Lk /T )
< 0.675-
B X shift (Pto S)
0-630 N X shift (S to Q) Shared Target
Y|X shift S Q
0.625 -

Source Target Difference
Oversample  General
Age<=25 Population
Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.020




Accuracy

Better data can be effective

[Y|X shift] P: California (CA), Q: Puerto Rico (PR)

No language features

Accuracy
degradation

Y| X shift
BN X shift(P)
BN X shift(Q)

CA PR

Difference

With language features

. 818

PR

.y
tion

a

Accurac
rad

Y| X shift
EE X shift(P)
B X shift(Q)

Difference

CA model does not use
language.

Y|X shift because of
missing covariate:
language affects outcome
— better performance in PR



A methodological bottleneck: uncertainty

Only observe outcomes on items we recommend.
How do we collect outcomes across a huge space?

Data _ Develop | Test
collection & Train predictions

. —

Monitor & “Decision-making”
Maintain (experimentation)

Zhang, Cai, N. and Russo. Posterior Sampling via Autoregressive Generation. Work in progress.



Distribution Shift Decomposition (DISDE)

e Diagnostic for understanding why performance dropped in terms of X vs Y|X shift
e (Can help articulate modeling assumptions + data collection

We need a modeling language for a data-centric view of Al

e Develop modeling tools in an application-specific manner!
e Top of mind: resolving methodological bottlenecks in uncertainty quantification

Cai, N., and Yadlowsky, Diagnosing Model Performance Under Distribution Shift,

Major revision in Operations Research, Conference version appeared in Foundations of Responsible
Computing 2022, https://github.com/namkoong-lab/disde

Liu, Wang, Cui, and N., On the Need for a Language Describing Distribution Shifts: lllustrations on Tabular
Datasets, Conference version in NeurlPS 2023, https://aithub.com/namkoong-lab/whyshift



https://github.com/namkoong-lab/disde
https://github.com/namkoong-lab/whyshift

What's next?

e Industrial applications
o Governance: Scale minimal requirements at the company level
o Compliance: Design best practices for “due diligence” in responsible Al
o Engineering constraints: Design algorithms under infrastructural constraints

e Methodological bottlenecks: uncertainty quantification, objective and actions
defined on different timescales

e Top of mind: Measurement and mitigation in shifting Al paradigms



L: loss
P: train

Employment prediction case study Q: target
S: shared

[Y|X shift] P: West Virginia, Q: Maryland

5 e .1 5 ) L SO —

WV model does not use

0.65 - .
education.

Accuracy
degradation

0.60 |

Accuracy

Y|X shift because of missing

covariate: education affects
B X shift (Pto S)

0554
X shift (S to Q) employment
Y|X shift
0.50- ]
Source (WV) Target (MD) Difference

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Better data can be more effective than better algorithms!

Include language features when training

[Y|X shift] P: California (CA), Q: Puerto Rico (PR)

on CA — better performance in PR

Accuracy

No language features
81.7

CA

Accuracy
degradation

—

Y| X shift

B X shift(P)
B X shift(Q)

PR Difference

CA

PR

With language features
81.8

Accursjlcy
degradation

Y|X shift
EEE X shift(P)
B X shift(Q)

Difference

collecting better features

Test Accuracy

]
(=}
L

~
S
L

Original Setting W@ Add Region Data
Add Target Data

FEET]

nghtGBM XGBoost

collecting better target data



Appendix: Variables in Linear Analysis

[ J
Type Name Definition
Model Tree A dummy variable that takes value one if the base learner of
Class the model configuration is tree-structure
Xijs MLP A dummy variable that takes value one if the base learner of
the model configuration is MLP
Ambiguity Wasserstein A dummy variable that takes value one if the model configu-
Set ration belongs to DRO and uses Wasserstein-type metric
D; jst Chi-squared A dummy variable that takes value one if the model configu-
ration belongs to DRO and uses y2-divergence metric
Kullback-Leibler A dummy variable that takes value one if the model configu-
ration belongs to DRO and uses KL-divergence metric
Total Variation A dummy variable that takes value one if the model configu-
ration belongs to DRO and uses TV-distance metric
OT-Discrepancy A dummy variable that takes value one if the model con-
figuration belongs to DRO and uses the optimal transport-
discrepancy with conditional moment constraints
Radius The rescaled ambiguity size if the model configuration belongs
to DRO and equal to zero if the model configuration does
not belong to DRO
Shift Y| X-ratio The Y|X-shift percentage calculated by DISDE from the
Pattern Z; ; source domain to the target domain
Validation Worst A dummy variable that takes value one if the best configura-
Type V, ; tion is obtained through the largest accuracy from the worst
target domain
Average A dummy variable that takes value one if the best config-

uration is obtained through the largest accuracy from the
average-case target domain




Appendix: Configurations

e Algorithms evaluated in our empirical study:

1. Basic learners: Logistic Regression (LR), SVM, fully-connected neural networks (MLP) with
standard ERM optimization;

2. Tree-based learners: Random Forest (RF) [8], GBM [26], Light GBM [19], XGBoost [9];
3. Imbalanced learning algorithms: SUBY, RWY, SUBG, RWG [17], which reweight or sub-

sample data to balance the samples of different classes (Y) or different demographic groups
(G);

4. Fairness-enhancing algorithms: In-processing methods [4] with demographic parity, equal op-
portunity, and error parity as constraints, and post-processing methods [15] with exponential
and threshold controls;

5. Linear-DRO algorithms: Distributionally robust optimization (DRO) methods based on lin-
ear SVM using different uncertainty sets, including CVaR-DRO [28], x2.-DRO [12], TV-
DRO [18], KL-DRO [16], Wasserstein-DRO [6], Augmented Wasserstein-DRO [30], Satisi-
ficing Wasserstein-DRO [22], Sinkhorn-DRO [31], Holistic-DRO [5], Unified-DRO (with Lo-
norm) [7], and Unified-DRO (with Lj,s-norm) [7];

6. NN-DRO algorithms: DRO methods based on MLP using different uncertainty sets, including
CVaR-DRO (NN) and x2-DRO (NN) with fast implementation [21], CVaR-DORO (NN) and
x2-DORO (NN) that are designed for outlier robustness [34].



Worst-case Distribution Analysis

e Misalignment between worst-case distributions and target distributions
o  when we use the worst-case distribution of KL-DRO to train tree-based methods, their
target accuracies even drop a lot

80% 80% ’

el s:

Radius: 0 0.05 Radius: 0 0.05 0.1 0.2

(a) ACS Income, nghtGBM (b) ACS Income, XGB




Worst-case Distribution Analysis

e Recall that KL-DRO improves the worst target performance on ACS Pub.Cov

Dependent variable: Accuracy
Setup 2: one-to-worst

Setup 1: one-to-one

Variable Name All Pubcov Income All Pubcov Income
Tree .0095*** .0047*** .0024*** —.0113*** —.0335*** —.0035
Model

(.0027) (.0012) (.0009) (.0023) (.0032) (.0031)

Class MLP 0036*  —.0142***  .0081*** —.0355*** —.0363*** —.0296***
(.0019) (.0009) (.0007) (.0024) (.0040) (.0033)
o Wasserstein —.0048* —.0077*** —.0040*** —.0469*** —.0274*** .0002
Ambiguity (.0027) (.0012) (.0009) (.0035) (.0066) (.0050)
Set Chi-squared .0011 .0022* .0011 —.0015 .0170*** —.0054
(.0025) (.0011) (.0008) (.0026) (.0035) (.0036)

Kullback-Leibler —.0024 .0008 —.0008 —.0062** .0643***| —.0773***
(.0025) (.0012) (.0009) (.0025) (.0034) (.0035)




Worst-case Distribution Analysis

e But still conservative!

o We train LightGBM and XGBoost models on the worst-case distribution of KLL.-DRO
o  The worst-case performance over 50 target states improves

o  But the overall target performances drop a lot!

80%

60%

$ree

Radius: 0 0.4 0.6 0.8

(c) ACS Pub.Cov, Light GBM

80%

60%

o

Radius: 0 0.4 0.6 0.8

(d) ACS Pub.Cov, XGB




Algorithmic Intervention: design better ambiguity sets?

Case study on covariate shifts: Task:  income prediction
Source: Age <25
e for Marginal-DRO and Wasserstein DRO Target: Age =25

e only perturb the covariates whose distributions shifte a lot among age groups
o  pick the Top-shifted covariates

e measure the worst sub-group accuracy (age groups: [20,25), [25,30), ..., [75,100))

IS
(=]

=)
o

Only perturb top-i
features at time i

=2
(=}

Worst Sub-group Accuracy

SVM LR XGB RF LGBM 1 2 3 4 5 6 7 8 9 10 Marginal 1 2 3 4 5
DRO

6 7 8 9 10 WDRO



Non-Algorithmic Intervention: collect better features/data?

Find Covariate Regions with

e Region Analysis on Y| X-shift
Strong Y|X-Shifts!

1. Construct shared distribution from training and target

2. Model Y separately on each of training and target: f, f;

3. Model difference in Y between train and target | f,(z) — f,(x)| on shared distribution
using interpretable tree-based model

density
of X PX Q‘

»
o>

* px(x)qx(x)

“ ————
density sx(%) px(x) + qx(x)
of X S
X

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: [llustrations on
Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Non-Algorithmic Intervention: collect better features/data?

( L. \
+ Task: Income Prediction !
|
Tabular Data ] Shift: CA -> PR ’.
Work Hour = 34.5 Rules
”0/ \yes * Sex: female Age > 31
- * Work Hour €[34.5,49.5]
©0 " Education > College + Education > College Y <hif ) . "
no _yes * Occupation set A : MGR, shift region consists o
/-_;;-)/ x& BUS, FIN, LGL, EDU, ENT — YI i g i
e occupations that require language
Occupation € A /
m)/ \yes . ° .
P4 Official languages are different in
Risk Region
CA and PR!
(c) Region with Y| X -shifts (XGBoost)
g




whyshift 0.1.3

WhyShift O] -.: g'ﬁ pip install whyshift 0

https://github.com/namkoong-lab/whyshift

e Initial conjecture: Y|X-shifts are more prominent than X-shifts in practice

e Out of 169 source-target pairs with significant performance degradation, 80% of
them are primarily attributed to Y|X-shifts.

Density

T T T T T T
0% 20% 40% 60% 80% 100%

Y| X-Shift Ratio


https://github.com/namkoong-lab/whyshift

Al pipeline

Model
training

Data
collection Al

development
cycle

Validation &

Monitoring




L: loss

P: train

Q: target
Legend: S: shared

Decompose change in performance

Y | X
X shift ; shift
—
X shift (P — S)
E,[E,[LIX]] » EE,[LIX]]

Y | X shift

i X shift (S — Q)
E[Eq(LIXI] > E,[E,[LIX])

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss
. . P: trai
Estimation O: target

Legend: S: shared

Y | X
X shift ; shift
—
X shift (P — S)
E,[E,[LIX]] » EE,[LIX]]

Y | X shift

i X shift (S — Q)
E[Eq(LIXI] > E[E,[LIX])




L: loss
P: train

EStimation Q: target

Legend: S: shared

Y | X
X shift } shift
_) v

X shift (P — S)
E,[E,[LIX]] | E([E,[LIX]] E,[E,[LIX]]

E Y | X shift

K shift (S — Q)
E,[E,[LIX]] E[E,[LIX]] > Eg[Eg(LIXI)




L: loss

° P: trai
How do you take expectations Q %Tg“ea
egend: S: share
over S??? e

X shift } shift
—_— v

X shift (P — 5)
> ES[EP[L|X]]

'Y | X shif

' | Importance
weighting!




More description of datasets and shifts. Outcomes etc.
In spirit, describe the dro that actually works

Expand on why can’t we just do regular ml benchmarking on distribution shifts



