Experiment 2: Fine-grained recognition

- Task: classify image of dog to breed (120 classes)
- Kernel features

Stanford Dogs Dataset [Khosla et al. '11]

No underrepresentation: same number of images per class

ERM error rate

Variation in error over 120 class

Worst x-classes

30 seconds demo of Wasserstein DRO

Trained using lambda = 1.0, and an adaptive cost function defined on last hidden layer outputs of the neural network

Distributional Robustness in Statistical Learning: A Few Vignettes

Hongseok Namkoong

June 2018

Motivation

Goal

We want machine-learned systems to perform **reliably** when deployed in the real world

Goal

We want machine-learned systems to perform **reliably** when deployed in the real world

\Rightarrow Uniformly good performance against distributional shifts

• Want to be robust to small perturbations in \widehat{P}_n

Hongseok Namkoong

Distributionally Robust Optimization

• Want to be robust to small perturbations in \widehat{P}_n

Problem 1: Tail performance

- Long-tailed data distribution
- At Google, a constant percentage of queries are new each day
- Rare queries determine quality of service

Problem 1: Tail performance

- Same number of training examples for each class
- Average accuracy is around 60 70%
- Low performance on certain classes

Problem 2: Changes in environment

Driving in California

Problem 2: Changes in environment

Driving in California

Not driving in California

Problem 3: Fairness

- Data collection almost always contains demographic, geographic, behavioral, temporal biases
- Pre-existing biases in language
 - ▶ Bias in word representations (word2vec) [Bolukbasi et al (2016)] man - woman ≈ computer programmer - homemaker

Problem 3: Fairness

- Data collection almost always contains demographic, geographic, behavioral, temporal biases
- Pre-existing biases in language
 - Bias in word representations (word2vec) [Bolukbasi et al (2016)] man – woman ≈ computer programmer – homemaker
- Representation disparity for minority groups
 disparate performance over different demographic groups
 - e.g. race, gender, age
- Speech recognition, facial recognition, automatic video captioning, language identification, academic recommender systems etc
 [Amodei et al (2016), Grother et al (2010), Hovy et al (2015), Blodgett et al (2016), Sapiezynski et al (2017), Tatman (2017)]

Problem 3: Fairness

Criminal Justice System

- Predict if defendant should receive bail (crime recidivism)
- Higher false positive for African Americans

Table: ProPublica Analysis of COMPAS

	Caucasian	African American
False High-Risk	23.5%	44.9%
False Low-Risk	47.7%	28.0%

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

- More likely to wrongly deny African Americans bail!
- Used state-wide in New York, Wisconsin.

Problem 4: Adversaries

"panda" 57.7% confidence

[Goodfellow et al. 15]

"gibbon" 99.3% confidence

Problem 4: Adversaries

"panda" 57.7% confidence **"gibbon"** 99.3% confidence

[Goodfellow et al. 15]

Paraphrased Quote:

We could put a transparent film on a stop sign, essentially imperceptible to a human, and a computer would see the stop sign as air (Dan Boneh)

Risk-averseness

- Distributional Robustness = Risk-averseness (coherent risk measures) [Shapiro et al (2009)]
- ► *Risk-averse* decision making is standard in OR, economics, finance
- Optimizing average-case performance is still common in stats/ML
 - empirical risk minimization (ERM), maximum likelihood estimation

Risk-averseness

- Distributional Robustness = Risk-averseness (coherent risk measures) [Shapiro et al (2009)]
- ► *Risk-averse* decision making is standard in OR, economics, finance
- Optimizing average-case performance is still common in stats/ML
 - empirical risk minimization (ERM), maximum likelihood estimation

Can we be risk-averse in statistics and machine learning?

Small perturbations to data

Stochastic optimization problems

Data X and parameters θ to learn, with loss $\ell(\theta,X)$

Minimize the population expected loss

$$\underset{\theta \in \Theta}{\text{minimize}} \ \left\{ R(\theta) := \mathbb{E}_{P_0}[\ell(\theta, X)] = \int \ell(\theta, x) dP_0(x) \right\}$$

given an i.i.d. sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P_0$

Empirical Risk Minimization

Standard approach: Solve

Empirical Risk Minimization

Standard approach: Solve

$$\widehat{\theta}^{\text{erm}} \in \operatorname*{argmin}_{\theta \in \Theta} \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; X_i) \approx \mathbb{E}_{P_0}[\ell(\theta; X)].$$

Goal: Can we hedge against uncertainty in data?

Empirical Risk Minimization

Standard approach: Solve

$$\widehat{\theta}^{\text{erm}} \in \operatorname*{argmin}_{\theta \in \Theta} \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; X_i) \underbrace{\approx \mathbb{E}_{P_0}[\ell(\theta; X)]}_{\text{Hopefully!}}.$$

Goal: Can we hedge against uncertainty in data?

 Any learning algorithm has bias (approximation error) and variance (estimation error)

- Any learning algorithm has bias (approximation error) and variance (estimation error)
- \blacktriangleright From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)] \leq \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2 \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}$$

- Any learning algorithm has bias (approximation error) and variance (estimation error)
- \blacktriangleright From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)] \leq \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2 \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}$$

▶ Can be made uniform in $\theta \in \Theta$ [Maurer & Pontil 09]
Point of departure: bias/variance tradeoff

- Any learning algorithm has bias (approximation error) and variance (estimation error)
- From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)] \leq \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2 \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}$$

▶ Can be made uniform in $\theta \in \Theta$ [Maurer & Pontil 09]

Goal: Trade between these automatically and optimally by solving

$$\widehat{\theta}^{\mathrm{var}} \in \operatorname*{argmin}_{\theta \in \Theta} \left\{ \widehat{R}_n(\theta) + \sqrt{\frac{2 \mathrm{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} \right\}$$

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality! Minor issue: variance is wildly non-convex

Goal:

$$\underset{\theta \in \Theta}{\text{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)]$$

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)]$$

Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \quad \sum_{i=1}^{n} \frac{1}{n} \ell(\theta; X_i)$$

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)]$$

Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \quad \sum_{i=1}^{n} \frac{1}{n} \ell(\theta; X_i)$$

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)]$$

Instead, solve distributionally robust optimization (RO) problem

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i}\ell(\theta; X_{i})$$

where $\mathcal{P}_{n,\rho}$ is some appropriately chosen set of vectors

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; X)]$$

Instead, solve distributionally robust optimization (RO) problem

$$\underset{\theta \in \Theta}{\text{minimize}} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i}\ell(\theta; X_{i})$$

where $\mathcal{P}_{n,\rho}$ is some appropriately chosen set of vectors

[Scarf 58, Dupacová 87, Yue et al. 06, Popescu 07, Delage & Ye 10, Ben-Tal et al. 13, Bertsimas et al. 17, and many others]

Idea: Instead of using empirical distribution \hat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

• The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1) = 0. (w.l.o.g. can take f'(1) = 0 too)

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

• The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1)=0. (w.l.o.g. can take $f^{\prime}(1)=0$ too)

• Measures of closeness we use: $f(t) = \frac{1}{2}(t-1)^2$

$$D_{\chi^2}\left(P\|Q\right) = \frac{1}{2}\sum_x \frac{(p(x)-q(x))^2}{q(x)} \qquad \qquad \text{Chi-square}$$

(Owen (1990): original empirical likelihood $f(t) = -\log t$)

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}\left(p \| \mathbf{1}/n\right) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}\left(p \| \mathbf{1}/n\right) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

ellipse [Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

Hongseok Namkoong

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}\left(p \| \mathbf{1}/n\right) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

ellipse [Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

Hongseok Namkoong

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}\left(p \| \mathbf{1}/n\right) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

ellipse [Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

Hongseok Namkoong

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}\left(p \| \mathbf{1}/n\right) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

ellipse [Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

Hongseok Namkoong

Idea: Leverage this in stochastic optimization

Hongseok Namkoong

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

$$\mathcal{P}_{n,\rho} := \left\{ \text{Distributions } P \text{ such that } D_{\chi^2} \left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n} \right\}$$
for some $\rho > 0$.

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

$$\mathcal{P}_{n,\rho} := \left\{ \text{Distributions } P \text{ such that } D_{\chi^2} \left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n} \right\}$$
for some $\rho > 0$.

Define (and optimize) empirical likelihood upper confidence bound

$$R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P:D_{\chi^2}(P \| \hat{P}_n) \le \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] = \max_{p:D_{\chi^2}(P \| \hat{P}_n) \le \frac{\rho}{n}} \sum_{i=1}^n p_i \ell(\theta; X_i)$$

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 16]

Visualization of worst-case

Optimization

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P: D_{\chi^2}(P \| \widehat{P}_n) \le \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Optimization

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P: D_{\chi^2}(P \| \widehat{P}_n) \le \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Nice properties:

- Convex optimization problem.
- Solve dual reformulation using interior point methods [Ben-Tal et al. 13]
- For large n and d, efficient solution methods as fast as stochastic gradient descent [N. & Duchi, 16]

Play a two-player stochastic game [N. & Duchi 16]

Theorem (Duchi, Glynn & N. 2016) For general *f*-divergences,

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} + \operatorname{Rem}_n(\theta).$$

► If $\sigma^2(\theta) < \infty$, then $\sqrt{n} \operatorname{Rem}_n(\theta) \xrightarrow{P^*} 0$ ► If $\{\ell(\theta; \cdot) : \theta \in \Theta\}$ is P_0 -Donsker, then $\sqrt{n} \sup_{\theta \in \Theta} \operatorname{Rem}_n(\theta) \xrightarrow{P^*} 0$

Theorem (Duchi, Glynn & N. 2016) For general *f*-divergences,

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} + \operatorname{Rem}_n(\theta).$$

• If
$$\sigma^2(\theta) < \infty$$
, then $\sqrt{n} \operatorname{Rem}_n(\theta) \xrightarrow{P^*} 0$

- If $\{\ell(\theta; \cdot) : \theta \in \Theta\}$ is P_0 -Donsker, then $\sqrt{n} \sup_{\theta \in \Theta} \operatorname{Rem}_n(\theta) \xrightarrow{P^*} 0$
- ▶ [Lam (2013), Gotoh et al (2015), Lam and Zhao (2017)]

Theorem (Duchi & N. 2016) Assume that $\ell(\theta; X) \leq M$. Let $\sigma^2(\theta) := \operatorname{Var}(\ell(\theta; X))$.

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} + \operatorname{Rem}_n(\theta).$$

- $\operatorname{Rem}_n(\theta) \leq \frac{\sqrt{12}\rho M}{n}$
- $\operatorname{Rem}_n(\theta) = 0$ with probability at least $1 \exp(-\frac{n\sigma^2(\theta)}{36M^2})$ proof

Theorem (Duchi & N. 2016) Assume that $\ell(\theta; X) \leq M$. Let $\sigma^2(\theta) := \operatorname{Var}(\ell(\theta; X))$.

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} + \operatorname{Rem}_n(\theta).$$

- $\operatorname{Rem}_n(\theta) \leq \frac{\sqrt{12}\rho M}{n}$
- $\operatorname{Rem}_n(\theta) = 0$ with probability at least $1 \exp(-\frac{n\sigma^2(\theta)}{36M^2})$ proof
- Let N(F, τ, ||·||_{L∞}) be the τ-covering number with respect to the supremum norm.

$$\begin{split} \mathbb{P}\left(\textit{\textit{Rem}}_{n}(\theta) = 0 \text{ for all } \theta \in \Theta \text{ s.t. } \sigma^{2}(\theta) \geq \tau^{2}\right) \\ \geq 1 - cN(\mathcal{F}, \tau, \|\cdot\|_{L^{\infty}}) \exp(-\frac{n\tau^{2}}{M^{2}}). \end{split}$$

$$\underbrace{\underline{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R_n(\theta)} + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{VarReg}}$$

With high probability,

$$\underbrace{\underline{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{VarReg}}$$

Robust is empirical likelihood UCB and VarReg is normal UCB

$$\underbrace{\underline{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{VarReg}}$$

- Robust is empirical likelihood UCB and VarReg is normal UCB
- Robust is convex, VarReg is non-convex

$$\underbrace{\underline{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{VarReg}}$$

- Robust is empirical likelihood UCB and VarReg is normal UCB
- Robust is convex, VarReg is non-convex
- Robust only penalizes upward (bad) deviations in the loss whereas
 VarReg penalizes downward (good) deviations along with the upward (bad) deviations

$$\underbrace{\underline{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R_n(\theta)} + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}_{\text{VarReg}}$$

- Robust is empirical likelihood UCB and VarReg is normal UCB
- Robust is convex, VarReg is non-convex
- Robust only penalizes upward (bad) deviations in the loss whereas VarReg penalizes downward (good) deviations along with the upward (bad) deviations
- ▶ Robust is a coherent risk measure (i.e. it is a sensible negative utility)

Empirical likehood for stochastic optimization

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \max_{P: D_{\chi^2}\left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Empirical likehood for stochastic optimization

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \max_{P: D_{\chi^2}(P \| \widehat{P}_n) \le \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Assume that $\{\ell(\theta; \cdot) : \theta \in \Theta\}$ is P_0 -Donsker

e.g. $\Theta \subset \mathbb{R}^d$ compact and $\ell(\cdot; X)$ is M(X)-Lipschitz with $\mathbb{E}M(X)^2 < \infty$.

Empirical likehood for stochastic optimization

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \max_{P: D_{\chi^2}(P \| \widehat{P}_n) \le \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Assume that $\{\ell(\theta; \cdot) : \theta \in \Theta\}$ is P_0 -Donsker

e.g. $\Theta \subset \mathbb{R}^d$ compact and $\ell(\cdot; X)$ is M(X)-Lipschitz with $\mathbb{E}M(X)^2 < \infty$.

Theorem (Duchi, Glynn & N. 16 (1)) If $\theta^* := \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ is unique, then

$$\lim_{n \to \infty} \mathbb{P}\left(\inf_{\theta \in \Theta} R(\theta) \le R_n(\widehat{\theta}^{\mathrm{rob}}, \mathcal{P}_{n,\rho})\right) = \mathbb{P}\left(N(0,1) \ge -\sqrt{2\rho}\right).$$

Can be extended to Harris recurrent Markov chains that mix suitably fast

Hongseok Namkoong

Distributionally Robust Optimization

June 2018 28 / 76

Optimal bias variance tradeoff

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \max_{P: D_{\chi^2}\left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$
Optimal bias variance tradeoff

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \max_{P: D_{\chi^2}(P \| \widehat{P}_n) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Let $\ell(\cdot; X)$ is *M*-Lipschitz and diam $(\Theta) = r$

Optimal bias variance tradeoff

Solve

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin}_{\theta \in \Theta} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \max_{P: D_{\chi^2}\left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Let $\ell(\cdot;X)$ is M-Lipschitz and $\operatorname{diam}(\Theta)=r$

Theorem (Duchi & N. 2016)

Let $\rho = \log \frac{1}{\delta} + d \log n$. Then with probability at least $1 - \delta$,

$$R(\widehat{\theta}^{\text{rob}}) \leq \underbrace{R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho})}_{\text{optimality certificate}} + \frac{crM}{n}\rho$$
$$\leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{crM}{n}\rho$$

Fast rates from optimal tradeoff

▶ Let $\rho \approx \mathfrak{Comp}_n(\Theta)$. If $\ell(\theta; X) \in [0, M]$, then with high prob,

$$R(\hat{\theta}^{\text{rob}}) \leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{CM\rho}{n}$$

Fast rates from optimal tradeoff

▶ Let $\rho \approx \mathfrak{Comp}_n(\Theta)$. If $\ell(\theta; X) \in [0, M]$, then with high prob,

$$R(\widehat{\theta}^{\text{rob}}) \leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{CM\rho}{n}$$

▶ ERM: For $R(\theta^{\star}) = \inf_{\theta \in \Theta} R(\theta)$, with high probability,

$$R(\widehat{\theta}^{\text{erm}}) \le R(\theta^{\star}) + \sqrt{\frac{2\rho M R(\theta^{\star})}{n}} + \frac{CM\rho}{n}$$

Fast rates from optimal tradeoff

▶ Let $\rho \approx \mathfrak{Comp}_n(\Theta)$. If $\ell(\theta; X) \in [0, M]$, then with high prob,

$$R(\widehat{\theta}^{\text{rob}}) \leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{CM\rho}{n}$$

▶ ERM: For $R(\theta^{\star}) = \inf_{\theta \in \Theta} R(\theta)$, with high probability,

$$R(\widehat{\theta}^{\text{erm}}) \le R(\theta^{\star}) + \sqrt{\frac{2\rho M R(\theta^{\star})}{n}} + \frac{CM\rho}{n}$$

• If $Var(\ell(\theta^{\star}; X)) \ll MR(\theta^{\star})$, first bound is **tighter**

See paper for an explicit example where

$$R(\widehat{\theta}^{\mathrm{rob}}) \leq R(\theta^{\star}) + \frac{C_1}{n} \quad \text{ but } \quad R(\widehat{\theta}^{\mathrm{erm}}) \geq R(\theta^{\star}) + \frac{C_2}{\sqrt{n}}$$

Experiment: Coverage Rates

- Portfolio optimization $\ell(\theta; X) = \theta^\top X$
- ▶ Conditional Value-at-Risk $\ell(\theta; X) = \frac{1}{1-\alpha} (X \theta)_+ + \theta$
- Newsvendor problem

$$\ell(\theta; X) = b^{\top} (\theta - X)_{+} + b^{\top} (X - \theta)_{+}.$$

Experiment: Coverage Rates

- Portfolio optimization $\ell(\theta; X) = \theta^\top X$
- Conditional Value-at-Risk $\ell(\theta; X) = \frac{1}{1-\alpha} (X \theta)_+ + \theta$
- Newsvendor problem $\ell(\theta; X) = b^{\top} (\theta X)_{+} + s^{\top} (X \theta)_{+}.$

Figure: Coverage Rates (nominal = 95%)

%	Portfolio		CVaR		Newsvendor	
sample size	EL	Normal	EL	Normal	EL	Normal
20	75.16	89.2	30.1	91.38	91.78	95.02
200	92.96	93.68	86.73	95.27	94.64	95.26
2000	95.48	95.25	93.73	95.25	94.92	95.04
10000	96.43	95.51	94.71	94.85	94.43	94.43

Experiment: Regression

Problem: Predict crime rate *Y*, given feature vector describing community

Median test loss $\ell(\theta; (W, Y)) = |\theta^\top W - Y|$

Hongseok Namkoong

Experiment: Regression

Problem: Predict crime rate, given feature vector on community

Maximal test loss $\ell(\theta; (X, Y)) = |\theta^{\top}X - Y|$

Hongseok Namkoong

Problem: Classify documents as a subset of the 4 categories:

{Corporate, Economics, Government, Markets}

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents document, $y \in \{-1, 1\}^4$ where $y_j = 1$ indicating x belongs j-th category.
- Logistic loss, with $\Theta = \left\{ \theta \in \mathbb{R}^d : \|\theta\|_1 \le 1000 \right\}$
- ▶ d = 47,236, n = 804,414. 10-fold cross-validation.
- Use precision and recall to evaluate performance

$$\mathsf{Precision} = \frac{\# \mathsf{Correct}}{\# \mathsf{Guessed} \mathsf{Positive}} \qquad \mathsf{Recall} = \frac{\# \mathsf{Correct}}{\# \mathsf{Actually} \mathsf{Positive}}$$

Table: Reuters Number of Examples

Corporate	Economics	Government	Markets
381,327	119,920	239,267	204,820

Figure: Recall on common category (Corporate)

Figure: Recall on rare category (Economics)

Perturbations to population distribution

Distributionally robust optimization

Idea: Replace data-generating distribution P_0 with "uncertainty" set ${\cal P}$ of possible distributions around P_0

 $\underset{\theta \in \Theta}{\mathsf{minimize}} \ \mathbb{E}_{P_0}[\ell(\theta, X)]$

Distributionally robust optimization

Idea: Replace data-generating distribution P_0 with "uncertainty" set ${\cal P}$ of possible distributions around P_0

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \left\{ R(\theta; P_0) := \sup_{P \in \mathcal{P}} \mathbb{E}_P[\ell(\theta, X)] \right\}$$

Intuition: We want \mathcal{P} to contain "hard" subpopulations, minority groups, domain changes, and even adversarial shifts.

Divergence-based uncertainty sets

The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1) = 0. Use **non-parametric** uncertainty region

 $\mathcal{P} := \{ P : D_f \left(P \| P_0 \right) \le \rho \}$

Hongseok Namkoong

Curvature of f

- \blacktriangleright Curvature of $t\mapsto f(t)$ around 1 determines size of uncertainty region
- Cressie-Read family [Cressie and Read (1998)] for $k \in (1,\infty)$

$$f_k(t) = \frac{1}{k(k-1)}(t^k - kt + k - 1),$$

where
$$\mathcal{P}_k := \left\{ P : D_{f_k}\left(P \| P_0\right) = \int f_k\left(\frac{dP}{dP_0}\right) dP_0 \le \rho \right\}$$

Curvature of f

- \blacktriangleright Curvature of $t\mapsto f(t)$ around 1 determines size of uncertainty region
- Cressie-Read family [Cressie and Read (1998)] for $k \in (1,\infty)$

$$f_k(t) = \frac{1}{k(k-1)}(t^k - kt + k - 1),$$

where
$$\mathcal{P}_k := \left\{ P : D_{f_k}\left(P \| P_0\right) = \int f_k\left(\frac{dP}{dP_0}\right) dP_0 \le \rho \right\}$$

- Curvature k controls size of \mathcal{P}_k .
- As $k \to 1$,
 - $D_f(P \| P_0)$ grows smaller
 - Uncertain set \mathcal{P}_k grows larger
 - DRO is more risk-averse

Distributionally robust optimization

Formulation: For divergence given by $f_k(t) \propto t^k - 1$, solve

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \left\{ R_k(\theta; P_0) := \sup_{P} \left\{ \mathbb{E}_P[\ell(\theta, X)] : D_{f_k}\left(P \| P_0\right) \le \rho \right\} \right\}$$

Distributionally robust optimization

Formulation: For divergence given by $f_k(t) \propto t^k - 1$, solve

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \left\{ R_k(\theta; P_0) := \sup_{P} \left\{ \mathbb{E}_P[\ell(\theta, X)] : D_{f_k}\left(P \| P_0\right) \le \rho \right\} \right\}$$

Empirical plug-in: For the empirical measure \widehat{P}_n , solve the plug-in

$$\underset{\theta \in \Theta}{\text{minimize}} \left\{ R_k(\theta, \widehat{P}_n) := \sup_{P} \left\{ \mathbb{E}_P[\ell(\theta, X)] : D_{f_k}\left(P \| \widehat{P}_n\right) \le \rho \right\} \right\}$$

Contrast to previous formulation with shrinking robustness ρ/n .

Minimax bounds for $\min_{\theta \in \Theta} R_k(\theta; P_0)$

Recall
$$R_k(\theta; P_0) := \sup_P \{\mathbb{E}_P[\ell(\theta, X)] : D_{f_k}(P \| P_0) \le \rho\}$$

Theorem (Duchi & N. 2018)
For $k, k_* = \frac{k}{k-1} \in (1, \infty)$, and $\ell(\theta; X) \in [-M, M]$
 $\inf_{\widehat{\theta}} \sup_{P_0} \mathbb{E}_{P_0} \left[R_k(\widehat{\theta}; P_0) - \inf_{\theta \in \Theta} R_k(\theta; P_0) \right] \approx n^{-\frac{1}{(k_* \vee 2)}}$

where infimum is over all measurable functions $\hat{\theta} \in \sigma(X_1, \ldots, X_n)$, and supremum is over all distributions.

Minimax bounds for $\min_{\theta \in \Theta} R_k(\theta; P_0)$

Recall
$$R_k(\theta; P_0) := \sup_P \{\mathbb{E}_P[\ell(\theta, X)] : D_{f_k}(P \| P_0) \le \rho\}$$

Theorem (Duchi & N. 2018)
For $k, k_* = \frac{k}{k-1} \in (1, \infty)$, and $\ell(\theta; X) \in [-M, M]$
 $\inf_{\widehat{\theta}} \sup_{P_0} \mathbb{E}_{P_0} \left[R_k(\widehat{\theta}; P_0) - \inf_{\theta \in \Theta} R_k(\theta; P_0) \right] \approx n^{-\frac{1}{(k_* \vee 2)}}$

where infimum is over all measurable functions $\hat{\theta} \in \sigma(X_1, \ldots, X_n)$, and supremum is over all distributions.

- Upper bound attained by plug-in estimator
- Lower bound shows fudamental statistical cost of robustness

Upper bound

Recall
$$k, k_* = rac{k}{k-1} \in (1,\infty)$$
, and the plug-in

$$\widehat{\theta}_{k,n} = \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_k(\theta, \widehat{P}_n) := \underset{P}{\sup} \left\{ \mathbb{E}_P[\ell(\theta, X)] : D_{f_k}\left(P \| \widehat{P}_n\right) \le \rho \right\} \right\}$$

Theorem (Duchi & N. 2018) Let $\theta \mapsto \ell(\theta; x)$ be *L*-Lipschitz, $D := \sup_{\theta, \theta' \in \Theta} \|\theta - \theta'\| < \infty$, and $\inf_{\theta \in \Theta} \ell(\theta; X) = 0$. Then, w.p. $\geq 1 - 2 \exp\left(-t + d \log\left(1 + \frac{3DL}{t}\right)\right)$

$$R_k(\widehat{\theta}_{k,n}; P_0) \le \inf_{\theta \in \Theta} R_k(\theta; P_0) + 2C_{k,\rho} DL \sqrt{t} n^{-\frac{1}{(k_* \vee 2)}}$$

for a constant $C_{k,\rho} > 0$ that depends only on k and ρ .

Lower bound

Theorem (Duchi & N. 2018)

Let $\ell(\theta; X) = \theta X$ with $\theta \in \Theta = [-M, M]$ and $\xi \in [-1, 1]$. Then, for a constant $c_{k,\rho}$ that only depends on k and ρ

$$\inf_{\widehat{\theta}} \sup_{P_0} \mathbb{E}_{P_0} \left[R_f(\widehat{\theta}; P_0) - \inf_{\theta \in \Theta} R_k(\theta; P_0) \right] \ge c_{k,\rho} M n^{-\frac{1}{(k_* \vee 2)}}$$

where infimum is over $\sigma(X_1, \ldots, X_n)$ -measurable mappings, and supremum is over all probability distributions.

Lower bound

Theorem (Duchi & N. 2018)

Let $\ell(\theta; X) = \theta X$ with $\theta \in \Theta = [-M, M]$ and $\xi \in [-1, 1]$. Then, for a constant $c_{k,\rho}$ that only depends on k and ρ

$$\inf_{\widehat{\theta}} \sup_{P_0} \mathbb{E}_{P_0} \left[R_f(\widehat{\theta}; P_0) - \inf_{\theta \in \Theta} R_k(\theta; P_0) \right] \ge c_{k,\rho} M n^{-\frac{1}{(k_* \vee 2)}}$$

where infimum is over $\sigma(X_1, \ldots, X_n)$ -measurable mappings, and supremum is over all probability distributions.

- \blacktriangleright Worst than parametric rate for $k\in(1,2)$ and $k_*=k/(k-1)\in(2,\infty)$
- Statistical cost of distributional robustness
- Lower bound applies to any f-divergence $f(t) \propto t^k 1$.

Remarks

- Our upper and lower bounds are tight up to dimension dependent constants
- Lower bound can be loose in high dimensions
- Central limit theorem: under suitable conditions,

$$\sqrt{n}(\widehat{\theta}_{k,n} - \theta^{\star}) \stackrel{d}{\leadsto} N(0, A)$$

where $\hat{\theta}_{k,n}$ is empirical plug-in, and A can be fully-specified.

Worst-case rate different from asymptotic rate

Experiment: SVM sanity check

Test on distributions with adversarially shifted true classifier

Problem: Given an hand-written or type-written digit, classify it

- ► Majority group: hand-written, minority group: type-written
- ▶ Data: MNIST hand-written training dataset comprising of n_{train} = 60,000 digits with {0,6,10,60,100,600} images per digit replaced with a type-written dataset (with the same label).
- Multiclass logistic loss

Type-written data

Hand-written data

Performance on minority group

Test error on type-written all digits

Hongseok Namkoong

Performance on "hard" digit in minority group

Test error on type-written digit 9

Hongseok Namkoong

Performance on "easy" digit in minority group

Test error on type-written digit 3

Hongseok Namkoong

Experiment: fine-grained recognition

▶ 120 distinct classes (all dog breeds) [Khosla et al. 11]

Border

Experiment: fine-grained recognition

Variation of top-5 accuracy across 120 classes

Experiment: fine-grained recognition

Test top-5 accuracy evaluated on worst x classes for each model
Experiment: fine-grained recognition

Test top-5 accuracy evaluated on worst x classes for empirical risk minimization

Representation Disparity Amplification

Problem: Users may drop out of service if low performance

- Evaluate user satisfaction and retention on Mechanical Turk
- Corpora (tweets) from two demographic groups: Caucasians (SAE), African Americans (AAE)
- ► Task: autocomplete 10 tweets
- Use satisfaction survey to estimate user retention, repeat with changed demographic proportions
- ► See [Hashimoto, Srivastava, N., Liang 18] for details

Representation Disparity Amplification

Green: ERM, Blue: DRO, real-line: AAE (minority), dotted-line: SAE

Representation Disparity Amplification

Green: ERM, Blue: DRO, real-line: AAE (minority), dotted-line: SAE

Revisiting choice of uncertainty region

Distributionally robust formulations depend heavily on uncertainty region

$\underset{\theta \in \Theta}{\text{minimize}} \quad \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta, X)]$

Revisiting choice of uncertainty region

Distributionally robust formulations depend heavily on uncertainty region

 $\underset{\theta \in \Theta}{\text{minimize}} \quad \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta, X)]$

Q: Are there better choices of uncertainty sets \mathcal{P} , especially for over-parameterized models such as deep nets?

Why changing support is important

Deep networks are not robust

Athalye et al. (2017)

Hongseok Namkoong

Wasserstein-based robustness sets

Define *Wasserstein distance* from a (convex) transportation cost function c

$$W_c(P,Q) := \max_h \left\{ \int h(x) \left[p(x) - q(x) \right] dz \mid h(x) - h(x') \le c(x,x') \right\}$$

Use uncertainty region

$$\mathcal{P}_{\rho} := \{P : W_c(P, P_0) \le \rho\}$$

Look at distributionally robust risk

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; Z)] \mid P \in \mathcal{P} \right\}$$

Look at distributionally robust risk defined for $\rho \geq 0$

$$R(\theta,\rho) := \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta;Z)] \text{ s.t. } W_{c}(P,P_{0}) \leq \rho \right\}$$

Look at distributionally robust risk defined for $\rho \geq 0$

$$R(\theta,\rho) := \sup_{\mathbf{P}} \left\{ \mathbb{E}_{\mathbf{P}}[\ell(\theta;Z)] \text{ s.t. } W_c(\mathbf{P},P_0) \le \rho \right\}$$

Allows changing support to harder distributions
[Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet et al 16]

Example (Linear models): If loss $\ell(\theta, x, y) = \phi(\theta^T x y)$ for some ϕ , then

▶ if $c(x, x') = ||x - x'||_{\infty}$, yields data-dependent ℓ_1 -regularization

▶ if
$$c(x, x') = \|x - x'\|_2$$
, yields data-dependent ℓ_2 -regularization

Look at distributionally robust risk defined for $\rho \geq 0$

$$R(\theta,\rho) := \sup_{\mathbf{P}} \left\{ \mathbb{E}_{\mathbf{P}}[\ell(\theta;Z)] \text{ s.t. } W_c(\mathbf{P},P_0) \le \rho \right\}$$

Allows changing support to harder distributions
[Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16, Blanchet et al 16]

Example (Linear models): If loss $\ell(\theta, x, y) = \phi(\theta^T x y)$ for some ϕ , then

▶ if $c(x, x') = ||x - x'||_{\infty}$, yields data-dependent ℓ_1 -regularization

▶ if $c(x, x') = ||x - x'||_2$, yields data-dependent ℓ_2 -regularization

Minor issue: Often NP-hard when not simple linear model

Duality and robustness

Theorem (Blanchet and Murthy (2016))

Let P_0 be any distribution on \mathcal{Z} and $c: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_+$ be any function. Then

$$\sup_{W_c(\boldsymbol{P}, P_0) \le \rho} \mathbb{E}_{\boldsymbol{P}}[\ell(\theta; Z)] = \inf_{\lambda \ge 0} \left\{ \int \sup_{\boldsymbol{z}'} \left\{ \ell(\theta; \boldsymbol{z}') - \lambda c(\boldsymbol{z}', z) \right\} dP_0(z) + \lambda \rho \right\}$$
$$= \inf_{\lambda \ge 0} \left\{ \mathbb{E}_{P_0} \left[\ell_\lambda(\theta; Z) \right] + \lambda \rho \right\}.$$

Duality and robustness

Theorem (Blanchet and Murthy (2016))

Let P_0 be any distribution on \mathcal{Z} and $c: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_+$ be any function. Then

$$\sup_{W_c(\boldsymbol{P}, P_0) \le \rho} \mathbb{E}_{\boldsymbol{P}}[\ell(\theta; Z)] = \inf_{\lambda \ge 0} \left\{ \int \sup_{\boldsymbol{z}'} \left\{ \ell(\theta; \boldsymbol{z}') - \lambda c(\boldsymbol{z}', z) \right\} dP_0(z) + \lambda \rho \right\}$$
$$= \inf_{\lambda \ge 0} \left\{ \mathbb{E}_{P_0} \left[\ell_\lambda(\theta; Z) \right] + \lambda \rho \right\}.$$

Computational Idea: Pick a large enough λ , and "solve"

$$\underset{\theta}{\mathsf{minimize}} \ \mathbb{E}_{P_0}\left[\ell_{\lambda}(\theta; Z)\right]$$

A first idea

(Simple) insight: If $\ell(\theta, z)$ is smooth in θ and z, then life gets a bit easier

A first idea

(Simple) insight: If $\ell(\theta, z)$ is smooth in θ and z, then life gets a bit easier

The function

$$\ell_{\lambda}(\theta; z) := \sup_{\Delta} \left\{ \ell(\theta; z + \Delta) - \frac{\lambda}{2} \left\| \Delta \right\|_{2}^{2} \right\}$$

is efficient to compute (and differentiable, etc.) for large enough λ

Stochastic gradient algorithm

$$\underset{\theta}{\mathsf{minimize}} \ \mathbb{E}_{P_0}[\ell_{\lambda}(\theta; Z)] = \mathbb{E}_{P_0}\left[\sup_{\Delta} \left\{ \ell(\theta; Z + \Delta) - \frac{\lambda}{2} \left\|\Delta\right\|_2^2 \right\} \right]$$

Repeat:

- 1. Draw $Z_k \stackrel{\mathrm{iid}}{\sim} P$
- 2. Compute (approximate) maximizer

$$\widehat{Z}_k \approx \operatorname*{argmax}_{z} \left\{ \ell(\theta; z) - \frac{\lambda}{2} \left\| z - Z_k \right\|_2^2 \right\}$$

3. For a stepsize α_k , update

$$\theta_{k+1} := \theta_k - \alpha_k \nabla_\theta \ell(\theta_k; \widehat{Z}_k)$$

Stochastic gradient algorithm

$$\underset{\theta}{\mathsf{minimize}} \ \mathbb{E}_{P_0}[\ell_{\lambda}(\theta; Z)] = \mathbb{E}_{P_0}\left[\sup_{\Delta} \left\{ \ell(\theta; Z + \Delta) - \frac{\lambda}{2} \left\|\Delta\right\|_2^2 \right\} \right]$$

Repeat:

- 1. Draw $Z_k \stackrel{\mathrm{iid}}{\sim} P$
- 2. Compute (approximate) maximizer

$$\widehat{Z}_k \approx \operatorname*{argmax}_{z} \left\{ \ell(\theta; z) - \frac{\lambda}{2} \left\| z - Z_k \right\|_2^2 \right\}$$

3. For a stepsize α_k , update

$$\theta_{k+1} := \theta_k - \alpha_k \nabla_\theta \ell(\theta_k; \widehat{Z}_k)$$

Theorem(ish): This converges with all the typical convergence properties

Simple Visualization

$$y = \operatorname{sign}(\|x\|_2 - \sqrt{2})$$

Experimental results: adversarial classification

 MNIST dataset with 3 convolutional layers, fully connected softmax top layer

Experimental results: adversarial classification

 MNIST dataset with 3 convolutional layers, fully connected softmax top layer

Reading tea leaves

Original

ERM

 FGM

IFGM

 \mathbf{PGM}

WRM

Hongseok Namkoong

Distributionally Robust Optimization

Domain adaptation

Generate examples for new domains

[Volpi*, N.*, Sener, Duchi, Murino, Savarese 18]

Conclusion

- 1. Statistical consequences of distributional robustness important
- 2. Duality provides both certificates and allows efficient methods

Conclusion

- 1. Statistical consequences of distributional robustness important
- 2. Duality provides both certificates and allows efficient methods

Future work:

- 1. More work to do on how to choose robustness sets! (*f*, *c*, ρ)
- 2. When should we use divergence- vs. distance-based?
- 3. Distributional robustness and temporal shifts
- 4. Causal connections: correspondence between uncertainty regions vs. interventions and confounding variables
- 5. Principled view on adversarial training
- 6. Risk-averse decision-making (reinforcement learning)

Appendix

The empirical likelihood confidence region is

The empirical likelihood confidence region is

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}\left(p \| \mathbf{1}/n\right) \le \frac{\rho}{n} \right\}$$

[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

The empirical likelihood confidence region is

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2}(p \| \mathbf{1}/n) \le \frac{\rho}{n} \right\}$$

= $\left\{ \sum_{i=1}^n p_i Z_i : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \le \frac{\rho}{n}, p^\top \mathbf{1} = 1, p \ge 0 \right\}$
= $\frac{1}{n} \sum_{i=1}^n Z_i + \left\{ \sum_{i=1}^n u_i Z_i : \|u\|_2^2 \le \frac{\rho}{n^2}, u^\top \mathbf{1} = 0, u \ge -\frac{1}{n} \right\}$

by letting $u_i = p_i - \frac{1}{n}$.

The empirical likelihood confidence region is

$$\begin{split} E_n(\rho) &:= \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} \left(p \| \mathbf{1}/n \right) \le \frac{\rho}{n} \right\} \\ &= \left\{ \sum_{i=1}^n p_i Z_i : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \le \frac{\rho}{n}, p^\top \mathbf{1} = 1, p \ge 0 \right\} \\ &= \frac{1}{n} \sum_{i=1}^n Z_i + \left\{ \sum_{\substack{i=1 \\ i=1}}^n u_i Z_i : \| u \|_2^2 \le \frac{\rho}{n^2}, u^\top \mathbf{1} = 0, u \ge -\frac{1}{n} \right\} \\ & \quad \text{Ellipse from } data \end{split}$$

by letting $u_i = p_i - \frac{1}{n}$.

$$R_{n}(\theta; \mathcal{P}_{n,\rho}) = \max_{p} \left\{ \left\langle p, z \right\rangle : D_{\chi^{2}}\left(p \| \mathbf{1}/n\right) \leq \frac{\rho}{n} \right\}$$

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \max_p \left\{ \langle p, z \rangle : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \le \frac{\rho}{n}, p^\top \mathbf{1} = 1, p \ge 0 \right\}$$

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \max_p \left\{ \langle p, z \rangle : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \le \frac{\rho}{n}, p^\top \mathbf{1} = 1, p \ge 0 \right\}$$
$$= \bar{z} + \max_u \left\{ \langle u, z - \bar{z} \rangle : \|u\|_2^2 \le \frac{\rho}{n^2}, u^\top \mathbf{1} = 0, u \ge -\frac{1}{n} \right\}$$

$$\begin{aligned} R_n(\theta; \mathcal{P}_{n,\rho}) &= \max_p \left\{ \left\langle p, z \right\rangle : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \le \frac{\rho}{n}, p^\top \mathbf{1} = 1, p \ge 0 \right\} \\ &= \bar{z} + \max_u \left\{ \left\langle u, z - \bar{z} \right\rangle : \|u\|_2^2 \le \frac{\rho}{n^2}, u^\top \mathbf{1} = 0, u \ge -\frac{1}{n} \right\} \\ &\le \bar{z} + \frac{\sqrt{2\rho}}{n} \|z - \bar{z}\|_2 = \bar{z} + \sqrt{\frac{2\rho}{n}} s_n^2 \quad \text{by Cauchy-Schwarz} \end{aligned}$$

Robust Optimization \approx Variance Regularization \blacksquare

Proof Sketch Let $z_i = \ell(\theta; X_i)$, $u_i = p_i - \frac{1}{n}$, and denote by \overline{z} and s_n^2 the sample mean and variance respectively.

$$\begin{aligned} R_n(\theta; \mathcal{P}_{n,\rho}) &= \max p \bigg\{ \left\langle p, z \right\rangle : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \le \frac{\rho}{n}, p^\top \mathbf{1} = 1, p \ge 0 \bigg\} \\ &= \bar{z} + \max_u \bigg\{ \left\langle u, z - \bar{z} \right\rangle : \|u\|_2^2 \le \frac{\rho}{n^2}, u^\top \mathbf{1} = 0, u \ge -\frac{1}{n} \bigg\} \\ &\le \bar{z} + \frac{\sqrt{2\rho}}{n} \|z - \bar{z}\|_2 = \bar{z} + \sqrt{\frac{2\rho}{n}} s_n^2 \quad \text{by Cauchy-Schwartz} \end{aligned}$$

Last inequality is tight if for all i

$$u_i = \frac{1}{n} \sqrt{\frac{2\rho}{ns_n^2}} (z_i - \bar{z}) \ge -\frac{1}{n}$$

Distributionally Robust Optimization
Extensions and issues main

Issue: What if $\theta^* \in \mathbb{R}^d$ is not unique?

Extensions and issues main

Issue: What if $\theta^* \in \mathbb{R}^d$ is not unique? Let $S = \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ and

$$\boldsymbol{r^{\star}} = \min_{\boldsymbol{\theta}^{\star} \in S} \max_{\boldsymbol{\theta} \in S} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|_{2}$$

Then [Duchi, Glynn & N. 16]

$$\mathbb{P}\left(\inf_{\theta\in\Theta} R(\theta) \le R_n(\widehat{\theta}^{\mathrm{rob}}, \mathcal{P}_{n,\rho})\right)$$

$$\ge \mathbb{P}\left(N(0,1) + \sqrt{\rho} \ge \boldsymbol{r^*}\sqrt{\rho \operatorname{Var}(\ell(x^*;\xi))(d+1)}\right) + O(n^{-\frac{1}{2}}).$$

Extensions and issues main

Issue: What if $\theta^* \in \mathbb{R}^d$ is not unique? Let $S = \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ and

$$\boldsymbol{r}^{\star} = \min_{\boldsymbol{\theta}^{\star} \in S} \max_{\boldsymbol{\theta} \in S} \|\boldsymbol{\theta} - \boldsymbol{\theta}^{\star}\|_{2}$$

Then [Duchi, Glynn & N. 16]

$$\mathbb{P}\left(\inf_{\theta\in\Theta} R(\theta) \le R_n(\widehat{\theta}^{\mathrm{rob}}, \mathcal{P}_{n,\rho})\right)$$

$$\ge \mathbb{P}\left(N(0,1) + \sqrt{\rho} \ge \mathbf{r}^* \sqrt{\rho \mathrm{Var}(\ell(x^*;\xi))(d+1)}\right) + O(n^{-\frac{1}{2}}).$$

• If r^{\star} large, then lose confidence, if r^{\star} small, good shape