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Goal: AI-driven decisions

- AI now comprehends language and visual inputs

- Big opportunities to make decisions based on them

- Decision-making requires comprehending 
uncertainty and acting to resolve it



Job recommendations

Cold-start a notorious 
problem in RecSys



Longstanding challenge in AI

Despite many attempts, neural nets 
still cannot comprehend uncertainty

We know two things in AI
1. Scalable optimization (a.k.a. auto-differentiation)
2. Rigorous empirical validation based on OOS loss

Wait what about {Bayesian NNs, deep GPs, conformal prediction, ensembling etc}??
   TLDR; very challenging to employ above  
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Current SoTA: Thomson sampling with uninformative prior,
e.g., based on article categories



Today

For this 20min talk, I focus on non-contextual MAB setting for simplicity; 
main insight generalizes to contextual problems

1. Extract ‘informed prior’ from LLM

2. Comprehend remaining uncertainty

3. Balance exploration / exploitation



Today: learning to learn

Use vast 
historical data 
to warm-start 

online decision-
making



Thomson sampling

• Draw 𝑈 from the posterior given all data about the article
• Pick best article according to the drawn values

𝑍 : LLM features
𝑈 :  other latent factors that govern article popularity

This requires positing a prior and doing posterior 
updates over LLM features Z—longstanding challenge



Main insight due to De Finetti (1930)

Autoregressive modeling of exchangeable 
observations implicitly learns a Bayesian model

𝑍 : LLM features
𝑈 :  other latent factors that govern article popularity

maximize



1) Pretrain a sequence model on historical data
To attain low loss, one must implicitly comprehend uncertainty given text/interaction data

Interactions with distinct users

Distinct articles

Historical data𝒟!"#$
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Train transformer on the 
usual sequence loss



2) Act on uncertainty by autoregressive generation
Sampling hypothetical outcomes reveals actions that might have great performance 
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4) Observe 
outcome

Repeat process w/ next user



Fill in the table

Autoregressive generation 
=draw U from a posterior, then generate imagined data



Posterior sampling via autoregressive generation
Optimal decision under imagined data = doing best under U drawn from a posterior



Average regret controlled by prediction error

2 " no. articles " ℓ 𝑝∗ − ℓ(𝑝%)

≤

+

Two assumptions: 1) bounded rewards, 2) training length sequence exceeds T

Regret when using 
autoregressive model 𝑝,

Regret of Thomson sampling 
from true prior for articles today

Optimal autoregressive 
prediction

Validation loss 



Baby sequence model

Pretrained (Distil) 
BERT LLM: 

extracts embedding

Hardcoded:
 extracts summary 

statistics 

H
eadline (Z)

O
utcom

es (Y;s)

MLP P(Click)

Trainable
Fixed



Experiments: Regret
A semi-realistic simulator using public MSN news article data

Autoregressive generation 
scales to a setting where the 
best performance requires 

end-to-end finetuning of an 
LLM. 





Experiments: Coverage
Autoregressive generation mimics proper Bayesian beliefs given headline (text)

Ensembling is SOTA (‘epistemic’) 
uncertainty quantification in 

NNs, but they cannot model U.



Summary

Conceptual: a well motivated problem crystalizing the insights

Algorithmic: link with interactive decision-making 

Theory: accurate sequence modeling implies low regret

Experiments: scalable implementations with LLMs. 

https://arxiv.org/abs/2405.19466

Generative 
Sequence 
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Exploration & 
Uncertainty 

Quantification


