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Prediction and causality
• A central goal of ML is to predict an outcome given 

variables describing a situation

- Given patient characteristics, will their outcome improve?


• Most decision-making problems revolve around a 
decision / intervention / treatment

- What would happen if we changed the system?

- Given patient characteristics, will their outcome improve if they 

follow a new diet?


• We want to develop a scientific understanding of a 
decision
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Prediction and causality

• Causal inference is a multi-disciplinary field built across 
economics, epidemiology, and statistics


• Focus is on questions about counterfactuals

- What structure of data do we need to answer this question?

- How do we interpret the key estimands?


• ML models can predict outcomes; when can it predict 
counterfactuals?

- How can we leverage flexible ML models to infer causality?

3



B9145: Reliable Statistical Learning 
Hongseok Namkoong

Binary actions
• Today we will focus on the setting with two actions


- One action represents treatment (1), the other is control (0)


• This is still foundational 

- Key difficulties still persist here despite the simplicity

- Core technical insights will translate to more general settings


• In complex problems, this is often the de facto standard

- Control is status quo, treatment is a new elaborate program

- Throughout economics, medicine, and tech, it requires a 

tremendous amount of domain knowledge and effort to come up 
with an alternative to the current system

4
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Secret to life
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Causality
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Figure credit: data science central

• You came up with a new diet regimen that you believe will 
alleviate symptoms of rheumatism (e.g. chronic joint pain)


• To test it, you recruit people to try the diet


• You find that

- Small fraction on the diet experience chronic pain

- Large fraction not on the diet (aka all rheumatism patients outside 

your volunteer pool) experience chronic pain 

- Awesome! Everyone should try this diet


• But after years of adoption, you realize the diet does not 
affect chronic pain
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Causality
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• What could have gone wrong?

- Volunteers to the diet may have been people with healthy 

predispositions, and affluent socioeconomic backgrounds


• Fundamental problem: we don’t observe counterfactuals


• How do we model this?



Potential outcomes

• Framework for explicitly modeling counterfactuals


• A: binary treatment assignment (1: treated, 0: control)


• Y(1) and Y(0) are potential outcomes


• X is observed covariates 

Problem: We only observe Y := Y(A)

First goal: Estimate average treatment effect
⌧ := E[Y (1)� Y (0)]
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• We only observe Y := Y(A)


• What could go wrong?

- Volunteers to the diet (A = 1) 

may have been people with 
healthy predispositions, and 
affluent socioeconomic 
backgrounds

First goal: Estimate average treatment effect
⌧ := E[Y (1)� Y (0)]
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Person 5 Y(0) Y(1) Y(1) - Y(0)
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 0 0 0
5 0 1 1 0
6 0 1 1 0
7 0 1 1 0
8 0 1 1 0
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• First try: let’s randomize treatment assignments


                                   


• By virtue of randomized assignments, we have





  


• We can estimate final line from i.i.d. data 

Y(1), Y(0) ⊥ A

τ = 𝔼[Y(1) − Y(0)] = 𝔼[Y(1) ∣ A = 1] − 𝔼[Y(0) ∣ A = 0]

= 𝔼[Y ∣ A = 1] − 𝔼[Y ∣ A = 0]

(Yi, Ai)

observable

also called A/B testing, (randomized) experiments
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Randomized control trials
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Randomized control trials
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RCT with covariates
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• If you have access to covariates X, and can estimate 
 accurately, then we can improve this


• If by randomness more treatments get assigned to young 
patients with a better prognosis, then we will exaggerate 
the treatment effect

- Problem goes away in large samples, but matters for small samples 


• Using any regression model, we can estimate  



- Random forests, boosted decision trees, kernels, NNs etc

𝔼[Y ∣ X, A]

𝔼[Y ∣ X, A = 1], 𝔼[Y ∣ X, A = 0] observable
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Estimator
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Fitting outcome models
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CLT for covariate adjustments
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Beyond RCTs
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• What if clean randomization is not possible?


• Randomization sometimes affected by the site

- Oxford / AstraZeneca trial made a dosage mistake at a location

- Turned out to be more effective


• Ignoring variables that affect treatment assignment leads to 
biases
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Beyond RCTs
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Slide by Ramesh Johari

• Run large-scale experiment, randomized for each sex


•   vs  

- So maybe treatment is not effective?
ℙ(Y = 1 ∣ A = 1) = 0.5 ℙ(Y = 1 ∣ A = 0) = 0.6

A

A
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Simpson’s paradox
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• But if you compute treatment effect for each sexes, 





• So ATE = 0.1. What happened?


• Women are more likely to be in control than treatment; men 
are more likely to be in treatment than control. And women 
have higher potential outcomes on average than men.

𝔼[Y(1) − Y(0) ∣ X = m] = 𝔼[Y(1) − Y(0) ∣ X = w] = 0.1
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Simpson’s paradox
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• Issue here is that 





• If you ignore sex as a confounding variable, you create a 
omitted variable bias in estimating the ATE

𝔼[Y(1) − Y(0)] ≠ 𝔼[Y(1) ∣ A = 1] − 𝔼[Y(0) ∣ A = 0]
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Berkeley admissions

• Berkeley was sued for gender bias in admissions based 
on 1973 numbers: 44% of men were admitted but only 
35% of women


• But individual department’s admissions record showed no 
evidence of such gender-based discrimination


• Turns out women systematically applied to more 
competitive majors

21
Slide by Ramesh Johari
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Observational studies
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• Randomization is sometimes infeasible or prohibitively 
expensive

- e.g. post-market drug surveillance, effect of air pollution on long-

term health outcomes


• Experimentation can be risky in high-stakes scenarios

- operational scenarios: new inventory system for Amazon, new 

pricing algorithm for Uber


• May want to use existing large-scale data collected under 
some data-generating policy (e.g. legacy system)
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No unobserved confounding
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• Previous regression-based direct method still works if there 
are no unobserved confounders (also called ignorability)


         Assumption.     


• Observed treatment assignments are based on covariate 
information alone (+ random noise)

- Treatment assignment does not use information about 

counterfactuals


• Strong assumption. Often violated in practice.

- e.g. doctors often use unrecorded info to prescribe treatments

Y(1), Y(0) ⊥ A ∣ X
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No unobserved confounding
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Overlap

25

• We need enough samples for both control and treatment 
throughout the covariate space

- This governs the effective sample size


• Propensity score  


• Assume that there exists  such that
 almost surely


• This means I have at least  number of samples for fitting 
the two outcome models

e⋆(X) := ℙ(A = 1 ∣ X)

ϵ > 0
ϵ ≤ e⋆(X) ≤ 1 − ϵ

ϵn
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Overlap
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• This breaks if data is generated by a deterministic policy

- e.g. always assign the drug (treatment) when age > 50


• We need sufficient amount of randomness in treatment 
assignment in all covariate regions


• Governs difficulty of estimation. Often violated in practice.
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Direct method

27



B9145: Reliable Statistical Learning 
Hongseok Namkoong

Direct method
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Inverse probability weighting
• What if the outcome models are very complex and 

difficult to estimate?


• A natural approach is to reweight samples, to change the 
distribution  to 

- Essentially importance sampling

𝔼[ ⋅ ∣ A = 1,X] 𝔼[ ⋅ ∣ X]

29
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Unbiasedness
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CLT for IPW
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Estimating propensity score
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Inverse probability weighting

• Can work well if propensity score is simple to estimate


• But estimating this well over the entire covariate space 
can be difficult

- Calibration is hard, especially in high-dimensions


• When overlap doesn’t hold, importance weights blow up

33
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Augmented IPW
• Can we combine the best of both worlds?


- Direct method + IPW


• Propensity weight residuals to debias the direct method

34
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Unbiasedness
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CLT for AIPW
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Control variate
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Control variate
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Efficiency
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• In fact, this is the best asymptotic variance we can get


• AIPW has optimal asymptotic variance, regardless of whether 
the propensity score is known or not


• Formalizing this requires a lot of work
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Nuisance parameters
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• If a good parametric model exists, then can estimate at 
the usual  rates


• In general, these are infinite dimensional objects. Can be 
difficult to estimate.

1/ n
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Semiparametrics
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• We only care about estimating the ATE

- One-dimensional estimand, infinite dimensional nuisance parameters


• Estimation accuracy of nuisance parameters is good only 
insofar as it helps with estimating the ATE


• Due to its high-dimensional nature, often difficult to estimate 
nuisances at parametric rates


• Goal: semiparametric estimators that are insensitive to errors 
in nuisance estimates
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Doubly robust
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• One main advantage of AIPW is that even if one of the 
nuisance parameter models are misspecified, you can still 
get correct asymptotic behavior
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Doubly robust
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Doubly robust
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Orthogonality
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• When is a semiparametric estimator insensitive to errors in 
nuisance estimates?


• Directional derivative of functional wrt nuisance parameters 
at true value is near-zero


• Ensures that a little perturbation in nuisance parameters 
near the truth values does not affect functional
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Orthogonality
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Orthogonality of AIPW
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Orthogonality of AIPW
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Why orthogonality?
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• Allows getting central limit rates on ATE estimation even when 
we can only estimate nuisance parameters at slower rates


• In addition to no unobserved confounding, 
, we assume the following rate condition


    


• This allows us to trade-off errors between nuisance 
parameters. Only their product needs to go down at this rate!

e⋆(X), ̂e(X) ∈ [ϵ,1 − ϵ]

∥ ̂e − e⋆∥P,2(∥ ̂μ1 − μ⋆
1 ∥P,2 + ∥ ̂μ0 − μ⋆

0 ∥P,2) = op(n−1/2)
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Central limit result
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• CLT for the semiparametric AIPW, even when nuisance estimates 
converge at slower-than-parametric rates




where 


• This is the oracle asymptotic variance; when the true nuisance 
parameters are known


• AIPW achieves optimal asymptotic efficiency

n ( 1
n

n

∑
i=1

ψAIPW(Xi, Yi, Ai; ̂μ0, ̂μ1, ̂e) − τ) ⇒ N(0,σ2
AIPW)

σ2
AIPW := Var (ψAIPW (X, Y, A; μ⋆

0 , μ⋆
1 , e⋆))
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Sketch of asymptotics
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Sketch of asymptotics
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• Estimate nuisance parameters on the auxiliary sample

bµa(X) ⇡ E[Y (a) | X = x], a 2 {0, 1}

<latexit sha1_base64="sbl33p7RvlhWrMlbBwKJ4jXDkzI="></latexit>

be(X) ⇡ P(A = 1 | X)

<latexit sha1_base64="ff4lhMfrCUviHTiZTrpAYnc3lO8="></latexit>

• Instead of sample-splitting, we can alternate the role 
of main and auxiliary samples over multiple splits

Cross-fitting
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• Estimate ATE by plugging in nuisance estimates

̂τ1 :=
1
n

n

∑
i=1

̂μ1(Xi) − ̂μ0(Xi) +
Ai

̂e(Xi)
(Y − μ1(Xi)) −

1 − Ai

1 − ̂e(Xi)
(Y − μ0(Xi))

Cross-fitting
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̂τ =
1
5 ( )̂τ1 + ̂τ2 + ̂τ3 + ̂τ4 + ̂τ5

• Same procedure for direct method, IPW


• Similar central limit result follows as before

Cross-fitting



B9145: Reliable Statistical Learning 
Hongseok Namkoong

SUTVA
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• Throughout we implicitly assumed there is only a single 
version of the treatment that gets applied to all treated units

- This may not be true if drugs go stale in storage, or dosages differ


• We also assumed there is no interference between units 
- Whether or not individual i is treated has no impact on the treatment 

effect of another individual j

- This can also fail in many real-world scenarios


• Together these assumptions are called stable unit treatment 
value assumption (SUTVA)
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Interference
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• Any two-sided platform faces interference between units


• Consider the following scenario:

- Lyft A/B tests a new promotion strategy for drivers

- Each driver is randomized into treatment or control

- It is observed that drivers finish a lot more rides with the promotion

- So they decide this promotion is worth spending resources on


• But the estimate turned out to be an overestimate, not 
worth the cost of the promotion. Why?
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Interference
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• Both treated and control drivers see the same set of demand


• If promotion incentivizes treated drivers to work more for less 
nominal fares, this cannibalizes demand that would usually go to 
control drivers


• Interference occurs in a number of different settings

- Two-sided platforms: Airbnb, ridesharing, ad auctions

- Network effects: e.g. adoption of new education technology


• When this happens, the potential outcomes now depend on all 
possible  treatment assignments

- Very active area of research

2n
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Assessing overlap
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• “If the covariate distributions are similar, as they would be, in 
expectation, in the setting of a completely randomized experiment, 
there is less reason to be concerned about the sensitivity of 
estimates to the specific method chosen than if these distributions 
are substantially different.”


• “On the other hand, even if unconfoundedness holds, it may be 
that there are regions of the covariate space with relatively few 
treated units or relatively few control units, and, as a result, 
inferences for such regions rely largely on extrapolation and are 
therefore less credible than inferences for regions with substantial 
overlap in covariate distributions.”


• Imbens and Rubin
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Assessing overlap
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• Overlap governs effective sample size

- Even approaches that don’t require propensity weighting is affected 

under this fundamental restriction


• Causal inference literature has developed various 
“supplementary analysis” tools for assessing credibility of 
empirical claims


• One of the most common conventions is to plot the 
propensity scores of treated and control groups 
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Assessing overlap
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• Difference in covariate distributions between treatment and control 
group is summarized by the propensity score


• Let  be the density of  in the treatment group (similarly )


• Let 





                  

f1(X) X f0(X)

p := ℙ(A = 1)

Var(e⋆(X)) = p(1 − p)(𝔼 [e⋆(X) ∣ A = 1] − 𝔼 [e⋆(X) ∣ A = 0])

= p2(1 − p)2 ⋅ 𝔼 ( f1(X) − f0(X)
pf1(X) + (1 − p)f0(X) )

2
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Assessing overlap

62

• A common visualization is to look at the pdf of the 
propensity score across treatment groups


• Plot approximates pdfs of the distribution 



• For each , plot fraction of observations in the 
treatment group with  (and similarly for control)

ℙ(e⋆(X) ∈ ⋅ ∣ A = a)

q ∈ (0,1)
e⋆(x) = q
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Assessing overlap
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• Athey, Levin, Seira (2011) studied timber auctions

- Award timber harvest contracts via first price sealed auction or open 

ascending auction


• Idaho: randomized with different probabilities across 
different regions


• California: determined by small vs. large sales volume; 
cutoff varies by region
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Idaho

64Slide by Susan Athey and Stefan Wager

Athey, Levin, Seira (2011)
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California

65Slide by Susan Athey and Stefan Wager

Athey, Levin, Seira (2011)
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Heterogeneous treatment effects
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• Treatment effect often varies with user / patient / agent 
characteristics (covariates)


• Example: Oregon Health Insurance Experiment

- Evaluate effect of Medicaid on low-income adults on emergency 

department (ED) visits in 2008

- Precursory study to federal Medicaid expansion in 2014, which cost 

$553 billion/year

- Insurance allows visits ED, but access to preventive care may also 

reduce need of ED visits
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Oregon Health Insurance Experiment
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• Evaluate effect of wording on survey results (“welfare” 
vs “assistance to the poor”) 

• Resoundingly positive treatment effects, but significant 
heterogeneity across covariates

Welfare attitudes experiment



B9145: Reliable Statistical Learning 
Hongseok Namkoong

CATE

• To estimate personalized treatment effects, we want to 
estimate the conditional average treatment effect (CATE) 

                       


• Few different ways to estimate this using black-box ML 
models


• Again, key challenging is missing data


- We never observed counterfactuals

τ(X) := 𝔼[Y(1) − Y(0) ∣ X]

69
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S-Learner

70

• Shared feature representation, assuming similar model 
class for both treatment and control
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T-Learner
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• Can fit different models over treatment options
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X-Learner

72

• Regress on the imputed treatment effect Y(1) - Y(0)


• Fit T-learner models and compute imputed treatment effects


     if ,  if 


• Fit another set of models  on the two category of 
imputed values, take


                   

Yi − ̂μθ,0(Xi) Ai = 1 ̂μθ,1(Xi) − Yi Ai = 0

̂τ1, ̂τ0

̂τ(X) := ̂e(X) ̂τ0(X) + (1 − ̂e(X)) ̂τ1(X)

Kunzel et al. (2018)
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X-Learner

73

• Usually, number of samples in treatment >> those in control


• Advantageous if CATE is much smoother than individual 
outcome functions

Kunzel et al. (2018)
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R-Learner

74

Nie and Wager (2020)
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R-Learner
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Nie and Wager (2020)


