B9145: Problem Set 1

Due: Oct 9, 11:59pm

Carefully follow submission instructions announced on Canvas.

Question 1.1 (Tail bound for sub-Gaussian RVs and Lasso): For a class of functions $\mathcal{H} \subset\{h$: $\mathcal{Z} \rightarrow \mathbb{R}\}$, recall the definition of (empirical) Rademacher complexity

$$
\Re_{n}(\mathcal{H}):=\mathbb{E}\left[\left.\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h\left(Z_{i}\right) \right\rvert\, Z_{1}, \ldots, Z_{n}\right],
$$

where σ_{i} 's are i.i.d. random signs (Rademacher variables), independent of everything else.
(a) Let X_{j} be sub-Gaussian random variables with parameter c_{j}^{2} for $j=1, \ldots, N$. Show that for any $N \geq 3$,

$$
\mathbb{E}\left[\max _{1 \leq j \leq N} X_{j}\right] \leq \max _{1 \leq j \leq N} c_{j} \cdot \sqrt{2 \log N} .
$$

(b) For any finite \mathcal{H}, show that $\Re_{n}(\mathcal{H}) \leq\left(\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} h\left(Z_{i}\right)^{2}\right)^{\frac{1}{2}} \sqrt{\frac{2 \log |\mathcal{H}|}{n}}$.
(c) Consider L^{1}-regularized linear models $\mathcal{H}_{s}:=\left\{z \mapsto \theta^{\top} z:\|\theta\|_{1} \leq s\right\}$. Assume there exists $C_{\infty}>0$ such that $\|Z\|_{\infty} \leq C_{\infty}$ almost surely. Derive the following scale-sensitive bound

$$
\mathfrak{R}_{n}\left(\mathcal{H}_{s}\right) \leq s C_{\infty} \sqrt{\frac{2 \log (2 d)}{n}} .
$$

Hint For finite $\mathcal{G}, \mathfrak{R}_{n}(\mathcal{G})=\mathfrak{R}_{n}($ convex-hull $(\mathcal{G}))$.
Question 1.2 (Two-layer neural networks): Consider a neural network with two layers and activation function $a: \mathbb{R} \rightarrow \mathbb{R}$. Let $Z \in \mathbb{R}^{d}$ be an input vector with $\|Z\|_{2} \leq R_{2}$ almost surely, and let $a: \mathbb{R} \rightarrow \mathbb{R}$ be a 1-Lipschitz activation function with $a(0)=0$. For example, the rectified linear unit (ReLU) $a(x):=\max (x, 0)$, or hyperbolic tangent $a(x):=\tanh (x)$ are common choices that satisfy this condition.

Let m be the number of hidden units in the two-layer neural network. We denote by $w_{j} \in \mathbb{R}^{d}$ the weights of the first layer connecting to the j-th hidden unit, for $j=1, \ldots, m$, and use $v \in \mathbb{R}^{m}$ to denote the weights of the second layer. Consider L^{2}-regularized two-layer neural networks

$$
\mathcal{H}:=\left\{z \mapsto \sum_{j=1}^{m} v_{j} a\left(w_{j}^{\top} z\right):\|v\|_{2} \leq C_{2, v}, \text { and }\left\|w_{j}\right\|_{2} \leq C_{2, w} \text { for all } j=1, \ldots, m\right\}
$$

Show the scale-sensitive bound $\Re_{n}(\mathcal{H}) \leq 2 R_{2} C_{2, v} C_{2, w} \sqrt{\frac{m}{n}}$.

Hint Use the contraction principle: for a 1-Lipschitz function $a: \mathbb{R} \rightarrow \mathbb{R}$ with $a(0)=0$,

$$
\mathbb{E}\left[\left.\sup _{h \in \mathcal{H}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} a\left(h\left(Z_{i}\right)\right)\right| \right\rvert\, Z_{1}, \ldots, Z_{n}\right] \leq 2 \mathbb{E}\left[\left.\sup _{h \in \mathcal{H}}\left|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h\left(Z_{i}\right)\right| \right\rvert\, Z_{1}, \ldots, Z_{n}\right] .
$$

Question 1.3 (Fast rates under curvature): In this problem, we will show losses with curvature achieves faster rates of convergence. To do this, we study a localized Rademacher process around the population optimum.

Let $\Theta \subset \mathbb{R}^{d}$ be a compact, convex set, and let $\ell(\cdot ; z): \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function for P almost surely all z. We assume that the population optimum $\theta^{\star}=\operatorname{argmin}_{\theta \in \Theta} \mathbb{E}[\ell(\theta ; Z)]$ is unique. Consider Lipschitz losses (in some norm $\|\cdot\|$) that grow sufficiently fast near the optimum: for constants $r, c, L>0$, and all θ, θ^{\prime} satisfying $\left\|\theta-\theta^{\star}\right\| \leq r,\left\|\theta^{\prime}-\theta^{\star}\right\| \leq r$,

$$
\begin{aligned}
& \left|\ell(\theta ; z)-\ell\left(\theta^{\prime} ; z\right)\right| \leq L\left\|\theta-\theta^{\prime}\right\| \text { for } P \text {-almost surely all } z \text {, } \\
& \text { and } \mathbb{E}[\ell(\theta ; Z)] \geq \mathbb{E}\left[\ell\left(\theta^{\star} ; Z\right)\right]+\frac{c}{2}\left\|\theta-\theta^{\star}\right\|^{2} .
\end{aligned}
$$

(e.g. think about a linear regression problem with bounded data.)

Define the set of empirical and population approximate optimizers

$$
\begin{aligned}
& \widehat{S}_{\epsilon}:=\left\{\theta \in \Theta: \frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; Z_{i}\right) \leq \inf _{\theta^{\prime} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta^{\prime} ; Z_{i}\right)+\epsilon\right\} \\
& S_{\epsilon}:=\left\{\theta \in \Theta: \mathbb{E}[\ell(\theta ; Z)] \leq \inf _{\theta^{\prime} \in \Theta} \mathbb{E}\left[\ell\left(\theta^{\prime} ; Z\right)\right]+\epsilon\right\} .
\end{aligned}
$$

(a) Argue that $\widehat{S}_{\epsilon} \nsubseteq S_{2 \epsilon}$ implies

$$
\sup _{\theta \in S_{2_{\epsilon}}}\left\{\mathbb{E}\left[\ell(\theta ; Z)-\ell\left(\theta^{\star} ; Z\right)\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(\theta ; Z_{i}\right)-\ell\left(\theta^{\star} ; Z_{i}\right)\right)\right\} \geq \epsilon .
$$

Hint Construct a $\theta \in \Theta$ with $\mathbb{E}[\ell(\theta ; Z)]=\mathbb{E}\left[\ell\left(\theta^{\star} ; Z\right)\right]+2 \epsilon, \frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; Z_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta^{\star} ; Z_{i}\right)+\epsilon$.
(b) Using results from class, prove that with probability at least $1-e^{-t}$,

$$
\begin{aligned}
& \sup _{\theta \in S_{2 \epsilon}}\left\{\mathbb{E}\left[\ell(\theta ; Z)-\ell\left(\theta^{\star} ; Z\right)\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(\theta ; Z_{i}\right)-\ell\left(\theta^{\star} ; Z_{i}\right)\right)\right\} \\
& \leq 2 \mathbb{E}\left[\sup _{\theta \in S_{2 \epsilon}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(\ell\left(\theta ; Z_{i}\right)-\ell\left(\theta^{\star} ; Z_{i}\right)\right)\right]+2 L \sqrt{\frac{2 t \epsilon}{c n}}
\end{aligned}
$$

(c) Show the following: for some numerical constant $C>0$,

$$
\mathbb{E}\left[\left.\sup _{\theta \in S_{2 \epsilon}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(\ell\left(\theta ; Z_{i}\right)-\ell\left(\theta^{\star} ; Z_{i}\right)\right) \right\rvert\, Z_{1}, \ldots, Z_{n}\right] \leq C L \sqrt{\frac{d \epsilon}{c n}} .
$$

(You don't need to find the constant.)
(d) Conclude that for a numerical constant $C>0$ (which may differ from the one above), setting $\epsilon_{t}=C L^{2} \frac{d+t}{c n}$ yields $\mathbb{P}\left(\widehat{S}_{\epsilon_{t}} \nsubseteq S_{2 \epsilon_{t}}\right) \leq e^{-t}$.

