B9145: Problem Set 2

Due: Mar 23, 11:59pm

Carefully follow submission instructions announced on Canvas.

Question 2.1 (Minimax bounds for estimation (10 points)): We derive information theoretic lower bounds for statistical estimation problems, analogous to those for stochastic optimization we saw in class. For a class of distributions \mathcal{P} , let $\theta : \mathcal{P} \to \mathbb{R}^d$ be the statistical functional of interest; $\theta(P)$ is often called the "parameter". Let d be a metric on $\Theta := \{\theta(P) : P \in \mathcal{P}\}$, and let $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ be a non-decreasing function such that $\Phi(0) = 0$. For n observations $X_i \stackrel{\text{iid}}{\sim} P$, we measure performance of an estimator $\hat{\theta}_n(X_1, \ldots, X_n)$ by

$$\sup_{P \in \mathcal{P}} \mathbb{E}_{X_1^n \sim P} \left[\Phi \left(d(\widehat{\theta}(X_1^n), \theta(P)) \right) \right].$$

The minimax risk for estimation is given by

$$\mathfrak{M}_n(\mathcal{P}, \Phi \circ d) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\Phi \left(d(\widehat{\theta}(X_1^n), \theta(P)) \right) \right],$$

where the infimum is taken over all measurable functions of X_1, \ldots, X_n . Derive Le Cam's method: for any fixed $\delta > 0$, and $P_1, P_{-1} \in \mathcal{P}$ such that $d(\theta(P_1), \theta(P_{-1})) \ge 2\delta$,

$$\mathfrak{M}_{n}(\mathcal{P}, \Phi \circ d) \geq \frac{\Phi(\delta)}{2} \left(1 - \left\| P_{1}^{n} - P_{-1}^{n} \right\|_{\mathrm{TV}} \right).$$

You may give a concise derivation based on results from class.

Question 2.2 (Uniform estimation (20 points)): In this question, we will show that the minimax rate of estimation for the parameter of a uniform distribution (in squared error) scales as $1/n^2$. In particular, assume that $X_i \stackrel{\text{iid}}{\sim}$ Uniform $(\theta, \theta + 1)$, meaning that X_i have densities $p(x) = \mathbf{1} \{x \in [\theta, \theta + 1]\}$. Let $X_{(1)} = \min_i \{X_i\}$ denote the first order statistic.

(a) Prove that

$$\mathbb{E}[(X_{(1)} - \theta)^2] = \frac{2}{(n+1)(n+2)}$$

(Hint: the fact that $\mathbb{E}[Z] = \int_0^\infty \mathbb{P}(Z \ge t) dt$ for any positive Z may be useful.)

(b) Using Le Cam's two-point method, show that the minimax rate for estimation of $\theta \in \mathbb{R}$ for the uniform family $\mathcal{U} = \{\text{Uniform}(\theta, \theta + 1) : \theta \in \mathbb{R}\}$ in squared error has lower bound c/n^2 , where c is a numerical constant.

Question 2.3 (Differentially private estimation (50 points)): We study estimation under a privacy constraint, when the data collector cannot be trusted with sensitive information. Instead of observing true data $X_i \in \mathcal{X}$, a perturbed version $Z_i \in \mathcal{Z}$ is viewed; given X = x, we write $Z \sim Q(\cdot | X = x)$, and call Q a "channel". For $\alpha > 0$, we say Z_i is α -differentially private if for any measurable subset $A \subset \mathcal{Z}$ and any pair $x, x' \in \mathcal{X}$,

$$\frac{Q(Z \in A \mid X = x)}{Q(Z \in A \mid X = x')} \le \exp(\alpha).$$
(1)

Intuitively, differential privacy asks that x and x' are similarly likely to have generated the observed signal Z. Letting $q(z \mid x) := Q(Z = z \mid X = x)$ be the conditional density of $Z \mid X$, the condition (1) is equivalent to $\frac{q(z|x)}{q(z|x')} \leq e^{\alpha}$ for all $x, x' \in \mathcal{X}$, and almost surely all $z \in \mathcal{Z}$. In what follows, we assume $\alpha < 1$.

As we will show, differential privacy acts as a contraction on probabilities. For arbitrary probabilities P_1, P_2 on \mathcal{X} , let densities p_1 and p_2 be their densities w.r.t. a base measure μ ; you may treat this as a continuous density for convenience. Define the *marginal* distributions

$$M_i(Z \in A) := \int_{\mathcal{X}} Q(Z \in A \mid X = x) p_i(x) d\mu(x), \quad i \in \{1, 2\}.$$

We will prove there is a universal (numerical) constant $C < \infty$ such that for any P_1, P_2 ,

$$D_{\rm kl}(M_1 \| M_2) + D_{\rm kl}(M_2 \| M_1) \le C(e^{\alpha} - 1)^2 \| P_1 - P_2 \|_{\rm TV}^2.$$
⁽²⁾

We show this result assuming $\mathcal{Z} = \{1, \ldots, k\}$ for some finite $k \in \mathbb{N}$; this is without loss of generality, but you don't have to justify this.

- (a) Recall the definition of the total variation distance $||P_1 P_2||_{\text{TV}} = \sup_{A \subset \mathcal{X}} \{P_1(A) P_2(A)\}$. Show $||P_1 - P_2||_{\text{TV}} = \frac{1}{2} \int |p_1(x) - p_2(x)| d\mu(x)$.
- (b) Define $m_j(z) := \int q(z \mid x) p_j(x) d\mu(x)$, prove that for a universal constant $c < \infty$,

$$|m_1(z) - m_2(z)| \le c(e^{\alpha} - 1) \inf_{x \in \mathcal{X}} q(z \mid x) \cdot ||P_1 - P_2||_{\mathrm{TV}}$$

(c) Show the result (2) when $\mathcal{Z} = \{1, \ldots, k\}$ for some finite $k \in \mathbb{N}$.

Hint Use the following simple inequality: for any a, b > 0, we have $\left|\log \frac{a}{b}\right| \le \frac{|a-b|}{\min\{a,b\}}$. To see this, use $\log(1+x) \le x$ to note

$$\log \frac{a}{b} = \log \left(1 + \frac{a}{b} - 1\right) \le \frac{a - b}{b}$$
 and $\log \frac{b}{a} \le \frac{b - a}{a}$.

We now use the inequality (2) to prove minimax lower bounds for differentially private estimation. Consider a survey data on individuals i = 1, ..., n, where we ask each individual about illicit drug use: $X_i = 1$ if person i uses illicit drugs, 0 otherwise ($\mathcal{X} = \{0, 1\}$). Define $\theta(P) = P(X = 1) = \mathbb{E}_P[X]$. To protect privacy, we perturb each answer X_i in a α -differentially private manner, and use Z_i 's as our data.

To make sure everyone feels suitably private, assume $\alpha < 1/2$; in this case, $(e^{\alpha} - 1)^2 \leq 2\alpha^2$. Let \mathcal{Q}_{α} be the family of all α -differentially private channels, and let \mathcal{P} denote the Bernoulli distributions

with parameter $\theta(P) = P(X_i = 1) \in [0, 1]$. We consider the minimax risk for private estimation of the proportion $\theta(P)$

$$\mathfrak{M}_{n}(\theta(\mathcal{P}), |\cdot|, \alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}\left[|\widehat{\theta}(Z_{1}, \dots, Z_{n}) - \theta(P)| \right],$$

where the infimum is over (differentially private) channels Q and estimators $\hat{\theta}$, and the expectation is taken with respect to both the X_i (according to P) and the Z_i (according to $Q(\cdot | X_i)$).

(d) Use Le Cam's method to argue that whenever P_1, P_2 satisfy $|\theta(P_1) - \theta(P_2)| \ge \delta$,

$$\mathfrak{M}_{n}(\theta(\mathcal{P}), |\cdot|, \alpha) := \inf_{Q \in \mathcal{Q}_{\alpha}} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[|\widehat{\theta}(Z_{1}, \dots, Z_{n}) - \theta(P)| \right] \ge \frac{\delta}{2} \inf_{Q \in \mathcal{Q}_{\alpha}} [1 - ||M_{1}^{n} - M_{2}^{n}||_{\mathrm{TV}}].$$

Then, use inequality (2) to show that for some universal constant c' > 0.

$$\mathfrak{M}_n(\theta(\mathcal{P}),|\cdot|,\alpha) \geq \frac{c'}{\sqrt{n\alpha^2}}$$

(e) Give a rate-optimal estimator for this problem. i.e., define a α -differentially private channel Qand an estimator $\hat{\theta}$ such that $\mathbb{E}[|\hat{\theta}(Z_1^n) - \theta|] \leq C'/\sqrt{n\alpha^2}$, where C' > 0 is a universal constant.

Hint Consider perturbing the data with probability $1 - q_{\alpha}$, where $q_{\alpha} = e^{\alpha}/(1 + e^{\alpha})$. Note that $(2q_{\alpha} - 1)^{-2} = \left(\frac{e^{\alpha} + 1}{e^{\alpha} - 1}\right)^2 \approx 4/\alpha^2$ for $\alpha \approx 0$.

Question 2.4 (Adversarial robustness for linear logistic regression (10 points)): Consider a binary classification problem with label $y \in \{-1, +1\}$ and features $x \in \mathbb{R}^d$. We study the logistic regression loss $\ell(\theta; x, y) = -\log \sigma(y\theta^\top x)$, where $\sigma(a) = \frac{1}{1 + \exp(-a)}$. Derive an alternative form for the adversarial loss:

$$\max_{\bar{x}\in\mathbb{R}^d:\|\bar{x}-x\|_{\infty}\leq\epsilon}\ell(\theta;\bar{x},y)=-\log\sigma\left(y\theta^{\top}x-\epsilon\|\theta\|_{1}\right).$$

Give an interpretation of this result.