
Experiment 2: Fine-grained recognition
• Task: classify image of dog to breed (120 classes)

• Kernel features

Stanford Dogs Dataset [Khosla et al. ’11]

No underrepresentation: 
same number of images per class



ERM error rate

Hard Easy

BIG gap in performance even  
when no underrepresentation
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D  = Dropout regularization
K = number of Wasserstein DRO gradient ascent steps

E = ERM with L2 regularization

Trained using lambda = 1.0, and an adaptive cost function 
defined on last hidden layer outputs of the neural network
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30 seconds demo of Wasserstein DRO
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Motivation

Goal

We want machine-learned systems to
perform reliably when deployed in the real world

⇒ Uniformly good performance against distributional
shifts
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Problem 0: Uncertainty in data
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Motivation

Problem 0: Uncertainty in data

I Want to be robust to small perturbations in P̂n

A B C D
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Motivation

Problem 0: Uncertainty in data

I Want to be robust to small perturbations in P̂n

A B C D

P̂
n

n=6
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Motivation

Problem 1: Tail performance
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MSR Learning to Rank

I Long-tailed data distribution

I At Google, a constant percentage of queries are new each day

I Rare queries determine quality of service
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Motivation

Problem 1: Tail performance
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ResNet on CIFAR100

class-wise test accuracy

I Same number of training examples for each class

I Average accuracy is around 60− 70%

I Low performance on certain classes
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Motivation

Problem 2: Changes in environment

Driving in California

Not driving in California
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Motivation

Problem 3: Fairness

I Data collection almost always contains demographic, geographic,
behavioral, temporal biases

I Pre-existing biases in language
I Bias in word representations (word2vec) [Bolukbasi et al (2016)]

man− woman ≈ computer programmer− homemaker

I Representation disparity for minority groups
⇒ disparate performance over different demographic groups

I e.g. race, gender, age

I Speech recognition, facial recognition, automatic video captioning,
language identification, academic recommender systems etc
[Amodei et al (2016), Grother et al (2010), Hovy et al (2015), Blodgett et al (2016),

Sapiezynski et al (2017), Tatman (2017)]
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Motivation

Problem 3: Fairness

Criminal Justice System

I Predict if defendant should receive bail (crime recidivism)

I Higher false positive for African Americans

Table: ProPublica Analysis of COMPAS

Caucasian African American

False High-Risk 23.5% 44.9%

False Low-Risk 47.7% 28.0%

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

I More likely to wrongly deny African Americans bail!

I Used state-wide in New York, Wisconsin.
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Motivation

Problem 4: Adversaries

[Goodfellow et al. 15]

Paraphrased Quote:

We could put a transparent film on a stop sign, essentially imperceptible
to a human, and a computer would see the stop sign as air (Dan Boneh)
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Motivation

Risk-averseness

I Distributional Robustness = Risk-averseness (coherent risk measures)
[Shapiro et al (2009)]

I Risk-averse decision making is standard in OR, economics, finance

I Optimizing average-case performance is still common in stats/ML

I empirical risk minimization (ERM), maximum likelihood estimation

Can we be risk-averse in statistics and machine learning?
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Small perturbations to data

Small perturbations to data
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Small perturbations to data

Stochastic optimization problems

Data X and parameters θ to learn, with loss `(θ,X)

Minimize the population expected loss

minimize
θ∈Θ

{
R(θ) := EP0 [`(θ,X)] =

∫
`(θ, x)dP0(x)

}

given an i.i.d. sample X1, . . . , Xn
iid∼ P0
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Small perturbations to data

Empirical Risk Minimization

Standard approach: Solve

Goal: Can we hedge against uncertainty in data?
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Empirical Risk Minimization

Standard approach: Solve

θ̂erm ∈ argmin
θ∈Θ

R̂n(θ) :=
1

n

n∑

i=1

`(θ;Xi) ≈ EP0 [`(θ;X)].

Goal: Can we hedge against uncertainty in data?
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Small perturbations to data

Empirical Risk Minimization

Standard approach: Solve

θ̂erm ∈ argmin
θ∈Θ

R̂n(θ) :=
1

n

n∑

i=1

`(θ;Xi)≈ EP0 [`(θ;X)]︸ ︷︷ ︸
Hopefully!

.

Goal: Can we hedge against uncertainty in data?
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Small perturbations to data

Point of departure: bias/variance tradeoff

I Any learning algorithm has bias (approximation error) and variance
(estimation error)

I From empirical Bernstein’s inequality, with probability 1− δ

R(θ) = EP0 [`(θ;X)] ≤ R̂n(θ)︸ ︷︷ ︸
bias

+

√
2Var

P̂n
(`(θ;X))

n︸ ︷︷ ︸
variance

+
C log 1

δ

n

I Can be made uniform in θ ∈ Θ [Maurer & Pontil 09]

Goal: Trade between these automatically and optimally by solving

θ̂var ∈ argmin
θ∈Θ



R̂n(θ) +

√
2Var

P̂n
(`(θ;X))

n



 .
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Small perturbations to data

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Minor issue: variance is wildly non-convex
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Figure: Variance of |θ −X|
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Small perturbations to data

Distributionally Robust Optimization

Goal:
minimize

θ∈Θ
R(θ) = EP0 [`(θ;X)]

[Scarf 58, Dupacová 87, Yue et al. 06, Popescu 07, Delage & Ye 10, Ben-Tal et

al. 13, Bertsimas et al. 17, and many others]
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Small perturbations to data

Distributionally Robust Optimization

Goal:
minimize

θ∈Θ
R(θ) = EP0 [`(θ;X)]

Solve empirical risk minimization problem

minimize
θ∈Θ

n∑

i=1

1

n
`(θ;Xi)

[Scarf 58, Dupacová 87, Yue et al. 06, Popescu 07, Delage & Ye 10, Ben-Tal et

al. 13, Bertsimas et al. 17, and many others]
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Small perturbations to data

Distributionally Robust Optimization

Goal:
minimize

θ∈Θ
R(θ) = EP0 [`(θ;X)]

Instead, solve distributionally robust optimization (RO) problem

minimize
θ∈Θ

sup
p∈Pn,ρ

n∑

i=1

pi`(θ;Xi)

where Pn,ρ is some appropriately chosen set of vectors

[Scarf 58, Dupacová 87, Yue et al. 06, Popescu 07, Delage & Ye 10, Ben-Tal et

al. 13, Bertsimas et al. 17, and many others]
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Small perturbations to data

Empirical likelihood

Idea: Instead of using empirical distribution P̂n on sample X1, . . . , Xn,
look at all distributions “near” it.

I The f -divergence between distributions P and Q is

Df (P ||Q) :=

∫
f

(
dP

dQ

)
dQ

where f is some convex function with f(1) = 0.
(w.l.o.g. can take f ′(1) = 0 too)

I Measures of closeness we use: f(t) = 1
2(t− 1)2

Dχ2 (P ||Q) =
1

2

∑

x

(p(x)− q(x))2

q(x)
Chi-square

(Owen (1990): original empirical likelihood f(t) = − log t)
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Small perturbations to data

Empirical likelihood

En(ρ) :=

{ n∑

i=1

piZi : Dχ2 (p||1/n) ≤ ρ

n

}

then independently of distribution on Z ∈ Rk

P(E[Z] ∈ En(ρ))→ P(χ2
k ≤ ρ).

ellipse [Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]
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Small perturbations to data

Empirical likelihood
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Idea: Leverage this in stochastic optimization
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Small perturbations to data

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

Pn,ρ :=
{

Distributions P such that Dχ2

(
P ||P̂n

)
≤ ρ

n

}

for some ρ > 0.

Define (and optimize) empirical likelihood upper confidence bound

Rn(θ,Pn,ρ) := max
P :Dχ2(P ||P̂n)≤ ρn

EP [`(θ;X)] = max
p:Dχ2(P ||P̂n)≤ ρn

n∑

i=1

pi`(θ;Xi)

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 16]

Hongseok Namkoong Distributionally Robust Optimization June 2018 21 / 76



Small perturbations to data

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

Pn,ρ :=
{

Distributions P such that Dχ2

(
P ||P̂n

)
≤ ρ

n

}

for some ρ > 0.

Define (and optimize) empirical likelihood upper confidence bound

Rn(θ,Pn,ρ) := max
P :Dχ2(P ||P̂n)≤ ρn

EP [`(θ;X)] = max
p:Dχ2(P ||P̂n)≤ ρn

n∑

i=1

pi`(θ;Xi)

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 16]

Hongseok Namkoong Distributionally Robust Optimization June 2018 21 / 76



Small perturbations to data

Visualization of worst-case

10 20 30 40 50

i

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Losses
worstp
empp

Hongseok Namkoong Distributionally Robust Optimization June 2018 22 / 76



Small perturbations to data

Optimization

Solve

θ̂rob := argmin
θ∈Θ

{
Rn(θ,Pn,ρ) := max

P :Dχ2(P ||P̂n)≤ ρn
EP [`(θ;X)]

}
.

Nice properties:

I Convex optimization problem.

I Solve dual reformulation using
interior point methods [Ben-Tal

et al. 13]

I For large n and d, efficient
solution methods as fast as
stochastic gradient descent
[N. & Duchi, 16] 1
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Adversary
Hard

Easy

p Player

✓t+1 =

✓t � ⌘r`(✓t, Xi)

Run SGDSample

Reweight

Small perturbations to data

Play a two-player stochastic game [N. & Duchi 16]

min
θ∈Θ

max
p∈Pn,ρ

n∑

i=1

pi`(θ;Xi)
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Small perturbations to data

Robust Optimization ≈ Variance Regularization

Theorem (Duchi, Glynn & N. 2016)

For general f -divergences,

Rn(θ;Pn,ρ) = R̂n(θ) +

√
2ρVar

P̂n
(`(θ;X))

n
+ Remn(θ).

I If σ2(θ) <∞, then
√
nRemn(θ)

P ∗→ 0

I If {`(θ; ·) : θ ∈ Θ} is P0-Donsker, then
√
n supθ∈Θ Remn(θ)

P ∗→ 0

I [Lam (2013), Gotoh et al (2015), Lam and Zhao (2017)]
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Small perturbations to data

Robust Optimization ≈ Variance Regularization

Theorem (Duchi & N. 2016)

Assume that `(θ;X) ≤M . Let σ2(θ) := Var(`(θ;X)).

Rn(θ;Pn,ρ) = R̂n(θ) +

√
2ρVar

P̂n
(`(θ;X))

n
+ Remn(θ).

I Remn(θ) ≤
√

12ρM
n

I Remn(θ) = 0 with probability at least 1− exp(−nσ2(θ)
36M2 ) proof

I Let N(F , τ, ‖·‖L∞) be the τ -covering number with respect to the
supremum norm.

P
(
Remn(θ) = 0 for all θ ∈ Θ s.t. σ2(θ) ≥ τ2

)

≥ 1− cN(F , τ, ‖·‖L∞) exp(−nτ
2

M2
).
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Small perturbations to data

Robust Optimization ≈ Variance Regularization

With high probability,

Rn(θ;Pn,ρ)︸ ︷︷ ︸
Robust

= R̂n(θ) +

√
2ρVar

P̂n
(`(θ;X))

n︸ ︷︷ ︸
VarReg

I Robust is empirical likelihood UCB and VarReg is normal UCB

I Robust is convex, VarReg is non-convex

I Robust only penalizes upward (bad) deviations in the loss whereas
VarReg penalizes downward (good) deviations along with the upward
(bad) deviations

I Robust is a coherent risk measure (i.e. it is a sensible negative utility)
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Small perturbations to data

Empirical likehood for stochastic optimization

Solve

θ̂rob := argmin
θ∈Θ

{
Rn(θ,Pn,ρ) := max

P :Dχ2(P ||P̂n)≤ ρn
EP [`(θ;X)]

}
.

Assume that {`(θ; ·) : θ ∈ Θ} is P0-Donsker

e.g. Θ ⊂ Rd compact and `(·;X) is M(X)-Lipschitz with EM(X)2 <∞.

Theorem (Duchi, Glynn & N. 16 1 )

If θ? := argminθ∈ΘR(θ) is unique, then

lim
n→∞

P
(

inf
θ∈Θ

R(θ) ≤ Rn(θ̂rob,Pn,ρ)
)

= P
(
N(0, 1) ≥ −

√
2ρ
)
.

Can be extended to Harris recurrent Markov chains that mix suitably fast
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Small perturbations to data

Optimal bias variance tradeoff

Solve

θ̂rob := argmin
θ∈Θ

{
Rn(θ,Pn,ρ) := max

P :Dχ2(P ||P̂n)≤ ρn
EP [`(θ;X)]

}
.

Let `(·;X) is M -Lipschitz and diam(Θ) = r

Theorem (Duchi & N. 2016)

Let ρ = log 1
δ + d log n. Then with probability at least 1− δ,
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Small perturbations to data

Optimal bias variance tradeoff

Solve

θ̂rob := argmin
θ∈Θ

{
Rn(θ,Pn,ρ) := max

P :Dχ2(P ||P̂n)≤ ρn
EP [`(θ;X)]

}
.

Let `(·;X) is M -Lipschitz and diam(Θ) = r

Theorem (Duchi & N. 2016)

Let ρ = log 1
δ + d log n. Then with probability at least 1− δ,

R(θ̂rob) ≤ Rn(θ̂rob,Pn,ρ) +
crM

n
ρ

≤ min
θ∈Θ

{
R(θ) + 2

√
2ρVar(`(θ, ξ))

n

}
+
crM

n
ρ

for some universal constant c > 0.
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Small perturbations to data

Optimal bias variance tradeoff

Solve

θ̂rob := argmin
θ∈Θ

{
Rn(θ,Pn,ρ) := max

P :Dχ2(P ||P̂n)≤ ρn
EP [`(θ;X)]

}
.

Let `(·;X) is M -Lipschitz and diam(Θ) = r

Theorem (Duchi & N. 2016)

Let ρ = log 1
δ + d log n. Then with probability at least 1− δ,

R(θ̂rob) ≤ Rn(θ̂rob,Pn,ρ)︸ ︷︷ ︸
optimality certificate

+
crM

n
ρ

≤ min
θ∈Θ

{
R(θ) + 2

√
2ρVar(`(θ, ξ))

n

}

︸ ︷︷ ︸
optimal tradeoff

+
crM

n
ρ
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Small perturbations to data

Fast rates from optimal tradeoff

I Let ρ ≈ Compn(Θ). If `(θ;X) ∈ [0,M ], then with high prob,

R(θ̂rob) ≤ min
θ∈Θ

{
R(θ) + 2

√
2ρVar(`(θ, ξ))

n

}

︸ ︷︷ ︸
optimal tradeoff

+
CMρ

n

I ERM: For R(θ?) = infθ∈ΘR(θ), with high probability,

R(θ̂erm) ≤ R(θ?) +

√
2ρMR(θ?)

n
+
CMρ

n

I If Var(`(θ?;X))�MR(θ?), first bound is tighter

I See paper for an explicit example where

R(θ̂rob) ≤ R(θ?) +
C1

n
but R(θ̂erm) ≥ R(θ?) +

C2√
n
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Small perturbations to data

Experiment: Coverage Rates

I Portfolio optimization `(θ;X) = θ>X

I Conditional Value-at-Risk `(θ;X) = 1
1−α (X − θ)+ + θ

I Newsvendor problem `(θ;X) = b> (θ −X)+ + s> (X − θ)+.

Figure: Coverage Rates (nominal = 95%)

% Portfolio CVaR Newsvendor
sample size EL Normal EL Normal EL Normal

20 75.16 89.2 30.1 91.38 91.78 95.02
200 92.96 93.68 86.73 95.27 94.64 95.26

2000 95.48 95.25 93.73 95.25 94.92 95.04
10000 96.43 95.51 94.71 94.85 94.43 94.43
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Small perturbations to data

Experiment: Regression

Problem: Predict crime rate Y , given feature vector describing community

ρ or −r

0.04

0.06

0.08

0.10

0.12

0.14

l1
 e

rro
r

L1(r)
L2(r)
Elastic Net(r)
Robust(ρ)
L2(.05)+Robust(ρ)

Median test loss `(θ; (W,Y )) = |θ>W − Y |
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Small perturbations to data

Experiment: Regression

Problem: Predict crime rate, given feature vector on community

ρ or −r

0.45

0.50

0.55

0.60

0.65

0.70

0.75

l1
 e

rro
r

L1(r)
L2(r)
Elastic Net(r)
Robust(ρ)
L2(.05)+Robust(ρ)

Maximal test loss `(θ; (X,Y )) = |θ>X − Y |
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Problem: Classify documents as a subset of the 4 categories:

{
Corporate, Economics, Government, Markets

}

I Data: pairs x ∈ Rd represents document, y ∈ {−1, 1}4 where yj = 1
indicating x belongs j-th category.

I Logistic loss, with Θ =
{
θ ∈ Rd : ‖θ‖1 ≤ 1000

}

I d = 47, 236, n = 804, 414. 10-fold cross-validation.

I Use precision and recall to evaluate performance

Precision =
# Correct

# Guessed Positive
Recall =

# Correct

# Actually Positive
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Table: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Figure: Recall on common category (Corporate)
R

ec
a

ll

ρ
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Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Figure: Recall on rare category (Economics)

ERM 103 104 105 106

ρ

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

R
e
ca

ll 
(E
co

n
o
m
ic
s)

train
test

R
ec

a
ll

ρ

Hongseok Namkoong Distributionally Robust Optimization June 2018 37 / 76



Small perturbations to data

Experiment: Reuters Corpus (multi-label)

Do well almost all the time intead of just on average!

Precision Recall Precision Recall
Total            Economics

50

60

70

80

90

100
Te
st
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u
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ERM

Robust
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Perturbations to population distribution

Perturbations to population distribution
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Perturbations to population distribution

Distributionally robust optimization

Idea: Replace data-generating distribution P0 with “uncertainty” set P of
possible distributions around P0

minimize
θ∈Θ

EP0 [`(θ,X)]

Intuition: We want P to contain “hard” subpopulations, minority groups,
domain changes, and even adversarial shifts.
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Idea: Replace data-generating distribution P0 with “uncertainty” set P of
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minimize
θ∈Θ

{
R(θ;P0) := sup

P∈P
EP [`(θ,X)]

}
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Perturbations to population distribution

Divergence-based uncertainty sets

The f -divergence between distributions P and Q is

Df (P ||Q) :=

∫
f

(
dP

dQ

)
dQ

where f is some convex function with f(1) = 0.
Use non-parametric uncertainty region

P := {P : Df (P ||P0) ≤ ρ}
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Perturbations to population distribution

Curvature of f

I Curvature of t 7→ f(t) around 1 determines size of uncertainty region

I Cressie-Read family [Cressie and Read (1998)] for k ∈ (1,∞)

fk(t) =
1

k(k − 1)
(tk − kt+ k − 1),

where Pk :=
{
P : Dfk (P ||P0) =

∫
fk

(
dP
dP0

)
dP0 ≤ ρ

}

I Curvature k controls size of Pk.
I As k → 1,

I Df (P ||P0) grows smaller
I Uncertain set Pk grows larger
I DRO is more risk-averse

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2 k=1.2
k=2.0
k=5.0
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Perturbations to population distribution

Distributionally robust optimization

Formulation: For divergence given by fk(t) ∝ tk − 1, solve

minimize
θ∈Θ

{
Rk(θ;P0) := sup

P
{EP [`(θ,X)] : Dfk (P ||P0) ≤ ρ}

}

Empirical plug-in: For the empirical measure P̂n, solve the plug-in

minimize
θ∈Θ

{
Rk(θ, P̂n) := sup

P

{
EP [`(θ,X)] : Dfk

(
P ||P̂n

)
≤ ρ
}}

Contrast to previous formulation with shrinking robustness ρ/n.
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Perturbations to population distribution

Minimax bounds for minθ∈ΘRk(θ;P0)

Recall Rk(θ;P0) := supP {EP [`(θ,X)] : Dfk (P ||P0) ≤ ρ}
Theorem (Duchi & N. 2018)

For k, k∗ = k
k−1 ∈ (1,∞), and `(θ;X) ∈ [−M,M ]

inf
θ̂

sup
P0

EP0

[
Rk(θ̂;P0)− inf

θ∈Θ
Rk(θ;P0)

]
≈ n−

1
(k∗∨2)

where infimum is over all measurable functions θ̂ ∈ σ(X1, . . . , Xn), and
supremum is over all distributions.

I Upper bound attained by plug-in estimator

I Lower bound shows fudamental statistical cost of robustness
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Perturbations to population distribution

Upper bound

Recall k, k∗ = k
k−1 ∈ (1,∞), and the plug-in

θ̂k,n = argmin
θ∈Θ

{
Rk(θ, P̂n) := sup

P

{
EP [`(θ,X)] : Dfk

(
P ||P̂n

)
≤ ρ
}}

Theorem (Duchi & N. 2018)

Let θ 7→ `(θ;x) be L-Lipschitz, D := supθ,θ′∈Θ ‖θ − θ′‖ <∞, and

infθ∈Θ `(θ;X) = 0. Then, w.p. ≥ 1− 2 exp
(
−t+ d log

(
1 + 3DL

t

))

Rk(θ̂k,n;P0) ≤ inf
θ∈Θ

Rk(θ;P0) + 2Ck,ρDL
√
tn
− 1

(k∗∨2)

for a constant Ck,ρ > 0 that depends only on k and ρ.
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Perturbations to population distribution

Lower bound

Theorem (Duchi & N. 2018)

Let `(θ;X) = θX with θ ∈ Θ = [−M,M ] and ξ ∈ [−1, 1]. Then, for a
constant ck,ρ that only depends on k and ρ

inf
θ̂

sup
P0

EP0

[
Rf (θ̂;P0)− inf

θ∈Θ
Rk(θ;P0)

]
≥ ck,ρMn

− 1
(k∗∨2)

where infimum is over σ(X1, . . . , Xn)-measurable mappings, and
supremum is over all probability distributions.

I Worst than parametric rate for k ∈ (1, 2) and k∗ = k/(k−1) ∈ (2,∞)

I Statistical cost of distributional robustness

I Lower bound applies to any f -divergence f(t) ∝ tk − 1.
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Perturbations to population distribution
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Perturbations to population distribution

Remarks

I Our upper and lower bounds are tight up to dimension dependent
constants

I Lower bound can be loose in high dimensions

I Central limit theorem: under suitable conditions,

√
n(θ̂k,n − θ?) d

 N(0, A)

where θ̂k,n is empirical plug-in, and A can be fully-specified.

I Worst-case rate different from asymptotic rate
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Perturbations to population distribution

Experiment: SVM sanity check

Test on distributions with adversarially shifted true classifier

0 2 4 6 8
perturbations
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ss
ERM
k = 4
k = 2
k = 1.5

`(θ; (w, y)) =
(
1− yw>θ

)
+
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Perturbations to population distribution

Experiment: Domain Generalization

Problem: Given an hand-written or type-written digit, classify it

I Majority group: hand-written, minority group: type-written

I Data: MNIST hand-written training dataset comprising of
ntrain = 60, 000 digits with {0, 6, 10, 60, 100, 600} images per digit
replaced with a type-written dataset (with the same label).

I Multiclass logistic loss

Type-written data Hand-written data
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Perturbations to population distribution

Experiment: Domain Generalization

Performance on minority group
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Perturbations to population distribution

Experiment: Domain Generalization

Performance on “hard” digit in minority group
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Perturbations to population distribution

Experiment: Domain Generalization

Performance on “easy” digit in minority group
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Perturbations to population distribution

Experiment: fine-grained recognition

I 120 distinct classes (all dog breeds) [Khosla et al. 11]

Cairn Border
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Perturbations to population distribution

Experiment: fine-grained recognition
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Perturbations to population distribution

Experiment: fine-grained recognition
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Perturbations to population distribution

Experiment: fine-grained recognition
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Perturbations to population distribution

Representation Disparity Amplification

Problem: Users may drop out of service if low performance

I Evaluate user satisfaction and retention on Mechanical Turk

I Corpora (tweets) from two demographic groups: Caucasians (SAE),
African Americans (AAE)

I Task: autocomplete 10 tweets

I Use satisfaction survey to estimate user retention, repeat with
changed demographic proportions

I See [Hashimoto, Srivastava, N., Liang 18] for details
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Perturbations to population distribution

Representation Disparity Amplification

Green: ERM, Blue: DRO, real-line: AAE (minority), dotted-line: SAE
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Perturbations to population distribution

Representation Disparity Amplification

Green: ERM, Blue: DRO, real-line: AAE (minority), dotted-line: SAE
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Perturbations to population distribution Wasserstein robustness

Revisiting choice of uncertainty region

Distributionally robust formulations depend heavily on uncertainty region

minimize
θ∈Θ

sup
P∈P

EP [`(θ,X)]

Q: Are there better choices of uncertainty sets P, especially for
over-parameterized models such as deep nets?

Hongseok Namkoong Distributionally Robust Optimization June 2018 60 / 76



Perturbations to population distribution Wasserstein robustness

Revisiting choice of uncertainty region

Distributionally robust formulations depend heavily on uncertainty region

minimize
θ∈Θ

sup
P∈P

EP [`(θ,X)]

Q: Are there better choices of uncertainty sets P, especially for
over-parameterized models such as deep nets?

Hongseok Namkoong Distributionally Robust Optimization June 2018 60 / 76



Perturbations to population distribution Wasserstein robustness

Why changing support is important

I Deep networks are not robust

Athalye et al. (2017)
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Perturbations to population distribution Wasserstein robustness

Wasserstein-based robustness sets

Define Wasserstein distance from a (convex) transportation cost function c

Wc(P,Q) := max
h

{∫
h(x) [p(x)− q(x)] dz | h(x)− h(x′) ≤ c(x, x′)

}

Use uncertainty region

Pρ := {P : Wc(P, P0) ≤ ρ}
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Perturbations to population distribution Wasserstein robustness

Wasserstein robustness

Look at distributionally robust risk

minimize
θ∈Θ

sup
P
{EP [`(θ;Z)] | P ∈ P}

I Allows changing support to harder distributions
[Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet

et al 16]

Example (Linear models): If loss `(θ, x, y) = φ(θTxy) for some φ, then

I if c(x, x′) = ‖x− x′‖∞, yields data-dependent `1-regularization

I if c(x, x′) = ‖x− x′‖2, yields data-dependent `2-regularization

Minor issue: Often NP-hard when not simple linear model

Hongseok Namkoong Distributionally Robust Optimization June 2018 63 / 76



Perturbations to population distribution Wasserstein robustness

Wasserstein robustness

Look at distributionally robust risk defined for ρ ≥ 0

R(θ, ρ) := sup
P
{EP [`(θ;Z)] s.t. Wc(P , P0) ≤ ρ}

I Allows changing support to harder distributions
[Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet

et al 16]

Example (Linear models): If loss `(θ, x, y) = φ(θTxy) for some φ, then

I if c(x, x′) = ‖x− x′‖∞, yields data-dependent `1-regularization

I if c(x, x′) = ‖x− x′‖2, yields data-dependent `2-regularization

Minor issue: Often NP-hard when not simple linear model

Hongseok Namkoong Distributionally Robust Optimization June 2018 63 / 76



Perturbations to population distribution Wasserstein robustness

Wasserstein robustness

Look at distributionally robust risk defined for ρ ≥ 0

R(θ, ρ) := sup
P
{EP [`(θ;Z)] s.t. Wc(P , P0) ≤ ρ}

I Allows changing support to harder distributions
[Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet

et al 16]

Example (Linear models): If loss `(θ, x, y) = φ(θTxy) for some φ, then

I if c(x, x′) = ‖x− x′‖∞, yields data-dependent `1-regularization

I if c(x, x′) = ‖x− x′‖2, yields data-dependent `2-regularization

Minor issue: Often NP-hard when not simple linear model

Hongseok Namkoong Distributionally Robust Optimization June 2018 63 / 76



Perturbations to population distribution Wasserstein robustness

Wasserstein robustness

Look at distributionally robust risk defined for ρ ≥ 0

R(θ, ρ) := sup
P
{EP [`(θ;Z)] s.t. Wc(P , P0) ≤ ρ}

I Allows changing support to harder distributions
[Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet

et al 16]

Example (Linear models): If loss `(θ, x, y) = φ(θTxy) for some φ, then

I if c(x, x′) = ‖x− x′‖∞, yields data-dependent `1-regularization

I if c(x, x′) = ‖x− x′‖2, yields data-dependent `2-regularization

Minor issue: Often NP-hard when not simple linear model

Hongseok Namkoong Distributionally Robust Optimization June 2018 63 / 76



Perturbations to population distribution Wasserstein robustness

Duality and robustness

Theorem (Blanchet and Murthy (2016))

Let P0 be any distribution on Z and c : Z × Z → R+ be any function.
Then

sup
Wc(P ,P0)≤ρ

EP [`(θ;Z)] = inf
λ≥0

{∫
sup
z′

{
`(θ; z′)− λc(z′, z)

}
dP0(z) + λρ

}

= inf
λ≥0
{EP0 [`λ(θ;Z)] + λρ} .

Computational Idea: Pick a large enough λ, and “solve”

minimize
θ

EP0 [`λ(θ;Z)]
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Perturbations to population distribution Duality for Wasserstein robustness

A first idea

(Simple) insight: If `(θ, z) is smooth in θ and z, then life gets a bit easier

The function

`λ(θ; z) := sup
∆

{
`(θ; z + ∆)− λ

2
‖∆‖22

}

is efficient to compute (and differentiable, etc.) for large enough λ
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Perturbations to population distribution Duality for Wasserstein robustness

Stochastic gradient algorithm

minimize
θ

EP0 [`λ(θ;Z)] = EP0

[
sup
∆

{
`(θ;Z + ∆)− λ

2
‖∆‖22

}]

Repeat:

1. Draw Zk
iid∼ P

2. Compute (approximate) maximizer

Ẑk ≈ argmax
z

{
`(θ; z)− λ

2
‖z − Zk‖22

}

3. For a stepsize αk, update

θk+1 := θk − αk∇θ`(θk; Ẑk)

Theorem(ish): This converges with all the typical convergence properties
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Perturbations to population distribution Duality for Wasserstein robustness

Simple Visualization

y = sign(‖x‖2 −
√

2)
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Perturbations to population distribution Duality for Wasserstein robustness

Experimental results: adversarial classification

I MNIST dataset with 3 convolutional layers, fully connected softmax
top layer
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Perturbations to population distribution Duality for Wasserstein robustness

Reading tea leaves
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Perturbations to population distribution Domain adaptation

Generate examples for new domains

3.2 Data-Dependent Regularization

In this section, we argue that under suitable conditions on the loss,

��(✓; (z, y)) = `(✓; (z, y)) +
1

�
krz`(✓; (z, y))k2

2 + O

✓
1

�2

◆
.

the robust surrogate loss (5) corresponds to a particular data-dependent regularization scheme. Let
`(✓; (x, y)) be the m-class softmax loss (2) given by

`(✓; (x, y)) = � log py(✓, x) where pj(✓, x) :=
exp(✓>c,jg(✓, x))Pm

l=1 exp(✓>c,lg(✓f ; x))
.

where ✓c,j 2 Rp is the j-th row of the classification layer weight ✓c 2 Rp⇥m. Then, the robust
surrogate �� is an approximate regularizer on the classification layer weights ✓c

��(✓, (x, y)) = `(✓, (x, y)) +
1

�

�����✓c,y �
mX

j=1

pj(✓, x)✓c,j

�����

2

2

+ O

✓
1

�2

◆
. (11)

The expansion (11) shows that the robust surrogate (5) is roughly equivalent to data-dependent
regularization where we minimize the distance between

Pm
j=1 pj(✓, x)✓c,j , our “average estimated

linear classifier”, to ✓c,y, the linear classifier corresponding to the true label y. Letting L(✓) :=
2 max1jm k✓c,jk2

Pm
j=1 k✓c,jk2 for a fixed ✓ 2 ⇥, we have the following result whose proof we

defer to Appendix A.3.

Theorem 2. If Im(g(✓f ; ·)) = Rp and � > L(✓), the softmax loss (2) satisfies

1

� + L

�����✓c,y �
mX

j=1

pj(✓, x)✓c,j

�����

2

2

 ��(✓, (x, y)) � `(✓, (x, y))  1

� � L

�����✓c,y �
mX

j=1

pj(✓, x)✓c,j

�����

2

2

.

4 Experiments

We evaluate our method for both classification and semantic segmentation settings, following the
evaluation scenarios of domain adaptation techniques [9, 39, 15], though in our case the target domains
are unknown at training time. We summarize our experimental setup including implementation details,
evaluation metrics and datasets for each task. We compare our method against the Empirical Risk
Minimization (ERM) baseline in all of our results.

Digit classification We train on MNIST [20] dataset and test on MNIST-M [9], SVHN [31], SYN
[9] and USPS [6] (see Figure 1 (top)). We use 10, 000 digit samples for training and evaluate our
models on the respective test sets of the different target domains, using accuracy as a metric. In
order to work with comparable datasets, we resized all the images to 32 ⇥ 32, and treated images
from MNIST and USPS as RGB. We use a ConvNet [19] with architecture conv-pool-conv-pool-fc-
fc-softmax and set the hyperparameters ↵ = 0.0001, ⌘ = 1.0, Tmin = 100 and Tmax = 15. In the
minimization phase, we use Adam [18] with batch size equal to 32.

Figure 1. Samples from MNIST [20], SVHN [31], USPS [6], SYN and MNIST-M [9, 10] (top), and
from Dawn, Fog, Spring, Night and Winter sequences from SYNTHIA [32] dataset (bottom).

6

Figure 3. Results obtained with semantic segmentation models trained with ERM (red) and our method
with K = 1 and � = 1.0 (blue). Leftmost panels are associated with models trained on Highway,
rightmost panels are associated with models trained on New York-like City. Test datasets are Highway,
New York-like City and Old European Town.

time. We learn ensemble of models, each of which is trained by running Algorithm 1 with different
values of the � as � = 10�i, with i =

�
0, 1, 2, 3, 4, 5, 6

 
. Figure 2 (bottom) shows the comparison

between our method with different numbers of iterations K (blue) and ERM (red). In order to
separate the role of ensemble learning, we learn an ensemble of baseline models each corresponding
to a different initialization. We fix the number of models in the ensemble to be the same for both
the baseline (ERM) and our method. As it can be observed, by comparing Figure 2 (middle) and
(bottom), our ensemble approach yields higher accuracy in most of the testing scenarios. It is worth
noting also the reduced performance gap detectable in the USPS experiment.

4.2 Results on Semantic Scene Segmentation

We report a comparison between models trained with ERM and models trained with our method
(Algorithm 1 with K = 1). We set � = 1.0 in every experiment, but let us stress that this is an
arbitrary value, we did not observe a strong correlation between the different values and the general
behavior of the models in this case. Its role would be much more meaningful in an ensemble setting,
where each model would be associated with a different level of robustness, as discussed in Section 2.
In this setting, we do not apply the ensemble approach, but only evaluate the performances of the
single models. The main reason for this choice is the fact that the heuristics developed to choose
the correct model at test time in effect cannot be applied in a straightforward fashion to a semantic
segmentation problem. One could apply it to the single pixels and combine the outputs of the different
models according to the softmax distributions. Some preliminary results showed that this approach
could be applicable, but we reserve a detailed analysis of it for future works.

Figure 3 reports numerical results obtained. Specifically, leftmost plots report results associated
with models trained on sequences from the Highway split and tested on the New York-like City
and the Old European Town splits (top-left and bottom-left, respectively); rightmost plots report
results associated with models trained on sequences from the New York-like City split and tested
on the Highway and the Old European Town splits (top-right and bottom-right, respectively). The
training sequences (Dawn, Fog, Night, Spring and Winter) are indicate on the x-axis. Red and blue
bars indicate average mIoUs achieved by models trained with ERM and by models trained with our
method, respectively. These results were calculated by averaging over the mIoUs obtained with each
model on the different conditions of the test set. As can be observed, models trained with our method
mostly better generalize to unknown data distributions. In particular, our method always outperforms
the baseline by a statistically significant margin when the training images are from Night scenarios.
This is since the baseline model trained on images from Night is strongly biased towards dark scenery,
while, as a consequence of training over worst-case distributions, our models can overcome this
strong bias and better generalize across different unseen domains.

8

[Volpi?, N.?, Sener, Duchi, Murino, Savarese 18]
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Perturbations to population distribution Conclusions

Conclusion

1. Statistical consequences of distributional robustness important

2. Duality provides both certificates and allows efficient methods

Future work:

1. More work to do on how to choose robustness sets! (f , c, ρ)

2. When should we use divergence- vs. distance-based?

3. Distributional robustness and temporal shifts

4. Causal connections: correspondence between uncertainty regions vs.
interventions and confounding variables

5. Principled view on adversarial training

6. Risk-averse decision-making (reinforcement learning)
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Empirical likelihood main

The empirical likelihood confidence region is
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Empirical likelihood main

The empirical likelihood confidence region is

En(ρ) :=

{
n∑

i=1

piZi : Dχ2 (p||1/n) ≤ ρ

n

}
.

[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]
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1

n

n∑

i=1

(npi − 1)2 ≤ ρ

n
, p>1 = 1, p ≥ 0

}
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1

n
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Zi +

{ n∑
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uiZi : ‖u‖22 ≤
ρ

n2
, u>1 = 0, u ≥ −1

n

}

by letting ui = pi − 1
n .
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Robust Optimization ≈ Variance Regularization main

Proof Sketch Let zi = `(θ;Xi), ui = pi − 1
n , and denote by z̄ and s2

n the
sample mean and variance respectively.
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n
, p>1 = 1, p ≥ 0

}
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Last inequality is tight if for all i

ui =
1

n

√
2ρ

ns2
n

(zi − z̄) ≥ −
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Extensions and issues main

Issue: What if θ? ∈ Rd is not unique?

Let S = argminθ∈ΘR(θ) and

r? = min
θ?∈S

max
θ∈S
‖θ − θ?‖2

Then [Duchi, Glynn & N. 16]

P
(

inf
θ∈Θ

R(θ) ≤ Rn(θ̂rob,Pn,ρ)
)

≥ P
(
N(0, 1) +

√
ρ ≥ r?

√
ρVar(`(x?; ξ))(d+ 1)

)
+O(n−

1
2 ).

I If r? large, then lose confidence, if r? small, good shape
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