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Progress in machine learning?
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Challenge 0: Robustness

ImageNet

New test accuracy (top-1, %)
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[Does ImageNet classifiers generalize to ImageNet? Recht, Roelofs, Schmidt, Shankar ’19]



Challenge 1: Long-tails

e | ong-tailed data is ubiquitous in modern applications

- Google (7 yrs ago): constant fraction of queries were new each day

e Tail inputs often determine quality of service

Long-tailed queries
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Example: Predicting warfarin dosage

30 A

» Warfarin is the most widely used
blood-thinner worldwide

e Task: learn to predict therapeutic
warfarin dosage

e Personalized treatment
recommendation based on

squared error (y; — 0T x;)?
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regreSSion models [International Warfarin N — A
Pharmacogenetics Consortium '09] : : : : : / :
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- Worked best out of polynomial regression, kernel
methods, neural networks, regression splines, ] ] )
boosting [IWPC '09] Tail performance is orders of magnitude

Another use for Warfarin: rat poison —

worse than average




Challenge 2: Lack of diversity in data

e “Clinical trials for new drugs skew heavily white”

- Less than 5% of cancer trial participants were non-white

[Oh et al. 15, Burchard
etal.’15, Chen et al.,
14, SA Editors '18]

* Majority of image data from US & Western Europe

ImageNet: country of origin

Us

GB
7.6

[Shankar et al. ’17]

Other examples
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Dependency parsing Captioning Recommender systems
[Blodgett+ 16] [Tatman+ 17] [Ekstrand+ 17,18]
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Part-of-speech tagging

[Hovy+ 15]

Language identification
[Blodgett+ 16, Jurgens +17]

Face recognition
[Grother+ 11]



Standard Approach: Average Loss

* Loss/Objective £(0; Z) where 6 € © is parameter/
decision to be learned, and Z ~ P, IS random data

e Optimize average performance under P,

r

minimizegcg Ep, [£(0; Z)]

Linear regression £(6; X,Y) = (Y — ' X)?
SVM (Classification) ¢(0;X,Y)=(1-Y0'X),

Deep neural networks  £(0; X,Y) = (Y — 61(0; - - - 0% (0 - X))))?



Example: Facial recognition

* |Labeled Faces in the Wild, a gold standard dataset for face
recognition, is 77.5% male, and 83.5% White [Han and Jain ’14]

» Commercial gender classification softwares have disparate
performance on different subpopulations

Gender Darker Darker Lighter Lighter Largest
Classifier Male Female Male Female Gap
=. Microsoft 94.0% 79.2% 100% 98.3% 20.8%

K EACE+ 99.3% 65.5% 99.2% 94.0% 33.8%
— B o O |

88.0% 65.3% 99.7% 92.9% 34.4%
I

| [T
b |

Gendered Shades: Intersectional accuracy disparity
[Buolamwini and Gebru *18]




Distributionally robust optimization

Standard approach: Solve average risk minimization problem

minimizegco Ep ., [£(0; Z)]

Today: Solve distributionally robust optimization problem

nimi o [0(0; 2
minimize max Q4(0; Z))

for some carefully chosen set of probabilities P

Idea: Do well almost all the time, instead of on average!

References: [Ben-Tal et al. 13, Bertsimas et al. 16, Blanchet & Murthy 16, Blanchet et al. 16,
Gao & Kleywegt 16, Lam & Zhou 17, Lam 18, and many others]



f-divergences

Idea: Instead of using the empirical distribution Py,
look at all distributions “near” it

Notion of distance:
d@) .

f-divergence: If L = — is “near 1”7, then () and P are near

dP
L
For a convex function (L)

fiR, >R, with f(1) =0,
Dy @P) =En £ (52)

As curvature of f decreases, the
divergence becomes smaller!



Distributionally robust optimization

Idea: Instead of using the empirical distribution P, ,
look at all distributions “near” it

Worst-case region

Pulp) == {Q: Dy (QIP:) <}

Distributionally Robust Optimization

minimize max E q:4(0; Z;)
0cO q€Pn (,0)

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 17, Lam 18]



Optimization

Ar°P = argmin max Zqz (0; Z;)

bce® QEPL(p)

Nice properties
e Convex if loss is convex
e Conic forms Ben-aietal. 13]

e (Gradient descent . & buchi1g]
e SGD on the dual




Outline

e Understanding DRO

- DRO = worst-case subpopulation performance

* Trade-off: robustness vs. convergence
* Experiments

e Extensions: covariate shift



First idea: pre-defined groups

Given pre-defined demographic groups g € G,

* Separate model for each group Ep [((04; Z)]

e One model for worst-off group maggc Ep, [£(0; Z)] Wenraeens
gec

See also [Kearns et al. ’18, Kim et al. ’19]

Problems

In some applications, demographic information is unavailable (e.g.
speech recognition), or illegal to use (e.g. insurance)

Protected groups are hard to define a priori
- variables often comprise continuous spectrum
- performance determined in an intersectional fashion

Accounting for intersections gives exponentially many subgroups
- computational & statistical difficulties



Example: Predicting warfarin dosage

Error per racial group

100
4.0 4 I Error Per Race
' HEE FError Quantiles
3.51 @ Demographics (%) - 80

squared error E(Y —87X)?
demographic proportion (%)

Asian  Black White NA q80 q90 q95



Example: Predicting warfarin dosage

Error per racial group for
patients with high dosage (> 49mg)

I Error Per Race
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Protecting against large shifts

Automatically find worst-off subpopulations,
and optimize performance on them

minimize
0cO

P,s : data-generating distribution

max
Q:Dy (Q Pobs)<p

o 4(0; Z)]

() : subpopulation



Subpopulations

e () is a subpopulation of P if it’'s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation <==p st. P() = a0+ (1 — )

Q' QO
P: base distribution
\>

0(0; 72)
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Subpopulations

e () is a subpopulation of P if it’'s a mixture component

dproportion a € (0, 1], prob. ()’
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Subpopulations

e () is a subpopulation of P if it’s a mixture component

dproportion a € (0, 1], prob. ()’

() is a subpopulation <==p st P() = a0+ (1 — )

g
Notation ( \

. Jo. dprobability (), and a > «

Qzo st. P=aQ+ (1 —a)Q

\ /
subpopulation with proportion larger than o € (0, 1]




Random minority proportions

* Worst-case loss over subpopulations larger than o € (0, 1

sup Eq[4(0; Z)]

e Let A ~ P4, be arandom minority proportion

Qo

e Take another worst-case over Py, € Py

worst-case over subpopulation larger than A € (0, 1]

r

.

sup Ea~p,
PacPa

|

\V
sup Eo[£(6; Z)]]
QA |

\

J

T

worst-case over probability 24 on minority proportion A



DRO = worst-case subpopulations

Let P be a convex set of probability distributions.

( )
Lemma: There is P4, a set of probabilities on (0, 1] s.t.

wp Eol(0: 7)) = sup Enop, {sup Eo[(6: Z)]}
QeP PAa€ePa QLA

See [Kusuoka 01, Pflug and Romisch 07]
\_ J

DRO optimizes worst-case subpopulation loss!



Back to f-divergences

fu(t) = (k(k = 1)1t = 1) for k € (1, 00)

( )

Lemma: f-div DRO optimizes worst-case subpopulation

sup Eoll(0;Z) = sup Eaop, lsup IEQ[E(H;Z)]]
Q:Dy, (Q Pobs)<p PA€PA,k,p QzA

where a.(p)~' = (1 +k(k—1)p)'/*, and

Pa ke = { Set of random minority proportions lower bounded by «;.(p) }

See also [Dentcheva 10]
. J




Back to f-divergences
fu(t) = (k(k — 1)1 (tF = 1) for k € (1, 00)

minimize sup
e Q:Dy, (Q| Pons)<p

Less robust

Minority
Subpopulatlon

e Heuristically, tune . and a(p) on some preliminary subpopulation



A principle: minimax

|.We choose procedure ¢, nature chooses Pops

). Receive data Z; i.i.d.from P.... & makes decision

Define Rk, ,(0; P) := sup Eql4(0; Z)]
Q:Dy, (Q|P)<p

r

Minimax (excess) risk [Wald 39,von Neumann 28]:

min max {EPobs [Rk,p(A(Z?); Pobs)] — min Rk,p(9§ Pobs)}

é\ PObSEDObS 96@

VWorst case over distributions D, i

AN

Best case over procedures §: 2" — ©

.




Malin result

Theorem (Duchi & Namkoong "20)

R 1
i E obs Ri,p(0; Pobs) o /2 10 Fxv2
mgmpogggobs{ Pobs [Re,p (0(27'); Pobs)] — min R, (6; Pob )}

where k. =k/(k—1). /

k € [2,00): parametric
ke (1,2) :slower

VWorst case over distributions Dgps

AN

Best case over procedures 6: 2" - ©

Two pronged approach
1. Convergence guarantee: find good procedure

2. Lower bound: show no procedure can do better




Fine-grained recognition

e Task: classify image of dog to breed (120 classes)

o Kernel features

No underrepresentation:
same number of images per class



top-5 error rate

ERM error rate
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BIG gap in performance even
when no underrepresentation
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standard deviation of class-wise error

Variation in error over 120 class

—&— train
0.16 —¥— test
0.14 -
0.12 -
0.10 +
0.08 +
1.0 (ERM) .99 .90 .60 .20 .07

Lower bound on minority proportion a2 (p) := (1 + 2p)

falt) =2 —1

—1/2




Worst x-classes

0.75 A

0.70 A

tail-averaged top-5 error rate
o
(0 0]
o

0.65 -

0'60 - 1 1 1 1 1 1
20 40 60 80 100 120
classes

Takeaway: EUAFAMSLURRBINPBR¥BIMANCE 4¢ro8) di dog breeds




Repeated loss minimization

Average loss
ignores minorites

Group recieves
high loss

Group becomes
small

Lower retention rate

Problem: Degradation over time



Problem: Degradation over time

Small disparities can amplify to exacerbate subpopulation performance

Toy Example

§ 0.80 - -.-Hﬁfﬁm_n_l_u | ‘
S |
O 0.75 -
O
>
£ 0.70{ —+ ERM
.g —— DRO
2 065_ I | T | |
0 100 200 300 400
Time
( )

“Theorem” (HSNL'18) Under general user retention dynamics,

|) ERM is unstable
2) minimizing Rp,a(0; Pls) controls latent minority proportions

over time
\_ w,




Experiment: Auto-complete

Motivation: Autocomplete system for text

W - Tl P
Tschechien 'orschi..
Tarkei

fersiond Thiringen
Tschechoslowakel

The I"'-JE1.-'-.-'"r'|:|Tir'r1E5

Problem: Atypical text doesn't get surfaced

African American Vernacular (AAVE)

If u wit me den u pose to RESPECT ME

Standard American English (SAE)
If you are with me then you are supposed to respect me.



Experiment: Auto-complete

Retention feedback loop

Average loss
ignores AAVE

AAVE group
receives high loss

AAVE group
becomes smaller

b

How does loss relate
) " |
to retention rate Lower retention rate




Experiment: Auto-complete

Blodgett 16

Subcorpora Twitter
on Twitter

( African American English (AAE) )

Standard American English (SAE))l

09

000000 . 000000 .
AAE Test set SAE Test set

l

0.1

Autocomplete system
with different AAVE fractions

Retention for both groups
Amazon Mechanical Turk

TITIILIIITL ( User retention for each group




Mitigating Disparity Amplification

0.90 1 tL.Jdaasgbanpmeseeugbuahinadduupbnupmonin-pren-
13 0.85 -
© b - WY 1 N X N
c 0.80 A
9
@ 0.75 -
v - ERM (AAE)
0.70 - - DRO (AAE)
----- ERM (SAE)
0.654 e DRO (SAE)
0 10 20 30 40 50

Time

Takeaway: Control minority proportion == uniform performance over time



Covariate shift

» Conditional distribution Py |x fixed

e Only consider subpopulations of marginal Px

Notation , \

Jo. . Jdprobability , and a > «
Qx z o 4= X's.t.PX:aQX—k(l—a)

\ /
subpopulation over X with proportion larger than « € (0, 1]

( )
( )

QSUE  Eox XPY|X[€(H;X7 Y)] = Eqox [EC(Q,X)] ‘

\ /

le(0; X) :=Ep,  [£(0; X,Y) | X]




Covariate shift

Standard approach: Solve average risk minimization problem

minimize Ep, [4(0;X,Y)

DRO over covariate shift

nimj Eo, 4.(0; X
migimgize sup Qx [£c(0; X))

worst-case loss over subpopulations in X larger than o € (0, 1]

Problem: We don’t observe /.(0; X) := Ep, , [((6; X,Y) | X]!
Hard to estimate because of limited replicate labels Y| X




Dual representation

(Lemma (Duchi, Hashimoto & N "1 9)
Let (.(0; X) :=Ep, [£(0; X,Y) | X].

1
sup Eo, [£.(0; X)] = inf {—EPX (£e(0; X) —m), + 77}
Qxra N q

AR I M I TR SE AR N BSOS I NI et o o d

2

Only care about X with conditional risk worse than 7]

y,

Forany k,k, > 1 suchthat 1/k+1/k. =1

Epy (Le(0; X) —n), < (Epy (£e(0; X) — n)i*)l/k*

— sup E[R(X)(£(0; X,Y) —n)]
h>0,E[h(X)Fk]<1



Variational form

Lemma (Duchi, Hashimoto & N '19)
If z — ¢.(0;2), and (z,y) — £(0;z,y) are L-Lipschitz,

<EPX (£e(0; X) — 77)’_1*) 1/k.

= sup E[h(X)(£(0; X,Y) —n)]
h>0,E[h(X)*]<1,0(L)-smooth

forany k,k. > 1 suchthat 1/k+1/k, =1

.

Estimable bound

sup Eo . [(.(6; X)]
Qxr=a

1
<inf { — sup ER(X)((0; X,Y) —n)] +n
M | @ r>0,E[R(X)F]<1,0(L)-smooth

Replaced /.(0; X):=Ep,  [¢(6; X,Y) | X] with £(6; X,Y)



Estimator

Standard approach: Solve empirical risk minimization problem

1 n
inimize — » £(0; X;,Y;
minimize Z_Zl (0; )

Worst-case subpopulation approach: Optimize worst-case
subpopulation performance

n

1 1
minimize { — sup — h(X;)(0(0; X:,Y:) —n)] +n
0€0O,n { & h>0,+ 3" | h(X;)*<1,0(L)-smooth n ;

1

Can efficiently solve using dual version. See paper for details.



Semantic similarity

Given two word vectors (GloVe), predict their semantic
similarity ragirre et al. *09]

Per word pair, there are 13 human annotations on similarity in
range {0, ..., 10}

Train on 1989 indiv. annotations, test on 246 averaged values

Similarity
(0;a" 0% y) = |y — (@' — 2*) 01 (2" — 2®) — 6y

Word 1 Word 2

Fix train-time o = .3, test on varying cest



Semantic similarity

Rae(0) := sup  Eqyxpy i [€(6; X, Y)]
Q X 7~ Utest
Joint DRO k=2
—$— ERM
Joint DRO & =
Marginal DRO




Endnote

e DRO = Worst-case subpopulation performance

* The question: choice of worst-case region

Causality

6
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